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1 Introduction

Economic activities are often geographically localized, where the spatial extent of economic

activities is, for instance, measured by people’s commuting flows. However, a spatial extent

that is self-contained in terms of people’s commuting flows is generally not guaranteed to

coincide with preexisting administrative units such as city and county. This has motivated

researchers and practitioners in regional science to delineate “metropolitan areas.”

The U.S. Office of Management and Budget defines metropolitan statistical areas (MSAs),

which we can obtain from the U.S. Census Bureau.1 MSAs are constructed by merging

counties that have strong economic and social ties. While MSAs are collections of legally

bounded entities, Rozenfeld et al. (2011) consider the micro scale by considering cells of a

given size. By using gridded population data, they delineate metropolitan areas with their

city clustering algorithm in which they recursively grow the cluster by adding populated cells

within a prescribed distance of the cluster.

In general, algorithmic methods such as that mentioned above iteratively merge geo-

graphical entities according to some criteria. These criteria depend on free parameters that

researchers need to decide.2 For example, Rozenfeld et al. (2011) must specify the prescribed

distance, which decides the candidate neighboring cells to merge, to start their algorithm.

Moreover, algorithmic methods do not explicitly construct an objective function to be op-

timized, which makes the underlying model unclear. This is particularly relevant when we

want to relate the delineation of metropolitan areas to the decision problems of economic

agents.3

In this study, we invoke insights from community detection in network theory.4 A network

is generally a collection of nodes and links that connect nodes. A community is then defined

as a collection of nodes that have mutually strong relationships. Whether nodes have strong

ties is decided by the link structure. For example, we can readily think of an urban economy

as a network in which each geographical unit serves as a node and two nodes are linked if

there is a flow of people between them. Thus, the communities in such a network would

naturally correspond to metropolitan areas.

While various methods have been proposed in the literature on community detection, we

use the map equation method developed by Rosvall and Bergstrom (2008). In our model,

a random walker moves over geographical units. In particular, we consider the simplest

possible model in which the switching probability between two units is proportional to the

1See https://www.census.gov/programs-surveys/metro-micro.html.
2In addition, the final result may be affected by the initial condition of the algorithm.
3We return to this point in the Conclusion.
4See Fortunato (2010) and Fortunato and Hric (2016) for overviews of this literature.
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volume of the flow of people between them. Motivated by information theory, the optimal

community structure minimizes the average code length necessary to describe the long-run

behavior of the random walker. How clustering works to reduce the average code length is

in the same spirit as the real address. Specifically, grouping geographical units into clusters

allows us to assign the same name to multiple geographical units as long as they belong

to different clusters. In fact, we see many Washington counties in the United States. This

reduces the average code length. At the same time, however, clustering incurs a cost because

we must assign names to the clusters. This tradeoff gives rise to the optimal clustering, where

minimizing the “average” code length makes us assign a shorter code to those geographical

units frequently visited by the random walker. Our task is formulated as a standard opti-

mization problem because it follows that minimizing the average code length boils down to

minimizing the entropy of the distribution of the random walker’s long-run visit frequencies

over nodes. As long as we accept the model, this method does not involve a free parameter

that affects the resulting community structure. Moreover, we can readily capture the hier-

archical structure of communities by making the entropy function hierarchical (Rosvall and

Bergstrom, 2011). This approach thus enables us to look at metropolitan areas at various

scales.5

We use GPS data on the flow of people in Japan taken from smartphone apps. Since

we have high-resolution location information for each trip, we are free to choose the scale of

geographical unit. Extracting about half-a-million commuting trips across Japan, we divide

the country into cells of 1 km by 1 km and then identify the origin and destination cells for

each trip. This yields the volumes of commuting flow for each pair of cells, which are used

to compute the switching rates of the random walker.

Contrary to Rozenfeld et al. (2011) who use population data, we use only people flow

data, which describe the relationships among geographical units.6 If we rely on population

data that describe the characteristics of each geographical unit, we typically need additional

information. For example, it might become necessary to specify how the economic ties

between geographical units decay over distance. In fact, Farmer and Fotheringham (2011),

who use another popular method of community detection to delineate metropolitan areas in

Ireland, make such an assumption.7 On the contrary, people flow data already incorporate

5To our knowledge, this is the first work that delineates metropolitan areas while capturing their hierar-
chical structure.

