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Abstract 

 

Keywords: appearance, disappearance, point, event, exploratory analysis, visualization 

 

Appearance and disappearance of immovable points are important spatiotemporal events in geographical 

information science. They represent the birth and death of trees in forests, construction and destruction of 

buildings in cities, and openings and closures of shops and restaurants. This paper proposes a new 

exploratory method for analyzing the appearance and disappearance of points. The method helps analysts 

capturing the overall picture and regional variation of event pattern and detecting distinctive local patterns. 

Four measures are defined that indicate the intensity of spatial and temporal patterns of events. The 

measures are visualized as two types of maps called lattice and circle maps. Lattice map directly visualizes 

the spatial distribution of these measure, which is effective for grasping the overall pattern and its variation. 

Circle map is useful for detecting distinctive local patterns that may not be easily detectable in lattice map. 

The proposed method is applied to the analysis of shops and restaurants in Shibuya, Tokyo. Technical 

soundness of the method is discussed along with empirical findings.  
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1. Introduction 

 Appearance and disappearance of immovable points are important spatiotemporal events in 

geographical information science. They represent the birth and death of trees in forests, construction and 

destruction of buildings in cities, and openings and closures of shops and restaurants. These events are 

analyzed in both academic and practical fields. Ecologists analyze the birth and death of plant species to 

understand the mutual relationship between different species. Geographers and economists analyze the 

opening and closure of supermarkets to reveal the competitive relationship between retail chains (Scott 

(1970), Dawson (2012)). Monitoring the spatial and temporal pattern of disease infection is crucial to 

prevent its expansion (Greene et al. (2016), Carolina et al. (2017)). City planners are concerned with the 

opening of large shopping centers since it often damages small shops and markets. Event analysis is useful 

for understanding its underlying structure and forming administrative policies, and thus it has drawn 

attention of both researchers and administrators. 

 Analysis of appearances and disappearances generally starts with visual analysis, which helps 

us grasping the overall picture and local variation of these events (Kovalerchuk and Schwing (2005), 

Andrienko and Andrienko (2006), Kraak and Ormeling (2011), Lamigueiro (2014), Oyana and Margai 

(2015)). Events can be visualized as dot map, grid map, and kernel density map. The dot map indicates 

the exact location of events by using map symbols (Robinson et al. (1995); Dent (1999); Slocum et al. 

(2009)). The grid map displays the number of events in square cells by color shades (Boots and Csillag 

2006). The kernel density map visualizes the density distribution of events calculated by kernel density 

estimation (Silverman (1986); Scott (2015)). Time series collection of these maps are basic tools for visual 

exploration of spatiotemporal event pattern. 

 Analytical method of appearances and disappearances should consider at least four properties 

of these events. Firstly, these events occur in the spatio-temporal dimension. The temporal pattern of 

events such as an increase and decrease of appearances needs to be taken into account explicitly. Secondly, 

the spatial pattern of events depends on that of points on which events can occur. The ratio of events to 

points is crucial rather than the absolute number of points. Thirdly, the same ratio of events does not 

always imply the same likelihood. Disappearance of one out of two points is more likely to happen by 

chance than that of ten out of twenty points. A statistical framework is necessary to address this issue. 

Fourthly, a close relationship generally exists between appearances and disappearances. They are not 

totally independent of each other, and consequently, analysis should reveal their relationship as well as 

their individual patterns. 

 The dot map does not meet the second and third criteria since they do not directly indicate the 

event ratio. Analysts have to compare visually the number of events and points, which tends to be unstable 

and subjective. The grid and kernel density maps, on the other hand, can visualize the ratio of events to 

points. These maps, however, do not satisfy the third criterion because they do not consider the likelihood 

of events. Moreover, these maps do not fully meet the fourth criterion. They do not visualize explicitly 



3 
 

the relationship between appearances and disappearances. 

 To resolve these problems, this paper proposes a new method for analyzing the appearance and 

disappearance of points. The method aims to support exploratory visual analysis of these events, i.e., to 

help analysts capturing the overall spatial and temporal pattern and detecting distinctive local patterns. 

Section 2 discusses related works and literature. Section 3 describes our method for analyzing event 

pattern. Section 4 applies the proposed method to the analysis of shops and restaurants in Shibuya-ku, 

Tokyo, Japan. Section 5 summarizes the conclusions with discussion. 

 

2. Related works 

 Besides the maps mentioned in the previous section, numerous methods have been developed 

for spatial and spatio-temporal point pattern analysis. This section reviews existing methods closely 

related to the objective of this paper. 

