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Abstract 

The 2011 Great East Japan Earthquake and tsunami is estimated as the costliest natural 

disaster to date, followed by Hurricane Katrina in the United States. By leveraging an 

instrumental variables approach using the historical tsunami monuments, this study 

estimates the short to long-run impacts of the tsunami on the subsequent economic 

activities proxied by nightlight intensity. The tsunami caused dynamic impacts in the 

affected areas: a significant fall in the first year, no robust effect in the second year, and 

positive impacts 7 years after that. Contrarily, the results also show a persistent negative 

on population size. Massive reconstruction funds on infrastructures are deemed to 

facilitate quick economic recovery in the affected areas, but they do not necessarily help 

people back to the affected areas. 
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Artificial creative destruction? Dynamic causal effects of the 

tsunami during the Great East Japan Earthquake 

 

1. Introduction 

The frequency and cost of natural disasters have increased in the world. During the 2010s 

alone, climate and weather-related natural disasters such as floods, storms, and heatwaves 

have impacted 1.7 billion people, and an additional 410,000 lives were lost (IFRC, 2020). 

In addition to the significant number of casualties and the initial evacuees 

reaching about 0.47 million persons, among a number of natural disasters, the 2011 Great 

East Japan Earthquake and tsunami is the costliest natural disaster to date—the 

aggregated loss is estimated at $210-235 billion2, followed by Hurricane Katrina in 2005, 

estimated at $161 billion3. Carvalho et al. (2020) discuss that the significant shock caused 

the decline of the real GDP of the four disaster-stricken prefectures in the 2011 fiscal year 

by 1.5 percentage point, and 0.47 percentage point for Japan's real GDP growth in the 

following year the disaster. The enacted government appropriation for the reconstruction 

has been more than twice the estimated damage by FY2020 for the Great East Japan 

Earthquake (roughly $472 billion, or JPY 38 trillion). The government appropriation for 

2005’s Hurricane Katrina reportedly exceeded $110.2 billion (U.S. Government 

Accountability Office, 2020). The injection of the funding for emergency relief and 

reconstruction efforts has been implemented quickly to save lives and recover from the 

disaster damages' direct and indirect economic losses. Meanwhile, the over-budget 

estimations for the relief and reconstruction have been pointed out as challenges—

eroding public resources into unnecessary objects. 

In academics, notably in growth literature, existing theories predict the 

subsequent economic trajectories after the external shocks, including natural disasters: (i) 

regional convergence hypothesis within a country based on neoclassical growth theory, 

 

 
2 The estimated cost is based on the cabinet office of Japan and Ranghieri and Ishiwatari (2014). As of 

June 2011, the cabinet office estimated the direct cost at JPY 16.9 trillion (US$ 210 billion), of which JPY 
10.4 trillion for buildings, JPY 1.3 trillion for lifeline utilities, JPY 2.2 trillion for social infrastructure, 
and JPY 3.0 trillion to others. Ranghieri and Ishiwatari's (2014) estimation indicated that the cost could 
reach up to US$ 235 billion. 

3 An estimate by National Oceanic and Atmospheric Administration (NOAA), retrieved on May 7, 2021 
from the following URL: https://coast.noaa.gov/states/fast-facts/hurricane-costs.html 
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(ii) (Schumpeter’s) creative destruction, and (iii) “Disaster trap” induced by poverty trap. 

First, the traditional neoclassical growth theory argues that the economic growth of the 

affected area converges to its steady state in the long run (Baumol, 1986; Barro and Sala-

i-Martin, 1992a; Barro, 2015; Blattman and Miguel, 2010). In other words, the traditional 

neoclassical growth theory predicts that partial destruction by external shocks leads to the 

loss of both physical and human capital. Still, it does not affect the rate of technological 

progress. That is, the economy experiences the accumulation of capital in the affected 

areas (a short-term increase of investment resulted in a higher growth rate) and converges 

back to balanced growth steady states. Second, Schumpeter’s creative destruction theory 

regards external shocks as an opportunity to grow more than the precondition (Aghion 

and Howitt, 1992).4  This is because destruction may provide the opportunity for the 

affected area to introduce quality physical capital, leading to higher technological 

progress, which is supported by the empirical findings by Hornbeck and Keniston (2017), 

among others. Third, the disaster trap theory, induced by the concept of poverty trap 

developed by Azariadis and Drazen (1990), practically became widely used by the World 

Bank and Sachs (2005), which predicts the long-run negative effect of external shocks 

relative to the ex-ante condition. While there are some empirical supports for each theory, 

there is no unified answer. Thus, whether external shocks affect the long-run economic 

growth is ultimately empirical (Cavallo et al., 2013). 

Despite the interests of policymakers and academics alike, empirical evidence 

on the impact of catastrophic natural disasters on the subsequent economic development 

in terms of economic growth and economic level is still limited mainly due to the lack of 

disaggregated statistics (i.e., growth indicators and disaster damage indices) as well as 

credible causal identification strategies.5  In terms of statistics, first, subnational-level 

growth indicators are not readily available for many countries to capture detailed 

economic activities.6  Natural disasters are typically localized issues, although being 

 

 
4 In the context of natural disasters, the “productivity effect,” which is a similar idea to the creative 

destruction, has been mentioned, for instance, by Hallegatte and Dumas (2009), Benson and Clay (2004), 
Okuyama (2003), and Albala-Bertrand (1993). 

5 Aside from the effects on economic growth and economic level, there are a number of studies that link 
natural disasters and their effects, e.g., firm performance, employment, risk preferences of individuals, 
and sovereign debt. See the following literature on the effects on firm-level performance (Leiter et al., 
2009; Basker and Miranda, 2018; Cole et al., 2019; Okazaki et al., 2019; Okubo and Strobl, 2020). 