6There is a large literature on detecting industrial agglomeration (see, e.g., Mori and Smith (2015) and
references therein). In the context of industrial agglomeration, addressing the economic connections among
geographical units requires micro data on, for example, transaction volumes among establishments, which is
difficult to obtain. In fact, agglomeration is usually detected with only data on the spatial distribution of
establishments.

7See the Appendix for more details.
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the geographical structure because the volume of the flow of people tends to be small as the

distance becomes large.

By adopting detected communities, or metropolitan areas, we study their size distribu-

tion, which has received considerable research attention in the urban economics literature

(Gabaix and Ioannides, 2004). To simplify the expositions, we hereafter call metropolitan

areas cities. Studying the city size distribution is particularly interesting here because our

cities are not constrained to follow legal boundaries. Moreover, we can examine the size dis-

tribution of cities of all sizes. We understand that the main point at issue in the literature

is whether the city size distribution is a single lognormal distribution (Eeckhout, 2004) or

whether its upper tail is Pareto (Giesen and Suedekum, 2014; Ioannides and Skouras, 2013;

Giesen et al., 2010). Our conclusion is aligned with neither of these distributions. In fact, we

find that a combination of two lognormal distributions is a better fit with the data than is

a single lognormal distribution or a combination of lognormal and Pareto distributions. We

further show that the stochastic process of the city population behind such a distribution is

approximated by a jump diffusion process, which has a long history of application to finance

since Merton (1976).

The rest of the paper proceeds as follows. In Section 2, we formally present our method.

In Section 3, we explain the data we use. In Section 4, we visualize the detected communities

and, in Section 5, we study their size distribution. The last section concludes.

2 The Model

We divide the whole of Japan into cells of approximately 1 km by 1 km and consider a model

in which a random walker moves over the cells. Let nij be the number of workers commuting

from cells i to j and mij be the number of workers returning home from cells i to j. The

total number of commuting trips from cells i to j is then Nij = nij +mij. The probability

of a random walker switching from cells i to j, Pij, is given by

Pij =
Nij

Ni

, (1)

where Ni =
∑S

j=1Nij and S is the total number of cells. Because mij = nji, Nij = nij + nji

and thus Ni is the sum of the daytime and nighttime working populations of cell i.

We focus on the largest recurrent class of the Markov chain defined by (1). As we

see in Section 4, this makes up around 95% of all populated cells in our data. Then, we

are interested in the probabilities of a random walker staying in each cell in the long run,

which we call the long-run visit frequencies. Because the vector of long-run visit frequencies
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p = (p1, ..., pS) is an invariant distribution of the Markov chain defined by (1), it satisfies

pP = p, (2)

where P = [Pij]i,j and S is the total number of cells in the largest recurrent class. Because

we focus on the largest recurrent class, p uniquely exists.

We describe the long-run behavior of the random walker in our network by assigning

binary codes, which are enumerations of numbers taking the values of either 0 or 1 such

as ‘01’ and ‘0010’, to each state. Our objective is to code these as effectively as possible.

To make this more precise, let ℓj be the length of the binary code assigned to state j. For

example, the length of the binary code ‘0010’ is 4. Then, we assign codes to states to

minimize the following average code length:∑
j

ℓjpj, (3)

where pj is the long-run probability of state j. The key idea here is to reduce the average

code length by bringing cells together into several communities because this allows us to

assign the same code to different cells as long as they belong to different communities. We

also observe this type of information saving in real addresses: we see the same street name

everywhere. However, grouping cells into communities makes it necessary for us to assign

codes to each community. This tradeoff yields the optimal community structure.

We code by dividing the long-run behavior of the random walker into those inside each

community and those across communities. Let {Ck} be a community partition such that

Ck ∩ Cℓ = ∅ for any k ̸= ℓ and
∪

k C
k = S where Ck ⊆ {1, 2, ..., S} is the set of cells

that belong to community k. Observe that the number of communities is endogenously

determined here. We describe the long-run behavior of the random walker inside community

k by assigning binary codes to the states of visiting each cell in the community and the

state of exiting the community. Then, the average code length for describing the long-run

behavior of the random walker inside community k is

Lk = ℓke
qk

pk + qk
+
∑
i∈Ck

ℓi
pi

pk + qk
, (4)

where ℓi is the length of the binary code assigned to the state of visiting cell i, ℓke is the

length of the binary code assigned to the state of exiting community k, qk is the probability

of exiting community k, and pk =
∑

i∈Ck pi. From (1), the probability of exiting community
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k is

qk =
∑
i∈Ck

∑
j /∈Ck

piPij =
∑
i∈Ck

∑
j /∈Ck

pi
Nij

Ni

. (5)

On the contrary, we describe the long-run behavior of the random walker across commu-

nities by assigning binary codes to the states of visiting each community. Note that because

our Markov chain is stationary,∑
i∈Ck

∑
j /∈Ck

piPij =
∑
i∈Ck

∑
j /∈Ck

pjPji. (6)

Hence, qk also represents the probability of visiting community k from another community.