 Exploratory statistical methods have been developed in statistics, geography, and epidemiology 

(Gabriel 2017). Knox and Mantel tests evaluate the spatio-temporal interaction of points (Knox and 

Bartlett (1964), Mantel (1967), Kulldorff and Hjalmars (1999)). Diggle et al. (1995) and Gabriel and 

Diggle (2009) employ Ripley's K-function to explore the second-order properties of the point process. 

Jacquez (1996) extends the nearest-neighbor statistic into spatio-temporal domain to evaluate the spatio-

temporal interaction of points. Cronie and Van Lieshout (2015) uses J-function (Van Lieshout and 

Baddeley (1996), Van Lieshout (2011)) to treat the spatio-temporal point processes. 

 Detection of spatial and spatio-temporal clusters has also been discussed in the literature. The 

spatial scan statistic is widely used to detect spatial clusters of points (Naus (1965), Kulldorff and 

Nagarwalla (1995), Kulldorff (1997), Glaz et al. (2001)). Kulldorff (2001) and Kulldorff et al. (2005) 

extend the spatial scan statistic to detect spatio-temporal clusters. Kulldorff et al. (2007), Neill (2011), 

and Neill et al. (2013) propose multivariate scan statistics to treat clusters of multiple types of points. 

Other methods are also available for cluster detection (Openshaw et al. (1987), Turnbull et al. (1989), 

Besag and Newell (1991), Fotheringham and Zhan (1996), Conley et al. (2005)). 

 Estimation of disease risk is an important topic in epidemiology. Relative risk function is 

generally estimated from the point data of cases and controls by kernel density estimation (Bithell (1991), 

Kelsall and Diggle (1995), Hazelton and Davies (2009), Fernando et al. (2014), Fernando and Hazelton 

(2014)). Relative risk function is easily computed by using software package called sparr (Davies et al. 

2011), and visualized as contour and 3-dimensional maps. When the data are aggregated across spatial 

units, Bayesian approach is widely used in risk estimation (Clayton and Kaldor (1987), Marshall (1991), 

Richardson et al. (2004), Lawson (2013)). Bayesian estimation is implemented in GeoDa and spdep in R 

(Anselin et al. (2006), Bivand et al. (2008)), and estimated result is visualized as a choropleth map which 

is often called disease map. 

 Spatial birth and death processes represent the appearance and disappearance of points (Preston 
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(1975), Holley and Stroock (1978), Møller and Sørensen (1994), Moller and Waagepetersen (2003)). 

Stochastic models have been studied extensively in statistics and theoretical ecology (Finkelshtein et al. 

(2012), Ovaskainen et al. (2014)). They are used to simulate the appearance and disappearance of points 

as well as to find their equilibrium state. 

 Exploratory statistical methods do not fit our purpose since they summarize the spatial and 

spatio-temporal pattern into numerical measures and functions. Spatial birth and death processes are 

primarily used for simulating point processes rather than exploratory pattern analysis. A strength of scan 

statistics and risk estimation is that they explicitly consider the likelihood of events based on a statistical 

framework. These methods, however, do not evaluate the temporal pattern of events such as an increase 

and decrease. Moreover, scan statistics focus on cluster detection. They do not fully visualize the overall 

picture and detailed local variation of event pattern, even if secondary clusters are drawn in maps 

(Kulldorff et al. (1997), Gangnon and Clayton (2001), Zhang et al. (2010), Li et al. (2011)). Relative risk 

estimation, on the other hand, does not consider multiple patterns simultaneously. We thus employ the 

framework of scan statistics with a modification necessary for our setting and purpose. Using the 

maximum likelihood approach, we develop an exploratory method for analyzing the appearance and 

disappearance of points. 

 

3. Methods 

 Suppose there are N points Ψ={P1, P2, ..., PN} in region S0 during time period T. Some exist 

throughout the whole period while others appear or disappear during T. Let Z0(x, r) be a circle of radius 

r centered at location x. We define cylinder Z(x, r) as the product of Z0(x, r) and T, i.e., 

( ) ( )0, ,Z r Z r T= ⊗x x . 

(1) 

We denote the cylinder by Z instead of Z(x, r) for simplicity in the following. Similarly, we define 

0S S T= ⊗ . 

(2) 

Let n(Z) be the number of points in Z. The following subsections treat the spatial, temporal, and 

combination of multiple patterns of events successively. 