6 Our understanding of the effects of natural disasters on economic development based on cross-country 
empirical evidence using aggregated data have been relatively matured (e.g., Cavallo et al., 2013; Loayza 
and Olaberria, 2012; Noy, 2009; Raddatz, 2007; Skidmore and Toya; 2002; Albala-Bertrand, 1993). 
Among those studies, Cavallo et al. (2013) used the synthetic control method and cross-country panel data 
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transmitted through supply chains. That is, coarse growth indicators such as a national 

GDP may hinder the rigor assessment of the spatially heterogeneous regional disaster 

impacts (see Strobl, 2011, 2012; Bertinelli and Strobl, 2013; Heger and Neumayer, 2019 

that explicitly deal with the localized nature of natural disasters using sub-national growth 

indicators). Second, exogenous measurements of natural disaster impacts are challenging. 

Measures such as human causalities surveyed from survivors and the reported building 

losses are subjective indicators, and those indicators are likely to be susceptible to 

measurement errors. Although the number is still limited, some studies strived to find 

exogenous measures of disaster impacts on growth indicators (i.e., Hsiang and Jina, 2014; 

Strobl, 2011; Bertinelli and Strobl, 2013; and Heger and Neumayer, 2019). Lastly, on 

causal identification strategies, empirical investigations of the causal effects of natural 

disasters are hampered by the fact that more impoverished areas are likely to be hit harder. 

As Cavallo et al. (2013) discussed, estimating impact of natural disasters on economic 

development indicators in cross-sectional settings is likely to be biased upward in 

absolute value. Controlling for time-invariant unobservable variables using panel data 

partially alleviates the bias. However, it does not satisfy the assumption that disaster-

struck areas equally grow, for example, at the pace of unaffected regions. Controlling for 

region-fixed effects would be helpful to control region-specific trends. However, it still 

does not fully control the region's more disaggregated socio-economic endowments. 

Cavallo et al. (2013) and Heger and Neumayer (2019) dealt with these issues of 

identification by employing a synthetic control method proposed by Abadie et al. (2010) 

to estimate the causal impact on growth indicators. 

Our study overcomes these empirical challenges and contributes to the literature 

by adding new causal evidence of the short to long-term impacts of the tsunami during 

the 2011 Great East Japan Earthquake, which is the costliest natural disaster in world 

history. We do this by using the granular grid-level information comprising annual mean 

nighttime light intensity of about 1 km2 from 2011 to 2018 and detailed tsunami 

inundation data extracted from aerial photos and satellite images. Using these, the 

analysis is performed at the most disaggregated level of administrative units, namely, 

 

 
covering 196 countries in the period 1970-2008, and find no significant impact on economic growth. 
Given the localized nature of natural disaster impacts, some studies shift their focus to a single-country or 
within country analysis. Strobl (2011) performs an econometric analysis using the exogenous measures of 
the hurricane destruction index in the US, and found no effect on the national economic growth rate. Also, 
although the analytical framework is short-run only, Carvalho et al. (2020) quantified using input-output 
linkages as a mechanism for the propagation and amplification of earthquake/tsunami shocks and found 
that the Great East Japan Earthquake in 2011 resulted in a 0.47 percentage point decline in Japan’s real 
GDP growth in the following year, 2012. 
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municipal. In Japan's case, the municipal administrative unit comprises cities, towns, 

villages, wards, special words (special wards of Tokyo), seireishiteitoshi, chukaku-shi, 

and tokurei-shi.  

The main empirical strategy relies on an instrumental variables approach—the 

intensity of the tsunami is instrumented by the number of historical tsunami-related 

monuments. Although we use the relatively precise tsunami inundation data derived from 

aerial photos and satellite images, the instrumental variable strategy would be necessary 

as the data could be still prone to measurement errors, e.g., technical issues such as the 

limited resolution of aerial photos/satellite images, and human errors during the data 

compilation. Further, the inundation areas themselves could be endogenous, meaning the 

inundated areas may tend to collect more significant amounts of reconstruction funding 

after the tsunami, leading to a higher growth rate.  

In terms of the instrument's relevance, the number of municipal-level tsunami 

monuments is highly correlated to the tsunami inundation caused by the 2011 Great East 

Japan Earthquake (see also section 4.2.). However, concern remains on the violation of 

exclusion restriction—the location of tsunami monuments may represent areas with 

relatively more or less economic activities. To partially alleviate this concern, we 

controlled for the population density before the tsunami on top of the prefecture-level 

fixed effects. The decisions to construct tsunami monuments should be randomly 

determined, underpinned by the voluntary will of people, and often by donations. They 

should not systematically correlate to organized behaviors of local governments and 

private agents that affect the future economic trajectories through reconstruction 

investments in particular. However, ultimately, no established test definitively 

investigates instruments' validity in the context of exclusion restriction (Kiviet, 2020). 

The remainder of this paper is organized as follows. Section 2 summarizes the 

background about the tsunami during the 2011 Great East Japan Earthquake and related 

literature. Section 3 describes the data and methodology. Section 4 presents the analytical 

results, their robustness and possible mechanisms. Section 5 concludes the paper.  
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2. Background: Tsunami at the 2011 Great East Japan Earthquake  

The fourth largest earthquake in history with a magnitude of 9.0-9.1 hit the northeast coast 

of Japan at 2:46 PM JST (5:46 UTC) on March 11, 2011.7 It triggered the destructive 

tsunami with a height reaching nearly 10 meters in the intensively struck locations in 

Miyagi, Iwate, and Fukushima. It has resulted in 561 km2 of total inundation. More 

specifically, the maximum tsunami height was 14.8 meters at the Megawa Fishing Port in 

Miyagi, the tsunami run-up height was a record high at 40.5 meters, and the maximum 

distance from the coastal line was about 5 km in Sendai plain, according to the 

government of Japan. Further, although it is out of the purview of the main analysis of 

this paper, the tsunami caused another disaster, the leakage of nuclear radiation from the 

Fukushima Dai-ichi Nuclear Power Plant. We show that the location of the nuclear 

incident is a small fraction of tsunami inundation and does not statistically affect the 

tsunami-induced economic growth effects after that, as the spatial distribution differs. 