Therefore, the average code length for describing the long-run behavior of the random walker

across communities is

L =
K∑
k=1

ℓk
qk

q
, (7)

where ℓk is the length of the binary code assigned to the state of visiting community k, K

is the number of communities, and q =
∑K

k=1 q
k.

We consider the weighted sum of L and {Lk}, where the weight of L is q whereas the

weight of Lk is pk + qk. Therefore, what we try to minimize is given by

qL+
K∑
k=1

(pk + qk)Lk. (8)

It might seem a daunting task to find the community structure and coding that minimize

the average code length above. However, Shannon’s source coding theorem simplifies our task.

To state the theorem, we define that the entropy of a probability distribution (π1, ..., πI) is

H(π1, ..., πI) =
I∑

i=1

πi log
1

πi

. (9)

Then, the theorem states that it is possible to make the average code length arbitrarily close

to the entropy of the underlying probability distribution.8

In our coding problem, the entropies of the probability distributions in Lk and L are

H( qk

pk+qk
, { pi

pk+qk
}i∈Ck) and H( q

1

q
, ..., q

K

q
), respectively. Therefore, our task reduces to finding

8This is a fundamental theorem in information theory. See, e.g., Theorem 5.4.2 of Cover and Thomas
(2012).
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the community partition that minimizes

L∗(C1, ..., CK) = qH
(

q1

q
, ..., q

K

q

)
+

K∑
k=1

(pk + qk)H
(

qk

pk+qk
,
{

pi
pk+qk

}
i∈Ck

)
. (10)

Rosvall and Bergstrom (2008) call the objective function above the map equation.

Moreover, this method can be extended to allow for the hierarchical structure of com-

munities, as is done by Rosvall and Bergstrom (2011). Let Ckℓ ⊆ Ck be a subcommunity

of community k, Ckℓm ⊆ Ckℓ be a subsubcommunity of subcommunity ℓ, and so forth. Our

objective function is then constructed recursively as

L∗({Ck}k) = qH
(

q1

q
, ..., q

k

q

)
+
∑
k

L∗({Ckℓ}ℓ), (11)

where

L∗({Ckℓ}ℓ) = (pk + qk)H
(

qk

pk+qk
,
{

pi
pk+qk

}
i∈Ck

)
+
∑
ℓ

L∗({Ckℓm}m), (12)

and, at the lowest level of the hierarchy,

L∗(Ckℓ···r) = (pkℓ···r + qkℓ···r)H
(

qkℓ···r

pkℓ···r+qkℓ···r
,
{

pi
pkℓ···r+qkℓ···r

}
i∈Ckℓ···r

)
. (13)

Note that the depth of the hierarchy is also a choice variable. We exploit the flexibility of

this method, and detect the hierarchical structure of metropolitan areas.

3 Data

We use Konzatsu-Tokei R⃝ (Congestion Statistics), a GPS dataset of the flow of people in

Japan provided by ZENRIN DataCom Co., Ltd. Konzatsu-Tokei R⃝ refers to the people flow

data collected from the individual location data sent from mobile phones with the Auto-GPS

function, enabled under users’ consent, through the “docomo map navi” service provided by

NTT DOCOMO, INC (Japan’s primary mobile service provider). Those data are processed

collectively and statistically to conceal private information. The number of users, who live

across Japan, is around half-a-million. The information on people’s trips is so detailed that

the time interval between the acquisitions of location information via GPS is five minutes at

its the shortest interval. Moreover, the data are panel data that record each individual’s trips

every day.9 The data we use were collected for one year from January 1, 2012 to December

9In generating Konzatsu Tokei R⃝, NTT Docomo, INC performed an overall and statistical processing of
GPS data as per order of ZENRIN DataCom CO., LTD. This applies to all the figures presented in this
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31, 2012. Each data entry includes information such as the unique user ID, location (latitude

and longitude), and time stamp. The attributes of users such as age and sex are not available.