 

3.1. Spatial pattern 

 This subsection first considers the spatial pattern of appearances. We evaluate the ratio of 

appearances to points in Z in comparison with that in S-Z by using the maximum likelihood approach. Let 

p0 and q0 be the probabilities that an appearance occurs in Z and S-Z, respectively. The likelihood function 

is given by 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

0 0 0 0 0 0, , 1 1n Z a Z n S Z a S Za Z a S Z
n Z a Z n S Z a S ZL Z p q C p p C q q− − − −−

− −= − − , 

(3) 

where a(Z) is the number of appearances in Z. The null hypothesis H0 assumes the same probability of 

appearance in Z and S-Z, i.e., p0=q0, while the alternative hypothesis H1 assumes that the probability is 

different in Z and S-Z. The likelihood functions maximized under H0 and H1 are given by 

( ) ( )

( ) ( ) ( ) ( )
( )
( )

( ) ( )
( )

( ) ( )
0 0

0 0 0max , ,

1

p q

a S n S a S

n Z a Z n S Z a S Z

L Z L Z p q

a S a S
C C

n S n S

=

−

− −

=

   
= −      

   

 

(4) 

and 

( ) ( )

( ) ( )
( )
( )

( ) ( )
( )

( ) ( )

( ) ( )
( )
( )

( ) ( )
( )

( ) ( )
0 0

1 0 0max , ,

1 1

p q

a Z n Z a Z a S Z n S Z a S Z

n Z a Z n S Z a S Z

L Z L Z p q

a Z a Z a S Z a S Z
C C

n Z n Z n S Z n S Z

≠

− − − − −

− −

=

       − −
= − −              − −       

, 

(5) 

respectively. The log likelihood ratio is 

( ) ( ) ( )1 0log logA Z L Z L Zλ = − . 

(6) 

Given x, we expand circle Z0(x, r) from a small one until its radius reaches at a predetermined value rmax 

to find the maximum value of λA(Z). Measure αA(x) is then defined as 

( ) ( )
max

maxA Ar r
Zα λ

≤
=x . 

(7) 

 The above procedure is almost the same as that used in spatial scan statistics. A difference lies 

in that scan statistics maximize λA(Z) under the condition p0>q0 because their objective is cluster detection. 

Equation (7) does not impose this condition because our interest lies in the overall spatial pattern of 

appearances. Measure αA(x) represents the intensity of the spatial pattern of appearances around x, 

irrespective of the type of pattern. We classify frequent and infrequent appearances by comparing p0 and 

q0 estimated under H1 after the calculation of αA(x). Appearances are relatively frequent around x if 

0 0p q> , 

(8) 

while they are infrequent when 

0 0p q< . 
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(9) 

Frequent and infrequent appearances are denoted by A+ and A-, respectively. 

 We then visualize the spatial pattern of appearances by using αA(x). One method is to create a 

lattice map, which visualizes αA(x) value at lattice points. We distinguish the two types A+ and A- by 

using different hues as seen in Figure 1. Color saturation indicates the intensity of pattern at each location, 

while color hue indicates the type of pattern. We should note that our lattice map is different from the grid 

map mentioned in Section 1. Thicker colors indicate frequent appearances in grid map while they indicate 

distinctive pattern of appearances in lattice map. 

 Another method of visualization is to draw circles Z0(x, r) that give large αA(x) as is often done 

in scan statistics and other statistical methods (Openshaw et al. (1987), Openshaw et al. (1988), Gangnon 

and Clayton (2001), Conley et al. (2005), Costa and Assunção (2005), Chen et al. (2008), Han et al. 

(2016)). We draw non-overlapping circles in descending order of αA(x) until a predetermined number of 

circles are drawn. The map is called a circle map in this paper. Lattice map is effective for grasping the 

overall picture and regional variation of appearances, while circle map is useful for detecting the regions 

of distinctive pattern, or more precisely, the regions in which pattern is quite different from that in other 

regions. Lattice and circle maps are complementary with each other. 
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Figure 1 Lattice map of αA(x). Red and blue shades represent the types of spatial pattern A+ and A-, 

respectively. 

 

 Disappearances are evaluated in a similar manner. Considering disappearances instead of 

appearances in Equation (6), we calculate the log likelihood ratio λD(Z). Measure αD(x) is then given by 

( ) ( )
max

maxD Dr r
Qα λ

≤
=x . 

(10) 

Pattern of disappearances is classified into two types, i.e., frequent and infrequent disappearances denoted 

by D+ and D-, respectively. 

 

3.2. Temporal pattern 

A- (Infrequent)

A+ (Frequent)

αA(x)
Large Small
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 This subsection considers the temporal pattern of events. We only describe the analysis of 

appearances since disappearances can be similarly treated. We divide time period T into M sections of 

equal length {T1, T2, ..., TM}. Let Zi and Si be the cylinders defined by Z0(x, r)⊗Ti and S0⊗Ti, respectively. 