Even ten years after the tragedy, the direct and indirect losses from the damages 

are still an ongoing issue. The confirmed numbers as of March 2021 are the following: 

15,900 total deaths, of which more than 90% is derived from tsunami (9,544 for Miyagi, 

4,675 for Iwate, and 1,614 for Fukushima), 2,525 (1,214 for Miyagi, 1,111 for Iwate and 

196 for Fukushima) missing persons and 38,139 evacuees8  according to the National 

Policy Agency as of February 2022. On the physical damages, the Reconstruction Agency 

reported that approximately 122,000 buildings were completely destroyed, about 283,000 

suffered severe damage, and another roughly 748,000 were partially damaged. Extensive 

damages are observed on the transportation infrastructures, roads, railways, and airports. 

  

 

 
7  Based on the compilation by USGS (https://www.usgs.gov/programs/earthquake-hazards/science/20-

largest-earthquakes-world). Retrieved on December 24, 2021. 
8 The catastrophic earthquake and tsunami  
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3. Data and methodology 

3.1. Data 

Municipal-level administrative boundary 

The analysis performs at the most disaggregated level of administrative units, namely, 

municipal. Japan's bureaucratic administrative division is divided into the following 

layers: national, regional, prefectural and municipal. The municipal comprises cities, 

towns, villages, wards, special words (special wards of Tokyo), seireishiteitoshi, chukaku-

shi, and tokurei-shi. There are 2,321 municipals in Japan as of 2020. 

Tsunami inundation 

This study uses the dummy variable of whether municipal administrative boundary got 

inundated or not during the 2011 Great East Japan tsunami as a damage proxy caused by 

the tsunami intensity. Sekimoto et al. (2012) and the Center for Spatial Information 

Science, University of Tokyo, compiled the tsunami inundation data based on aerial 

photos and satellite images made by the Geospatial Information Authority of Japan. Panel 

B in Figure 1 shows the tsunami inundation in black, ranging from Aomori to Chiba, 

spreading about 930 kilometers. 

Although researchers often use tsunami inundation as an exogenous proxy of 

tsunami intensity, the inundation dummy may not necessarily capture the level of tsunami 

intensity perfectly, e.g., a shallow tsunami inundation may not necessarily lead to the 

catastrophic loss of human lives and physical damage of capital stocks as discussed 

above. 9  Further, the inundation data could be prone to measurement errors due to 

technical issues such as limited camera resolution and human errors in the compilation. 

We correct these measurement errors by employing an instrumental variable approach. 

 

 
9 On physical damage, early engineering literature on tsunami intensity and building damage show that 

wooden houses and reinforced concrete buildings may collapse if the tsunami heights (tsunami inundation 
depth) reach 2 and 8 m, respectively (Shuto, 1993), which is validated by subsequent studies and reached 
a rough consensus for the scientific community and in practice. See Suppasri et al. (2013), among others, 
to summarize the literature on the relationship between tsunami intensity and building damages. In 
practice, based on Shuto (1993), Japan Meteorological Agency sends an advisory message to the public 
for precautionary behaviors if more than 0.2 meters of tsunami is predicted to arrive as the 0.2 meters 
threshold is deemed to prevent the smooth evacuation of people. See the criteria proposed by Shuto (1993) 
in the webpage of Japan Meteorological Agency, retrieved on December 29, 
2021. https://www.jma.go.jp/jma/kishou/know/faq/faq26.html 
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Historical tsunami monuments 

The Geospatial Information Authority of Japan compiled the natural disaster monuments 

in Japan collected by local governments. The monuments depict the details of the tsunami 

disaster, such as name, the year the tsunami arrived, causalities and physical damages, 

and some lessons for future generations. Panel A in Figure 1 shows the spatial 

distributions of the tsunami monuments. The mark in green is the tsunami-related 

monument in the tsunami inundated prefectures during the 2011 Great East Japan 

Earthquake. The mark in blue is the tsunami-related monuments in the non-tsunami 

inundated prefectures. The mark in red is the monument of the other natural disasters. 

Figure 1: The tsunami monuments and the tsunami-induced inundation by 
municipalities during the 2011 Great East Japan Earthquake 

Panel A: The distribution of the tsunami-
related monuments 

Panel B: The tsunami-induced inundation and 
tsunami-related monuments in the tsunami-

affected prefectures 

 

Source: Geospatial Information Authority of Japan, Center for Spatial Information Science, University 
of Tokyo, and ESRI 
Note: In Panel A, the mark in green is the tsunami-related monument in the tsunami-inundated 
prefectures during the 2011 Great East Japan Earthquake. The mark in blue is the tsunami-related 
monuments in the other prefectures. The mark in red is the monument of the other natural disasters. 
In Panel B, the area in black denotes the tsunami-induced inundation during the 2011 Great East Japan 
Earthquake. 
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Nighttime lights 

Leveraging the seminal finding by Henderson et al. (2012) that substantiates a strong 

correlation between variations in nighttime lights and economic growth rate by using 

panel data for around 190 countries from 1992–2008, this study uses nighttime lights data 

as a proxy of granular-level of economic activities. Specifically, we use a harmonized 

global nighttime light dataset 2000-2018 (Chen et al., 2021) compiled based on the 

Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) 

and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-

orbiting Partnership satellite. This harmonized dataset corrects the severe inconsistency 

between DMSP and VIIRS due mainly to the capacity difference of the monitoring 

sensors. 

 Satellite images are more accurate and objective than sectoral output data 

compiled by government authorities. Satellite images also enable us to capture smaller 

economic activities up to the grid level, allowing us to conduct municipal-level analyses. 