Although detailed information on people’s trips is available, the purpose of each trip is

not specified. Moreover, each user’s place of residence and work place, if he or she works,

are not known. Hence, to delineate metropolitan areas by using these data, we need to

extract commuting trips. To this end, we start by detecting the stops in each trip. Let us

represent the trip of a user by a sequence of locations {x1, x2, x3, ...}, where xi is the i-th

location of the user. The location is composed of latitude y, longitude z, and time t. Hence,

xi = (yi, zi, ti). Then, given the threshold values S and T , we define the stop as a set of

locations {xk, xk+1, xk+2, ...xk+m} such that the distance between (yi, zi) and (yj, zj) is less

than S for any i, j ∈ {k, k + 1, k + 2, ..., k + m} and tk+m − tk > T . That is, we regard a

set of locations as a stop if all the locations in the set are close to each other and the user

stayed there for a reasonably long time. We set S to 200 meters and T to five minutes.

Given these stops, we then identify the residential and working zones of users. Specifically,

the residential zone is identified as the zone to which the most frequent stop during the night

(10pm-6am) belongs, whereas the working zone is identified as the zone to which the most

frequent stop during daytime hours (9am-5pm) belongs.10

By following the procedure outlined above, we extract around 540,000 commuting trips.

To assess the reliability of our extracted data, we conduct two reliability checks. First, we

aggregate the data to calculate the residential densities for each grid of cell size 1 km by

1km and compare those with the residential densities from the Grid Square Statistics of the

2010 Population Census. As shown in Figure 1(a), we obtain a correlation coefficient of

around 0.9393. Second, we compute the trip volumes for each pair of municipal districts

and compare them with those from the 2011 Person Trip Survey conducted in the Chukyo

metropolitan area.11 As shown in Figure 1(b), we obtain a correlation coefficient of around

0.9369. These results show that our data are consistent with aggregated public data.

4 Detected Communities

By using the commuting data developed above, we first construct the Markov chain defined

by (1) and find its largest recurrent class. Of the 85,607 cells, the largest recurrent class has

paper.
10We refer to Horanont et al. (2013) for this method.
11The data are similar to those derived from the National Household Travel

Survey in the United Sates. The data are publicly available online at
http://www.cbr.mlit.go.jp/kikaku/chukyo-pt/persontrip/p01.html (in Japanese). The Chukyo
metropolitan area covers parts of the Aichi, Gifu, and Mie prefectures. The largest city in this metropolitan
area is Nagoya, which is located between Tokyo and Osaka.
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Figure 1: Reliability checks of GPS data

80,926 cells. We then apply the map equation method to our data limited to the largest

recurrent class.12 As a result, the cells are grouped into three level-1 (i.e., the highest level of

the hierarchy) communities. As shown in Figure 2(a), the rightmost community is prominent:

it has major cities such as Tokyo, Osaka, and Nagoya and, moreover, the Hokkaido and the

whole of the Tohoku region are included in the community.

However, as the first level is too coarse to obtain insights for urban agglomerations, we

proceed to the lower level. Here, we detect 55 level-2 communities, which are depicted in

Figure 2(b). This level has an intuitively relevant scale for metropolitan areas. For example,

we can think of the rose community in the Kanto region as the Tokyo metropolitan area,

the salmon pink community in the Kansai region as the Osaka metropolitan area, the lime

community in the Tohoku region as the Sendai metropolitan area, and so forth. These

communities are divided into subcommunities (level-3 communities). The total number of

level-3 communities is 2,048, although 30% are composed of fewer than 10 cells. Figure

3 depicts the level-3 communities in the Tokyo metropolitan area. We detect up to the

sixth level for the hierarchy of communities, although the depth of the hierarchy is generally

different among parent communities.

5 City Size Distribution

In this section, we study the size distribution of the detected communities in terms of pop-

ulation, where the population of community k is computed as
∑

i∈Ck Ni. To simplify the

12To carry out the map equation method, we use the code provided by Daniel Edler and Martin Rosvall
at http://www.mapequation.org/.
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Figure 2: Maps of communities
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Figure 3: Map of level-3 communities in Tokyo area

expositions, communities, or metropolitan areas, are hereafter interchangeably called cities.