The probabilities that an appearance occurs in Zi and Si-Zi are denoted by pi and qi, respectively. Their sets 

are represented as p={p1, p2, ..., pM} and q={q1, q2, ..., qM}. The likelihood function is 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ), , 1 1i i i i i ii i i

i i i i i i

n Z a Z n S Z a S Za Z a S ZT
i i i in Z a Z n S Z a S Z

i

L Z p q C p p C q q− − − −−
− −= − −∏ . 

(11) 

Our interest lies in the temporal pattern of appearances in Z, or more specifically, increase and decrease 

of appearances in Z. A focus is on the relative change in p and q rather than their absolute values. We thus 

regard the temporal pattern of appearances is equivalent in Z and S-Z if 

i ip kq i I= ∀ ∈ , 

(12) 

where I={1, 2, ..., M}. Equation (12) defines the null hypothesis H0. The alternative hypothesis H1 assumes 

that temporal pattern of appearances is different between Z and S-Z: 

i ip kq i I≠ ∃ ∈ . 

(13) 

The likelihood function under H0 is 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ), , 1 1i i i i i ii i i

i i i i i i

n Z a Z n S Z a S Za Z a S ZT
i i i in Z a Z n S Z a S Z

i

L Z k q C kq kq C q q− − − −−
− −= − −∏ . 

(14) 

It is maximized when 

( ) ( )

( )

, ,
0

, ,
0

T

i
T

L Z k q
i I

q
L Z k q

k

∂
= ∈ ∂


∂ = ∂

 

(15) 

(16) 

The maximum of LT(Z, k, q) is denoted as 

( ) ( )0 max , ,
i i

T T

p kq i
L Z L Z p q

= ∀
= . 

(17) 

Unfortunately, the simultaneous equations system defined by Equations (15) and (16) is not analytically 

solvable. We thus derive qi's and k numerically by using iterative methods such as the Newton's and 

Broyden's methods (Ortega and Rheinboldt (1970), Kelley (1995)). Appendix provides initial values of 
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qi's and k that maximize an approximation of the likelihood function LT(Z, k, q). 

 The likelihood function maximized under H1 is given by 

( ) ( )

( ) ( )
( )
( )

( ) ( )
( )

( ) ( )

( ) ( )
( )
( )

( ) ( )
( )

( ) ( )

1 max , ,

1 1

i i

i i i i i i i i

i i i i i i

T T

p kq i I

a Z n Z a Z a S Z n S Z a S Z

i i i i i i
n Z a Z n S Z a S Z

i i i i i i i

L Z L Z p q

a Z a Z a S Z a S Z
C C

n Z n Z n S Z n S Z

≠ ∃ ∈

− − − − −

− −

=

       − −
= − −              − −       
∏

. 

(18) 

The log likelihood ratio is 

( ) ( ) ( )1 0log logT T T
A Z L Z L Zλ = − . 

(19) 

We maximize λT
A(Z) by expanding circle Z0(x, r) from a small one until its radius reaches at a 

predetermined length rmax. The maximum value αT
A(x) (and αT

D(x) for disappearances) is given by 

( ) ( )
max

maxT T
A Ar r

Zα λ
≤

=x . 

(20) 

 Measure αT
A(x) represents the intensity of the temporal pattern of appearances at x. Similar to 

αA(x), αT
A(x) does not indicate the property of temporal pattern, i.e., it is unknown how the pattern is 

different in Z from that in S-Z. To evaluate the difference, we define ki and its standardized form κi as 

i
i

i

pk
q

=  

(21) 

and 

1
i

i

i
i

k

k
M

κ =
∑

, 

(22) 

respectively. If κi>1, appearances in Zi is relatively more frequent than those in Si-Zi, while appearances 

are less frequent when κi<1. Comparing each κi with 1, we can grasp the temporal pattern of appearances 

in Z. When M=2, for instance, we will find one of the following two cases: 

1 21, 1κ κ< >  

(23) 

or 

1 21, 1κ κ> <  

(24) 

The former indicates that appearances in Z increased more than those in S-Z from T1 to T2, while the latter 
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means the relative decrease of appearances. We denote the two cases AI and AD (and DI and DD for 

disappearances), respectively. 