The DMSP products are available from 1992 to 2013 with 30 × 30 arc-second grids 

equivalent to approximately 0.86 km2 at the equator, spanning −180° to 180° longitude 

and −65° to 75° latitude. Data values range from 0 to 63. VIIRS, available from 2012 to 

the present, further upgraded its resolution to 15 × 15 arc-second grids equivalent to 

around 0.5 m2 at the equator with the same data coverage. 

 In the case of Japan, the prefecture-level GDP compiled based on the system of 

national account is highly correlated to the NTL intensity. The correlation after taking the 

logarithm is at 0.77 and the marginal effect in a linear OLS regression conditional on 

region and year fixed effects is 0.45 (95% CI: 0.30 – 0.60) at 1% statistical significance, 

meaning a 1% increase in the NTL intensity increases 0.45 percentage points of prefecture 

GDP. Without taking log transformations, the correlation is at 0.85, and the marginal 

effect in a linear OLS regression conditional on region and year fixed effects is JPY 

2,182,405 (95% CI: JPY 710,224 – 3,654,586) at 1% statistical significance, indicating 

one increase in the NTL intensity digital number increases JPY 2,182,405 or roughly 

about US$ 20,000 of prefecture GDP. 

Figure 2: The correlation between prefecture GDP and nightlights intensity conditional 
on region and year-fixed effects, 2000-2017 
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Source: Government of Japan, and the DMSP/VIIRS NTL data harmonized by Chen et al. (2021) 
Note: The summary statistics of the DMSP/VIIRS NTL data harmonized by Chen et al. (2021) are the 
following: 5.9 (mean), 11.6 (standard deviation), 0 (minimum), and 112.7 (maximum). A caveat of 
this two-way scatter plot is that the prefecture GDP is only available in the fiscal year from April to 
March.  

Population 

This study uses the population census data for 2015 and 2020 from the Statistical Bureau 

of Japan. Although the population trend is declining, Japan had about 126.1 million of the 

population in 2020. Tokyo is the largest, with about 14 million population, followed by 

Kanagawa (9.2 million), Osaka (8.8 million), and Aichi (7.5 million). The prefectures 

heavily struck by the 2011 tsunami are much smaller in population, e.g., 2.3 million for 

Miyagi, 1.2 million for Iwate, and 1.8 million for Fukushima.  

According to the National Police Agency, the 2011 Great East Japan Earthquake 

produced at least 15,900 deaths (9,543 for Miyagi, 4,675 for Iwate, and 1,614 for 

Fukushima) and 2,525 missing persons (1,214 for Miyagi, 1,111 for Iwate and 196 for 

Fukushima) as of March 2021. Among the deaths, 90.4% were due to drowning, likely to 

be induced by the tsunami.  
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3.2. Model specifications 

To examine the year-by-year change of the average treatment effect of tsunami during the 

2011 Great East Japan Earthquake on later short to long-term economic outcomes, an 

instrumental variable approach and a municipal-level cross-sectional dataset were 

employed to overcome the possibility of non-random spatial distributions of the tsunami 

as well as measurement errors in the tsunami inundation records assembled based on 

aerial photos and satellite images. We use OLS regression for reference to show the 

existence of estimation biases. As an instrument of the tsunami, we use the number of 

historical tsunami monuments. 

In our empirical specification, as described in equation 1, we employ two types of 

data as outcome variables to investigate the dynamic chronological effects of the 2011 

tsunami: mean nighttime light intensity from 2011 to 2018, and total population per km2 

in 2015 and 2020. 

𝑁𝑇𝐿 𝑜𝑟 𝑃𝑂𝑃,௦௧ି௧௦௨ = 𝛼 + 𝛽𝐼𝑁𝑈𝑁𝐷𝐴𝑇𝐼𝑂𝑁_𝐷𝑈𝑀𝑀𝑌,ଶଵଵ +

𝛾𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑆 + 𝛿 + 𝜀 (1) 

Here the mean nighttime light intensity (NTL) for the years from 2011 to 2018 and the 

total population per km2 (POP) in 2015 and 2020 of municipal i in prefecture p are the 

outcome variables; the inundation dummy caused by the 2011 tsunami for 

INUNDATION_DUMMY; the total population per km2 in 2010 (before the 2011 tsunami) 

for CONTROLS; Prefecture fixed effects for 𝛿 ; and the error term ε . The first stage 

estimation predicts the tsunami intensity by TSUNAMI_MONUMENTS as in equation 

2. 

I𝑁𝑁𝑈𝐷𝐴𝑇𝐼𝑂𝑁_𝐷𝑈𝑀𝑀Y୧,ଶଵଵ = a + b𝑇𝑆𝑈𝑁𝐴𝑀𝐼_MONUMENTS +

c𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑆 + 𝑐 + d (2) 

For the additional reference purpose, we use the difference in difference (DID) 

approach to capture the persistent effect of the tsunami using the municipal-level panel 

data. For more details, please see Appendix 2. 
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4. Analysis 

4.1. The economic activities proxied by nighttime lights intensity: Before 
and after the 2011 Great East Japan Earthquake 

Figure 1 shows the spatial distribution of the economic activities by municipal measured 

by nighttime light emissions in 2010 (before the 2011 Great East Japan Earthquake). 

There are three categories to distinguish the nightlight intensity: weak in dark blue (DN: 

0-22.4), intermediate in light blue (DN: 22.4-44.2), and strong in yellow (DN: 44.2-63). 

Intense economic activities colored yellow concentrate on metropolitan areas like Tokyo, 

Aichi, and Osaka. 

Figure 1: The magnitude of economic activities by municipalities in 2010, proxied by 
mean nighttime lights intensity 

 

Source: DMSP and ESRI 
Note: NTL intensity ranges from a minimum 0 to a maximum of 63.  