Studying the city size distribution, which has been a major research topic in the urban

economics literature, is particularly interesting here because our cities are independent of

administrative boundaries and, by definition, the populations of all cities are available.

In the context of the city size distribution, Zipf’s law has been regarded as an important

regularity condition for urban economics models (Gabaix and Ioannides, 2004). Let us review
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several concepts. A power law is a distribution function of the form Pr(X ≥ x) ∝ a/xη where

a, η > 0. Alternatively, we can say that X follows the Pareto distribution. Then, Zipf’s law

corresponds to the case where η = 1. When visualizing a power law, it is convenient to

rank the realized values of the variable (population in our context) by their sizes. Let x(i)

be the i-th largest city’s population and K be the total number of cities. Under Zipf’s law,

xη
(i) Pr(X ≥ x(i)) = a, where, as long as K is sufficiently large, Pr(X ≥ x(i)) may be regarded

as the share of cities larger than city i. Thus,

Pr(X ≥ x(i)) ≈ i/K ⇒ log x(i) ≈ c− η−1 log i, (14)

where c = η−1 log(aK). Therefore, under a power law, plotting log-population against log-

rank should yield the slope of −1/η as long as the sample size is sufficiently large.13 See

Figure 4 for this type of graph plotted with our data.

Although Zipf’s law has been documented for the city size distributions in many countries,

Eeckhout (2004) points out that it appears to be important because only large cities are

considered. By using population data on “places,” which were newly introduced geographical

units in the U.S. Census at that time, he claims that the city size distributions of all cities

are best fit by using a lognormal distribution. Observe that we also have the whole sample

of cities (i.e., detected communities).

Some authors, however, claim that a single lognormal distribution is insufficient to de-

scribe the city size distribution and that the power law is important for, at least, the upper

tail of the distribution. It seems that this debate has not yet been settled.14 However, even

if the power law is relevant to the upper tail, it is still sound to consider the whole sample

because it is difficult to truncate the sample in a convincing way.15 Then, a sensible sugges-

tion to this debate would be to consider a distribution such that its body is characterized by

the lognormal distribution, whereas its tails are characterized by the Pareto distributions.

In fact, Giesen et al. (2010) and Giesen and Suedekum (2014) consider the double Pareto

lognormal distribution (DPLN) for U.S. city size distributions, concluding that the DPLN

has a better fit with the data than the lognormal distribution.16 This distribution, first

13Note that when (14) holds with equality and η = 1, we have x(i) =
1
i x(1) because log x(1) = c. Thus, the

size of the second largest city is half that of the largest city, the size of the third largest city is two-thirds
that of the second largest city, and so forth. Therefore, Zipf’s law is also called the rank-size rule.

14See, for example, Levy (2009), Eeckhout (2009), Giesen et al. (2010), Bee et al. (2013), Ioannides and
Skouras (2013), and Giesen and Suedekum (2014).

15Eeckhout (2009) argues that truncating sample results in biased conclusions.
16Ioannides and Skouras (2013) also consider a combination of lognormal and Pareto distributions. They

assume that there exists a switching population S̄ such that the distribution is lognormal for S ≤ S̄ and is
Pareto for S ≥ S̄, subject to the regularity condition that the density integrates to one. Their estimation
results also indicate that such a mixed distribution is better than the single lognormal distribution.
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introduced by Reed (2002),17 is obtained as a normal variance mixture by the exponential

distribution (see the Appendix).

Thus, we also consider the lognormal distribution and DPLN. However, although the re-

sult that the combination of lognormal and Pareto distributions is better than the lognormal

distribution appears to be reasonable, it might be unfair to require a single lognormal distri-

bution to describe a city size distribution for the whole sample. Therefore, we additionally

consider a combination of two lognormal distributions. We present the stochastic process of

the city population behind this type of distribution in the next section.

In sum, the density functions we fit to our data are given as follows. For convenience, we

consider the densities of log-population which is denoted by x:

fN(x) =
1

σ
ϕ

(
x− µ

σ

)
, (15)

fDPLN(x) =
αβ

α + β
ϕ

(
x− ν

τ

){
m

(
ατ − x− ν

τ

)
+m

(
βτ +

x− ν

τ

)}
, (16)

fmixN(x) = θ
1

σ1

ϕ

(
x− µ1

σ1

)
+ (1− θ)

1

σ2

ϕ

(
x− µ2

σ2

)
, (17)

where ϕ is the standard normal density and m is the Mills ratio of the standard normal

law (i.e., m(x) = 1−Φ(x)
ϕ(x)

, where Φ is the cumulative standard normal distribution). fN

corresponds to the case where the city population follows the lognormal distribution, fDPLN

corresponds to the case where the city population follows the DPLN, and fmixN corresponds

to the case where the city population follows the combination of two lognormal distributions.