 The number of possible cases is 2M-1. It increases rapidly with M, which makes their 

interpretation more complicated. When M is large, therefore, it is effective to summarize the set {κ1, κ2, ..., 

κM} into a single measure. Spearman's rank correlation coefficient ρ of κi is useful for representing the 

monotonicity of temporal pattern. If appearances increase in Z, κi increases with i, and ρ shows a large 

value. Decrease of appearances, on the other hand, yields a negative ρ value. Variance and statistics used 

in runs test can describe the fluctuation and randomness of κi. The maximum of κi can be used for 

detecting temporal outliers. 

 Visualization method of αT
A(x) also depends on M. If M=2, temporal pattern can be visualized 

by both lattice and circle maps. If M>2, lattice map is effective for visualizing the spatial distribution of 

the summary measures of κi's. 

 

3.3. Multiple patterns 

 So far we have considered the spatial and temporal patterns of appearances and disappearances. 

Each pattern is classified into two types, i.e., {A+, A-}, {D+, D-}, {AI, AD}, and {DI, DD}, all of which 

are visualized as separate maps. This subsection, on the other hand, considers the visualization of multiple 

patterns in a single map. This aims to help the understanding of the relationship between different patterns 

such as the spatial patterns of appearances and disappearances. Suppose there are K patterns. Let λj(Z(x, 

r)) and αj(x) be the log likelihood ratio of pattern j in cylinder Z and its maximum value, respectively. 

 When K is small, a simple but effective method is to overlay lattice maps of different patterns. 

Suppose the spatial patterns of appearances and disappearances. We assign pattern types A+, A-, D+, and 

D- four different hues such as red, yellow, cyan, and blue. Using these color hues, we generate and overlay 

two lattice maps that indicate the spatial pattern of appearances and disappearances. This permits us to 

understand the spatial relationship between appearances and disappearances. When 4≤K, overlay of lattice 

maps is not effective. Patterns need to be visualized as separate maps each of which indicates one or two 

patterns. 

 Circle map is also useful to visualize multiple patterns. Overlay of circle maps, however, often 

causes circle overlap, which makes the map too complicated for visual exploration. To avoid this problem, 

we summarize λj(Z(x, r))'s into a single measure by which we can draw circles in a single map without 

overlap. A primary objective of circle map is to indicate the regions where patterns are quite different 

from other regions. Summary measure thus needs to indicate the overall intensity of multiple patterns. 

One method is to sum up all the λj(Z(x, r))'s as is done in multivariate scan statistic: 

( )( ) ( )( ), ,j
j

Z Zr rλ λ=∑x x  

(25) 
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 (Kulldorff et al. 2007). Maximizing λ(Z(x, r)), we obtain 

( ) ( )( )
max

max ,
r r

rZα λ
≤

=x x . 

(26) 

We draw non-overlapping circles according to α(x) in descending order. This method, however, extracts 

both the regions where all the patterns are relatively distinctive and those where only a single pattern is 

extremely distinctive. The latter are detectable by evaluating individual patterns separately, which does 

not meet the objective of treating multiple patterns simultaneously. We thus propose another summary 

measure to find the locations where all the patterns are relatively distinctive. Let δj(x, r0, r) be a binary 

function defined as 

( ) ( )( ) ( )( )0
0

1 if , ,
, ,

0 otherwise
j j

j

Z r Z r
r r

λ λ
δ

 ≤= 


x x
x  

(27) 

Rank function Rj(Z(x, r)) is defined by 

( )( ) ( )
0 max

0 0
max

1, , , dj j
r r

R Z r r r r
r

δ
≤

= ∫x x  

(28) 

This function shows the relative rank of λj(Z(x, r)) in r∈[0, rmax], ranging from zero to one. It becomes 

large if λj(Z(x, r)) is relatively large in r∈[0, rmax]. Using Rj(x, r), we define 

( )
{ }

( )min 1,...,
, min ,jj K

R r R r
∈

=x x . 

(29) 

This indicates the rank of the least distinctive pattern among K patterns in Z(x, r). Using this function, we 

determine radius r where the rank of the least distinctive pattern is the highest in [0, rmax]: 

( ) ( )
max

max minmax ,
r r

R R r
≤

=x x . 

(30) 

This procedure permits us to detect the regions where all the patterns are relatively distinctive, in other 

words, any pattern is not indistinctive. The log likelihood ratio at x is given by 

( ) ( )( )MAX' ,j
j

Z rα λ=∑x x , 

(31) 

where rMAX is the value of r that maximizes Rmin(x, r). We draw circles following α'(x) in descending 

order without overlap until a predetermined number of circles are drawn. 