In a country aggregation, the global financial crisis at the end of the 2000s 

triggered a strong economic downturn, with the growth rates at -1.2 and -5.7% in 2008 
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and 2009, respectively, according to the World Economic Outlook database April 2021. 

After that, the economy rebounded in 2010 with a growth rate of 4.1%, and the size of 

the economy measured by GDP in constant prices surpassed the pre-global financial crisis 

level in 2013, indicating that it took 4 years to bounce back to the pre-global financial 

crisis economic level. 

Figure 2 similarly shows the nightlights growth rates from 2009 to 2010 and 

2010 to 2011. After the global financial crisis, economic activities rebounded, reflected 

by the positive growth rate from 2009 to 2010 (Panel A). However, primarily due to the 

2011 Great East Japan Earthquake, the growth rate became negative in the subsequent 

year (Panel B). Then, it bounced back with the mean growth rate of 0.04 from 2011 to 

2012 (Panel C), but it declined slightly to 0.00 from 2012 to 2013 (Panel D). 
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Figure 2: Average nighttime lights growth rate by municipal-level administrative boundary 

                                        
Panel A: NTL growth rate between 2009-2010                 Panel B: NTL growth rate between 2010-2011 

(mean: 0.16, max: 0.83, min-0.34)                         (mean: -0.12, max: 1.00, min: -1.10) 

                     
Panel C: NTL growth rate between 2011-2012          Panel D: NTL growth rate between 2012-2013 

(mean: 0.04, max: 1.13, min-1.00)                   (mean: 0.00, max: 0.60, min: -1.00) 
 
Source: DMSP and ESRI 
Note: NTL intensity ranges from a minimum 0 to a maximum of 63. The positive and negative growth is described in yellow and dark blue, respectively.  
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4.2. Predicting the tsunami intensity by the historical tsunami monuments 

Table 1 shows the results of the first-stage estimation of the instrumental variables 

approach. The instrument, the number of historical tsunami monuments, shows a strong 

correlation to the tsunami inundation with a 1% level of statistical significance. Further, 

the instrument's relevance is confirmed by the Kleibergen-Paap rk Wald F statistic shown 

in the tables in the following subsections. As Staiger and Stock (1997) formalized, 

conventionally, 10 is a threshold for the weak instrumental variable test. In our case, most 

Kleibergen-Paap rk Wald F statistics exceed 80. 

Table 1: Predicting the tsunami intensity by the historical tsunami monuments 

 (1) (2) (3) 

 Tsunami inundation 

    

IV: Tsunami monuments 0.975*** 0.806*** 0.806*** 

 (0.0150) (0.0230) (0.0892) 

Control: Pre-tsunami total population per km2 

in 2010  0.00408* 0.00408 

  (0.00234) (0.00499) 

Prefecture fixed effects    

S.E. clustered at the prefecture-level    

Observations 1,993 1,975 1,975 

R-squared 0.678 0.748 0.748 

Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial 
Information Science, University of Tokyo, ESRI, DMSP/VIIRS NTL data harmonized by Chen et al. 
(2021). 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the prefecture-level are in 
parentheses. 

4.3. The economic impact of the tsunami during the Great East Japan 
Earthquake 

Table 2 shows the year-by-year dynamic effect of the tsunami on nightlight intensity using 

OLS regression (Panel A) and the instrumental variables approach (Panel B).  

In 2011 and 2012, in Panel A, the inundation dummy negatively affected the 

nightlight intensity at 10% statistical significance. However, the effects statistically 

disappeared after that. In 2018, the effect became positive with 5% statistical significance, 

implying that the tsunami-affected municipalities grew more than the unaffected ones.  
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In the two-stage estimations, the instrument's relevance holds for all the 

specifications according to Kleibergen-Paap rk Wald F statistics. The results show that 

the inundation dummy negatively affected the nighttime light intensity in 2011 at 5% 

significance. However, the effects statistically disappeared after that. In 2018, the effect 

became positive. These are consistent with the results using OLS regressions. To sum up, 

the two-stage estimation results show the dynamic change of the tsunami impacts: 

significant fall in the first year of the tsunami, no robust effect in the following years, and 

positive impacts 7 years after that, as graphically shown in Figure 3.   

We run the same specifications depending on with and without Fukushima 

dummy on the impacts on population density in Table 3. In the case of Fukushima, in 

addition to the tsunami, the leakage of nuclear radiation caused a significant impact on 

the mass evacuation of people that affected the population size. Therefore, we controlled 

the Fukushima prefecture dummy in columns 1 and 2. The two-stage estimation results 

indicate the persistent negative impacts on the population density in 2015 and 2020, even 

after controlling for the Fukushima dummy. These results contrast against the nighttime 

light intensity in columns 3 and 4.  
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Table 2: The chronological change of the effects of the tsunami on nighttime lights intensity by municipalities from 2011 to 2018 

  (1) OLS (2) OLS (3) OLS (4) OLS (5) OLS (6) OLS (7) OLS (8) OLS 

 Dependent variable: Log nighttime light intensity 

  2011 2012 2013 2014 2015 2016 2017 2018 

Panel A: The estimation results using OLS regression 

Tsunami inundation dummy in 2011 -0.301* -0.587* 0.00347 0.0765 0.195 0.185 0.150 0.270** 

 (0.179) (0.328) (0.186) (0.147) (0.139) (0.165) (0.131) (0.123) 

Pre-Tsunami population density in 2010         

Prefecture fixed effect         

Observations 1,893 1,915 1,933 1,930 1,928 1,926 1,945 1,941 

R-squared 0.901 0.905 0.926 0.927 0.929 0.925 0.932 0.935 

Panel B: The estimation results using the IV/2SLS approach 

 

(9) 

IV/2SLS 

(10) 

IV/2SLS 

(11) 

IV/2SLS 

(12) 

IV/2SLS 

(13) 

IV/2SLS 

(14) 

IV/2SLS 

(15) 

IV/2SLS 

(16) 

IV/2SLS 

Tsunami inundation dummy in 2011 -0.423** -0.800 -0.160 -0.0323 0.162 0.0973 0.0686 0.266* 

 (0.199) (0.610) (0.295) (0.196) (0.182) (0.216) (0.147) (0.141) 

Pre-Tsunami population density in 2010         

Prefecture fixed effect         

Kleibergen-Paap rk Wald F statistic 81.6 80.9 81.0 81.6 81.6 76.1 81.6 81.6 

Observations 1,893 1,915 1,933 1,930 1,928 1,926 1,945 1,941 
Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial Information Science, University of Tokyo, ESRI, 
DMSP/VIIRS NTL data harmonized by Chen et al. (2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at the prefecture-level, are in parentheses.   
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Figure 3: The chronological change of the effects of the tsunami on nighttime light intensity by municipalities from 2011 to 2018 

    
Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial Information Science, University of Tokyo, ESRI, 
DMSP/VIIRS NTL data harmonized by Chen et al. (2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at the prefecture-level, are in parentheses. This figure shows the year-by-year change of the 
coefficient of tsunami inundation dummy instrumented by the number of tsunami monuments. 
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Table 3: Comparing the elasticity of the effect of the tsunami in 2011 on population density and nighttime light 

  (1) IV/2SLS (2) IV/2SLS (3) IV/2SLS (4) IV/2SLS 

 Log population Log nighttime light intensity 

  2015 2020 2015 2018 

Tsunami inundation dummy in 2011 -0.0679** -0.0787*** 0.162 0.266* 

 (0.0289) (0.0272) (0.182) (0.141) 

Pre-Tsunami population per squared km (log, 

2010)     

Prefecture fixed effect     

Kleibergen-Paap rk Wald F statistic 81.6 81.6 81.6 81.6 

Excluding Fukushima prefecture     

Observations 1,916 1,916 1,928 1,941 

Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial Information Science, University of Tokyo, ESRI, 
DMSP/VIIRS NTL data harmonized by Chen et al. (2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at the prefecture-level, are in parentheses.
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4.4. Robustness tests: Restricting the samples to only the prefectures that 
were affected by the tsunami in 2011 

As a robustness test of the estimation results in Section 4.3, we run the same specifications 

using the limited samples by restricting to only the prefectures affected by the tsunami in 

2011, namely Aomori, Miyagi, Iwate, Fukushima, Ibaraki, and Chiba.  

Figure 4 shows the year-by-year change of the coefficient of tsunami inundation dummy 

instrumented by the number of tsunami monuments. Again, the instrument's relevance 

holds for all the specifications according to Kleibergen-Paap rk Wald F statistics that 

exceed 60. The results are qualitatively almost the same as the main estimation results, 

indicating that the tsunami negatively affected the economic activities proxied by the 

nighttime light intensity in the first year of the tsunami, with no robust effect in the 

following years, and turned out to be positive impacts 7 years after that.  

We also confirmed the consistent estimation results to the main results by 

running the same specifications to see the tsunami impacts on population density using 

the subsamples. 

Figure 4: The chronological change of the effects of tsunami on nighttime light intensity 
by municipalities from 2011 to 2018: Restricting the samples to only the prefectures 

that were affected by the tsunami in 2011 
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Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial 
Information Science, University of Tokyo, ESRI, DMSP/VIIRS NTL data harmonized by Chen et al. 
(2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at the prefecture-level, are in 
parentheses. This figure shows the year-by-year change of the coefficient of tsunami inundation 
dummy instrumented by the number of tsunami monuments. 
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Table 4: Comparing the elasticity of the effect of the tsunami in 2011 on population density and nighttime light: Restricting the samples 
to only the prefectures that were affected by the tsunami in 2011 

 (1) IV/2SLS (2) IV/2SLS (3) IV/2SLS (4) IV/2SLS 

  Log population Log nighttime lights intensity 

  2015 2020 2015 2018 

Tsunami inundation dummy in 2011 -0.0684** -0.0799*** 0.150 0.256* 

 (0.0294) (0.0265) (0.173) (0.136) 

Pre-Tsunami population per squared km (log, 

2010)     

Prefecture fixed effect     

Kleibergen-Paap rk Wald F statistic 60.8 60.8 65.2 65.1 

Excluding Fukushima prefecture     

Observations 303 303 358 359 

Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial Information Science, University of Tokyo, ESRI, 
DMSP/VIIRS NTL data harmonized by Chen et al. (2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at the prefecture-level, are in parentheses.  
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5. Discussion on the mechanisms: Dynamic impacts of tsunami on 
later economic activities 

The estimation results show that the tsunami triggered a significant economic fall in the 

first year, no robust effect since the second year, and positive impacts 7 years after that. 

This dynamic trajectory deems to reflect the progress of reconstruction activities through 

government public investments. Heavily struck prefectures, Miyagi, Iwate, and 

Fukushima, made a quick move and enacted the first line of the budget compilation for 

the reconstruction activities with the size of US$ 80.5 (JPY 1 trillion) for Miyagi, 40.3 

billion (JPY 500 billion) for Iwate, and 56.4 (JPY 700 billion) for Fukushima within about 

7 months after the March 2011 disaster destruction according to the Cabinet Office of 

Japan. The enacted government appropriation for the reconstruction has been more than 

twice the estimated damage by FY2020 (roughly US$ 472 billion, or JPY 38 trillion). 