12 
 

 

4. Application to real data 

 This section tests the performance of the method proposed in the previous section. We analyze 

the distribution of retail stores and restaurants in Shibuya-ku, Tokyo, Japan, from 2001 to 2016. The NTT 

TownPage cooperation provides the telephone directory of commercial facilities in Japan. We converted 

the list into spatial data by geocoding. Figure 2 shows the study region, where residential area spreads 

along Keio and Odakyu Lines. One of the largest commercial areas in Tokyo expands around Shibuya, 

Harajuku, and Omotesando stations. Smaller ones also exist around Yoyogi, Daikan-yama, and Ebisu 

stations. Small shopping malls are found around the stations of Keio and Odakyu Lines. 

 We calculated the proposed measures for ten different categories of stores by using a program 

written in C++. Lattice map consisted of 100 by 100 lattice points, while circle map contained ten circles 

in the study area. We set rmax to 500 meters, and gradually increased the radius r from 10 by 10 meters. 

Calculation of αT
A(x) and αT

D(x) utilized Newton-Rhapson and quasi Newton methods. The processing 

time on a i7-7500U, CPU 2.70GHz, RAM 32GB computer was approximately one minute for each 

category. We will show the result of analysis of clothing stores, restaurants, and clinics due to space 

limitation in the following. The numbers of these facilities that existed at least once from 2001 to 2016 in 

the study region are 9510, 12685, and 3261, respectively. Figures 3, 4, and 5 show their distribution in 

2016 represented by kernel density functions. 
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Figure 2 Study region: Shibuya-ku, Tokyo, Japan. 
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Figure 3 Distribution of clothing stores represented by the kernel density function in 2016 in Shibuya-

ku, Tokyo, Japan. 
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Figure 4 Distribution of restaurants represented by the kernel density function in 2016 in Shibuya-ku, 

Tokyo, Japan. 
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Figure 5 Distribution of clinics represented by the kernel density function in 2016 in Shibuya-ku, 

Tokyo, Japan. 

 

4.1 Spatial pattern of openings and closures 

 This subsection considers the spatial patterns of openings and closures of stores. We treat the 

two patterns simultaneously by using the method proposed in Subsection 3.3. Red, cyan, blue, and yellow 

represent A+, A-, D+, and D-, respectively. 
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 Figure 6 shows the lattice map of clothing stores. Thick purple indicates frequent openings and 

closures, which implies a competitive and active commercial environment. Thick green observed around 

Sasazuka, Shibuya & Ebisu stations represents infrequent openings and closures, where competition is 

not so severe. The figure almost corresponds to Figure 3, i.e., stores change frequently where stores are 

densely located while stores do not change where stores are sparse. Exceptions include the areas around 

Sangubashi station and the east of Ebisu station where openings and closures are frequent though stores 

are rather sparse. 

 Figure 7 shows the lattice map of restaurants. Unlike Figure 6, Figure 7 is not similar to the 

distribution of restaurants shown in Figure 4. Differences are observed around Yoyogi, Shibuya, and Ebisu 

stations. Openings and closures are not frequent around Yoyogi and Shibuya stations though restaurants 

are densely located. The latter is due to the cluster of traditional restaurants close to Shibuya station that 

have been supported a long time by loyal customers. Openings are frequent while closures are infrequent 

around Ebisu station. Restaurants have increased due to a rapid expansion of commercial area to the west. 

 Figure 8 is the lattice map of clinics. The figure is partially similar to the distribution of clinics 

shown in Figure 5, where clinics are generally clustered around railway stations. Openings and closures 

are frequent around Harajuku, Shibuya, and Ebisu stations of Yamanote Line while they are not frequent 

around Keio Line stations. This occurs due to the difference in the accessibility to the stations. Stations 

of Yamanote Line are accessible by multiple railway lines and hence have a wider market area than Keio 

Line stations. Competition is keen around the former stations, which leads to frequent openings and 

closures. 
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Figure 6 Lattice map of αA(Z) and αD(Z) of clothing stores. 
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Figure 7 Lattice map of αA(Z) and αD(Z) of restaurants. 
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Figure 8 Lattice map of αA(Z) and αD(Z) of clinics. 

  

 Figures 9 and 10 show the circle maps of clothing stores and restaurants. The figures almost 

correspond to Figures 6 and 7, i.e., circles are located in the regions of thicker colors in lattice maps. A 

strength of circle map is that it indicates the intensity of patterns more clearly than lattice map. For 

instance, neighborhoods of Sasazuka, Shibuya, Ebisu, and Hiroo stations look quite similar in Figure 6. 