More specifically, the following primary lifelines and public services nearly 

recovered within about 3 months by June 2011, except specific areas such as the one 

within 20 kilometers of the Fukushima Daiichi Nuclear Power Plant, reported by the 

Reconstruction Agency: Electricity, gas, banking services, telecommunication, postal 

services, and gasoline stands. Although the reconstructions of the road network in Miyagi, 

Iwate, and Fukushima were mostly completed, and lifeline and public services were 

sound, as noted, the progress rate of the debris removal created by the catastrophic 

collapses of buildings and physical infrastructures was pretty limited at 6% in the first 

year (by the FY2011). This late progress of debris removal is deemed the bottleneck of 

economic recovery. That is, the first-year economic fallout from the tsunami, denoted in 

the previous analytical section, should reflect the tsunami's impact and the resulting slow 

pace of the reconstruction activities. Contrary, for the second year, the situation improved 

rapidly—the estimation results indicate no robust effects from the tsunami on economic 

activities. In reality, the debris removal progress rate reached 58% at the end of FY2012, 

along with the progress of (re)constructions of mega-road projects ranging to 570 km, 

coastal infrastructures, and public housing, among other things. Further, although it is not 

statistically significant, the estimation results turn positive in 2015 and onwards and 

finally become statistically significant in 2018. This implies tsunami-inundated areas 

show more robust economic activities on average compared to the non-tsunami-inundated 

areas, backed by the debris removal completion and varieties of capital investments stated 

above. The debris removal was completed at the end of FY2013 for Miyagi and Iwate, 

and at the end of FY2014 for Fukushima.
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6. Conclusions 

The fourth largest earthquake in history, with a magnitude of 9.0-9.1, hit the northeast 

coast of Japan on March 11, 2011. Even ten years after the tragedy, human losses and 

physical damages are still ongoing issues. Also, the 2011 Great East Japan Earthquake 

and tsunami is the costliest natural disaster to date, followed by Hurricane Katrina in 2005.  

To our knowledge, Despite the interests of the policymakers and academics alike, 

empirical evidence on the localized impact of catastrophic natural disasters on the 

subsequent economic development in terms of economic growth and economic level is 

still limited mainly due to the lack of disaggregated statistics as well as credible causal 

identification strategies. Hence, this study asks whether the catastrophic tsunami affected 

later economic development in the case of Japan. 

Our study leverages the granular grid-level information comprising annual mean 

nighttime light intensity of about 1 km2 from 2011 to 2018 and detailed tsunami 

inundation data extracted from aerial photos and satellite images. By using these, the 

analysis is performed at the most disaggregated level of administrative units, namely, 

municipal, which capture the localized tsunami impacts. The primary empirical strategy 

relies on an instrumental variables approach—the intensity of the tsunami is instrumented 

by the number of historical tsunami-related monuments. Although we use the relatively 

precise tsunami inundation data derived from aerial photos and satellite images, the 

instrumental variable strategy would be necessary as the data could be prone to 

measurement errors. In addition, the inundation areas themselves could be endogenous, 

meaning the inundated areas may tend to collect more significant amounts of 

reconstruction funding after the tsunami, leading to a higher growth rate. 

The estimation results show the dynamic change of the tsunami impacts: 

significant fall in the first year, no robust effect in the second year, and positive impacts 

7 years after that. Contrarily, the results also show a persistent negative impact on the 

normalized population size. Massive reconstruction funds on public investments are 

deemed to facilitate the quick economic recovery in the affected areas. However, they 

still do not necessarily help people back to the affected areas even today. Economic 

recovery through massive (re)construction efforts worked in the case of Japan for 

economic recovery. Still, it remains the challenge: to recover the life of people who (had) 

lived in the affected areas. 
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Appendix 1: Summary statistics of the inundation area in m2 

Appendix table 1: Summary statistics of the inundation area in m2 

Prefecture name Municipal name Obs. Mean SD Max Min 
Miyagi Sendai 5 9,439,638 15,300,000 36,000,000 12,847 
Miyagi Yamamoto 3 7,930,454 13,700,000 23,800,000 1,438 
Miyagi Watari 5 6,178,220 8,543,092 17,500,000 18,098 
Miyagi Iwanuma 8 3,187,169 4,537,279 12,900,000 740 
Fukushima Namie 3 1,803,338 1,544,515 3,184,812 135,782 
Fukushima Minamisoma 21 1,776,163 2,021,299 8,644,329 12,785 
Ibaraki Hokota 1 1,233,852 - 1,233,852 1,233,852 
Fukushima Soma 19 1,178,597 1,789,226 5,016,911 22,071 
Miyagi Natori 27 944,678 2,161,677 9,764,958 1,289 
Ibaraki Kashima 4 809,823 889,370 1,816,265 41,645 
Ibaraki Hitachinaka 2 806,773 288,359 1,010,674 602,873 
Fukushima Shinchi 11 801,784 801,634 2,299,649 1,256 
Miyagi Tagajyo 8 772,321 1,564,457 4,590,281 17,780 
Miyagi Shichigahama 9 535,547 956,543 2,956,629 5,090 
Chiba Sammu 20 478,390 1,294,626 5,312,962 2,203 
Ibaraki Kamisu 12 476,494 808,020 2,414,534 543 
Fukushima Iwaki 38 467,334 632,297 2,563,235 1,472 
Fukushima Naraha 6 433,102 513,708 1,398,922 44,166 
Ibaraki Oarai 4 409,173 802,419 1,612,698 148 
Miyagi Higashimatsushima 85 403,816 2,033,801 18,100,000 659 
Miyagi Ishinomaki 173 326,835 1,447,062 13,100,000 0 
Ibaraki Tokai 8 289,651 687,609 1,984,706 609 
Iwate Kamaishi 29 249,933 279,795 1,166,193 20 
Fukushima Tomioka 7 212,639 353,283 1,002,248 14,276 
Miyagi Kesennuma 86 201,446 605,205 3,855,502 0 
Ibaraki Kitaibaraki 10 200,893 277,289 870,439 1,291 
Ibaraki Hitachi 21 171,413 248,720 1,137,598 632 
Ibaraki Mito 4 122,161 239,847 481,921 121 
Ibaraki Takahagi 6 103,654 119,274 259,313 1,200 
Miyagi Megawa 42 78,235 249,031 1,601,564 2 
Chiba Ichinomiya 9 67,079 114,573 345,877 668 
Miyagi Shiogama 65 63,214 339,010 2,719,546 368 
Miyagi Matsushima 34 50,165 100,989 395,113 333 
Miyagi Rifu 5 37,907 34,934 91,204 5,785 
Summary statistics 790 527,885 2,181,560 36,000,000 0.01 

Source: Geospatial Information Authority of Japan and CSIS, University of Tokyo 
Note: This table summarizes 790 available observations with detailed information on the inundation 
area in m2 out of the 1,143 total observations. 
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Appendix 2: An alternative empirical strategy using DID 

For reference purposes, we use a difference in difference estimation to capture the 

persistent effect of the tsunami using the municipal-level panel data. Dependent variables 

are log nightlight intensity or population density to reflect economic activities. The 

average treatment effect denotes the interaction term of the inundation dummy and a 

specific duration. We put three controls: prefecture-fixed effects, year-fixed effects, and 

prefecture-specific time trends. The prefecture and year interaction term denote the 

prefecture-specific linear time trend. The rationale for including the prefecture-specific 

linear time trend is to account for unobserved prefecture-specific features such as local-

level business cycles or demographic trends. 

 

𝐿𝑜𝑔 𝑁𝑇𝐿 𝑜𝑟 𝑃𝑂𝑃,௧

= 𝛼 +  𝛽

ஹଵ 

𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 𝑓𝑜𝑟 𝑘 𝑦𝑒𝑎𝑟𝑠,௧

+ 𝑃𝑅𝐸𝐹𝐸𝐶𝑇𝑈𝑅𝐸 𝐹𝐸

+ 𝑌𝐸𝐴𝑅 𝐹𝐸௧ +  𝑃𝑅𝐸𝐹𝐸𝐶𝑇𝑈𝑅𝐸 ∗ 𝑌𝐸𝐴𝑅௧



൩ + 𝜀      (A-1) 

Appendix table 2: The average treatment effects of the tsunami using DID approach and 
all the samples 

 Specifications 

 (i) Basic specification 

(ii) Controlling 

prefecture-specific linear 

trend 

First-year (2011) -0.415*** -0.271** 

 (0.111) (0.125) 

2011-2012 -0.444*** -0.379*** 

 (0.109) (0.120) 

2011-2013 -0.344*** -0.262** 

 (0.0933) (0.101) 

2011-2014 -0.277*** -0.195** 

 (0.0804) (0.0909) 
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2011-2015 -0.225*** -0.135 

 (0.0728) (0.0865) 

2011-2016 -0.196*** -0.0859 

 (0.0667) (0.0824) 

2011-2017 -0.156** -0.0552 

 (0.0693) (0.0894) 

2011-2018 -0.115 -0.0120 

 (0.0743) (0.0992) 

Year FE   

Prefecture FE   

Year×Prefecture   

Adjusted R-

squared 0.439 0.445 

Sample 2000-2018, n = 36,138 municipal-years 
Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial 
Information Science, University of Tokyo, ESRI, DMSP/VIIRS NTL data harmonized by Chen et al. 
(2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at Prefecture-level, are in parentheses. 
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Appendix figure 1: The trend comparison of the log nighttime lights between the 
inundated municipalities and non-inundated municipalities using all the samples 

 
Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial 
Information Science, University of Tokyo, ESRI, DMSP/VIIRS NTL data harmonized by Chen et al. 
(2021) 

Robustness tests: Restricting the samples to only the prefectures that were 
affected by the tsunami in 2011 

To test the robustness of the estimation results using all the samples in equation A-1, we 

run the same specifications using only the samples of the tsunami-inundated prefectures, 

Aomori, Miyagi, Iwate, Fukushima, Ibaraki, and Chiba. The parallel trend is much better 

in this sub-sample. The estimation results are qualitatively the same using all the samples, 

meaning negative and statistically significant tsunami effects gradually vanish. 

Appendix table 3: The average treatment effects of the tsunami using DID approach and 
the restricted samples within the inundated prefectures 
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 (i) Basic specification 
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First-year (2011) -0.268* -0.271 

 (0.119) (0.136) 

2011-2012 -0.383** -0.379** 

 (0.117) (0.130) 

2011-2013 -0.271** -0.262* 

 (0.0939) (0.109) 

2011-2014 -0.207* -0.195 

 (0.0830) (0.0984) 

2011-2015 -0.151 -0.135 

 (0.0769) (0.0936) 

2011-2016 -0.104 -0.0859 

 (0.0719) (0.0891) 

2011-2017 -0.0768 -0.0552 

 (0.0798) (0.0967) 

2011-2018 -0.0389 -0.0120 

 (0.0907) (0.107) 

Year FE   

Prefecture FE   

Year×Prefecture   
Adjusted R-

squared 0.429 0.432 

Sample 2000-2018, n = 5,206 municipal-years 
Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial 
Information Science, University of Tokyo, ESRI, DMSP/VIIRS NTL data harmonized by Chen et al. 
(2021) 
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors, clustered at Prefecture-level, are in parentheses. 
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Appendix figure 2: The trend comparison of the log nighttime lights between the 
inundated municipalities and non-inundated municipalities by restricting the samples to 

only the prefectures that were affected by the tsunami in 2011 

 
Source: Geospatial Information Authority of Japan, Statistics Bureau of Japan, Center for Spatial 
Information Science, University of Tokyo, ESRI, DMSP/VIIRS NTL data harmonized by Chen et al. 
(2021) 
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