Figure 9 clearly distinguishes these regions, i.e., circles in the west of Shibuya station are ranked 1st and 

3rd and hence more distinctive than those around Hiroo and Sasazuka stations ranked 5th and 6th. Circle 

map, on the other hand, does not show the spatial variation of pattern inside circles. The periphery of the 

5th circle in Figure 9 is indicated by blue shades in Figure 6, which implies that closures are not infrequent. 

Similarly, a spatial variation exists in the pattern in the 9th circle in Figure 10. 
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Figure 9 Circle map of spatial pattern of clothing stores. Numbers indicate the rank of circles evaluated 

by α(x). 
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Figure 10 Circle map of spatial pattern of restaurants. Numbers indicate the rank of circles evaluated by 

α(x). 

  

4.2 Temporal pattern of openings and closures 

 This subsection analyzes the temporal pattern of openings and closures. We first set M to 2 to 

use both lattice and circle maps. The whole period is divided into two sections 2001-08 and 2009-16, 

which are denoted by T1 and T2, respectively. Lattice map utilizes red, cyan, blue, and yellow to represent 
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 Figure 11 shows the lattice maps of αT
A(Z) and αT

D(Z) of clothing stores overlaid into a single 
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closures from T1 to T2. This suggests the decline of clothing stores in this area. Light green in the north of 

Daikan-yama station indicates the decrease of openings and closures, where frequent openings and 

closures are observed in Figure 6. This implies that the competition between clothing stores had become 

less fierce from T1 to T2. Orange shades in the west of Yoyogi station show an increase of openings and a 

decrease of closings. Considering the frequent openings in this area reported in Figure 6, we may expect 

a fierce competition in the near future in this area. 

 Figure 12 shows the lattice map of restaurants. Light green in the north of Shibuya station 

indicates the decrease of openings and closures. This implies that the competition supposed in Figure 7 

had decreased from T1 to T2. Orange shades around Meiji-jingumae station represent an increase of 

openings and a decrease of closures. This suggests the growth of the cluster of restaurants shown in Figure 

4. 

 Figure 13 is the lattice map of clinics. Thick purple around Yoyogi-uehara and Ebisu stations, 

and the north of Omotesando station indicates an increase of openings and closures of clinics. Orange 

shades in the north of Yoyogi-koen station and the south of Yoyogi station represent an increase of 

openings and decrease of closures. Both color shades are located in residential areas and suggest an 

increase of competition from T1 to T2. 

 Figures 11-13 show more regional variation than Figures 6-8. A primary reason is that temporal 

analysis treats fewer events in each cylinder Zi(x, r) than those in Z(x, r) in spatial analysis. Measures 

αT
A(x) and αT

D(x) are fluctuated than αA(x) and αD(x), which increases their regional variation. Figure 13 

looks more complicated than Figures 11 and 12 because clinics are fewer than clothing stores and 

restaurants. 
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Figure 11 Lattice map of αT
A(Z) and αT

D(Z) of clothing stores. 
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Figure 12 Lattice map of αT
A(Z) and αT

D(Z) of restaurants. 
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Figure 13 Lattice map of αT
A(Z) and αT

D(Z) of clinics. 

 

 Figures 14 and 15 show the circle maps of clothing stores and restaurants, respectively. Similar 

to the circle maps of spatial pattern, these figures correspond well with lattice maps shown in Figures 11 

and 12. Examples include the 1st, 2nd, and 4th circles in Figure 14 and the 1st, 2nd, and 3rd circles in 

Figure 15. Circle map is effective especially when lattice map looks complicated as seen in Figures 11-

13. Figure 14, for instance, indicates small but distinctive circles such as the 2nd, 3rd, and 5th circles that 

are not easily detectable in Figure 11. The 4th, 5th and 6th circles in Figure 15 are also difficult to find in 

Figure 12. 
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Figure 14 Circle map of the temporal pattern of clothing stores. Numbers indicate the rank of circles 

evaluated by αT(x). 
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Figure 15 Circle map of the temporal pattern of restaurants. Numbers indicate the rank of circles 

evaluated by αT(x). 
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which is not shown in Figure 11. Figure 17 shows the lattice map of the openings of restaurants. The 

figure reveals a steady increase of openings around Meiji-jingumae station, which corresponds to the 

orange shades in Figure 12. Decrease of openings in the north of Shibuya station in Figure 12 is found to 

vary among locations in Figure 17. Figures 18 and 19 shows the maps of closures of clothing stores and 

restaurants, respectively. Figure 18 shows that closures monotonically decreased around Daikan-yama 

station, which cannot be known in Figure 11. Figure 19 indicates a steady increase of closures in the east 

of Shibuya station and the west of Hiroo station, which is rather vague in Figure 12. 

 

 
 

Figure 16 Lattice map of ρ of the openings of clothing stores.  
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Figure 17 Lattice map of ρ of the openings of restaurants.  
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Figure 18 Lattice map of ρ of the closures of clothing stores.  
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Figure 19 Lattice map of ρ of the closures of restaurants.  

 

5. Concluding discussion 

New method for analyzing the appearance and disappearance of points was developed. Four 

measures αA(x), αD(x), αT
A(x), and αT

D(x) were defined that indicate the intensity of spatial and temporal 

patterns of events. Lattice map visualizes the spatial distribution of these measure, which is effective for 

grasping the overall picture and regional variation of event pattern. Circle map is useful for detecting 

distinctive local patterns that may not be easily detectable in lattice map. The proposed method was 

applied to the analysis of shops and restaurants in Shibuya, Tokyo. The results supported the technical 

soundness of the method as well as revealed spatial and temporal patterns that are not easily detectable 

by existing methods. 

One strength of our method is that it incorporates a statistical framework. Lattice map is 
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generated based on the maximum likelihood approach, which is different from the grid map that simply 

indicates the ratio of events. Another strength is that lattice and circle maps explicitly visualize the 

relationship between appearances and disappearances. These maps help us grasping the spatial and 

temporal relationship between these events. 

Unlike scan statistics, the proposed measures are not statistically tested. This is primary because 

our focus is on the exploratory visual analysis of event pattern rather than its strict evaluation. 

Understanding of the overall and local pattern and variation is an important first step in exploratory 

analysis. However, we do not claim that statistical tests are not necessary. In circle map, a statistical test 

can be performed by using Monte Carlo simulation as is done in scan statistics. This test, unfortunately, 

cannot be completed in an acceptable time in our program written in C++. Though we can reduce 

computing time by decreasing lattice density, it may degrade the quality of analysis. Faster algorithm or 

efficient test procedure is indispensable for statistical test. 

This paper considers the event pattern of immovable points. We should extend the proposed 

method to treat movable points because they represent humans, animals, and birds whose movements are 

anal¥yzed in various fields. Movable points have a wide variety of events such as start, stop, turn, hit, 

integration, and division. Relationship between multiple types of events need to be considered since they 

are closely related with each other. Moreover, these events are also related to the movement of points. 

Further development is necessary for analyzing the events of movable points. 

Implementation of the proposed method as an extension of computer packages is also an 

important topic. QGIS and ArcGIS are widely used in many academic fields for which many extensions 

have been developed. R is popular not only in statistics but also in geography and epidemiology. 

Development of extensions for GIS and statistical packages needs to be considered in future research. 
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Appendix 

 This appendix maximizes an approximation of LT(Z, k, q) defined by in Equation (14). Omitting 

the constant terms in Equation (14), we take its logarithmic form: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ } ( ), , log log 1 log log 1T
i i i i i i i i i i i i i

i
l Z k q a Z kq n Z a Z kq a S Z q n S Z a S Z q = + − − + − + − − − − ∑  

(A 1) 

It is approximated as 
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We solve the following system instead of Equations (15) and (16): 
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This system is rewritten as 
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Equation (A 5) becomes 
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and thus 
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Substitution of Equation (A 7) into Equation (A 6) yields 
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We approximate Equation (A 9) as 
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Solving Equation (A 10), we obtain 
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− =
− − −∑ ∑ . 

(A 11) 

( )

( ) ( ){ } ( ) ( ){ }
( ) ( )

i i
i

i i i i i i i

i i i i i

a S Z
k

a Z a S Z n S Z a S Z
n S Z a S Z

−
=

+ − − − −

− − −

∑

∑
. 

(A 12) 

Substitution of Equation (A 11) into Equation (A 8) yields 

( ) ( )
( ) ( ){ } ( ) ( )

( ) ( )
( ) ( ){ } ( )

( ) ( ){ } ( ) ( ){ }
( ) ( )

( ) ( )

i i i
i

i i i i i i

i i i

i i j j
j

i i i i
j j j j j j j

j j j j j

a Z a S Z
q

k n Z a Z n S Z a S Z

a Z a S Z
n Z a Z a S Z

n S Z a S Z
a Z a S Z n S Z a S Z

n S Z a S Z

+ −
=

− + − − −

+ −
=

− −
+ − − −

+ − − − −

− − −

∑

∑

. 

(A 13) 

We use Equations (A 12) and (A 13) as initial values of k and qi's in the iterative process to solve Equations 



39 
 

(15) and (16). 