See the Appendix for the derivation of the density of the DPLN.

We fit the three distributions above to our data by using the maximum likelihood esti-

mation. Table 1 summarizes the estimation results.

17See also Reed and Jorgensen (2004).
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Table 1: Estimated parameters of the three distributions fitted to the level-3 communities

Normal Normal + Normal DPLN

µ1 3.3472 (0.041) 2.7910 (0.033)

σ1 1.8549 (0.029) 1.0635 (0.024)

µ2 7.0222 (0.280)

σ2 1.7743 (0.171)

θ 0.8685 (0.014)

α 0.5634 (0.013)

β 8.6315 (0.013)

ν 1.6852 (0.006)

τ 0.5843 (0.002)

Log-Likelihood -4,171 -3,778 -3,799

AIC 8,346 7,566 7,606

BIC 8,357 7,594 7,628

Standard errors are in parentheses.

These estimation results indicate that the DPLN is a better fit to our data than the lognormal

distribution in terms of any of likelihood, AIC, and BIC, which is in line with the findings of

Giesen et al. (2010) and Giesen and Suedekum (2014). However, the results also show that

the combination of two lognormal distributions is better than the DPLN in terms of any

of likelihood, AIC, and BIC. This finding implies that although the lognormal distribution

is sufficient to describe the city size distribution, we must consider a combination of such

distributions. Hence, our results indicate that Pareto distributions are not relevant, even for

the tails.

We can also confirm this result graphically. Figure 4 plots the log-populations against

the log-ranks for the level-2 and level-3 communities. We can hardly see from Figure 4(b)

that Zipf’s law, or more generally a power law, holds even for the upper tail. In the upper

left of Figure 4(b), the graph seems to be concave rather than a straight line; moreover,

there is a jump between the log-populations of the third and fourth largest cities.18

18On the contrary, the upper left of Figure 4(a) seems to be convex. This finding implies that the power
law does not hold for level-2 communities either.
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(b) Level-3 Communities

Figure 4: The size distributions of communities in terms of population

5.1 Stochastic process behind the Gaussian mixture

One of the important motivations behind studying the city size distribution is to provide

regularity for the underlying theoretical model because the relevant model should yield the

city size distribution observed in the real world as an equilibrium. Although Eeckhout (2004)

and Giesen and Suedekum (2014) present the stochastic processes of the city population for

the lognormal distribution and DPLN, respectively, we are not aware of work that does so for

a combination of lognormal distributions. In this section, we show that adding a compound

Poisson process, where the jump amplitude is stochastic, to a geometric Brownian motion

yields the desired distribution. The resulting process has been commonly used in finance

since the seminal work of Merton (1976).

Let Q(t) =
∑N(t)

i=1 Yi, where N is a Poisson process with rate λ and 1+Yi is iid lognormally

distributed with mean µ and δ2. Q is called a compound Poisson process. Then, we assume

that S(t) follows the following process:

dS(t) = γS(t)dt+ ξS(t)dW (t) + S(t−)dQ(t), (18)

where W is a Wiener process and S(t−) = lims↗t S(s). This is called a jump diffusion

process (see, e.g., Shreve, 2004, ch. 11). Given S(0) = s0, the solution to (18) is given by
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the Doleans-Dade exponential:

S(t) = s0 exp

{(
γ − 1

2
ξ2
)
t+ ξW (t)

}N(t)∏
i=1

(1 + Yi). (19)

Note that because Yi is lognormally distributed, Yi > −1. This assures that S(t) does not

jump to a negative value. Let X(t) = log S(t). Then,

X(t) = X(0) +

(
γ − 1

2
ξ2
)
t+ ξW (t) +

N(t)∑
i=1

log(1 + Yi). (20)

By discretizing the time with interval ∆, we obtain

X(t) = X(t−∆) +

(
γ − 1

2
ξ2
)
∆+ ξ

(
W (t)−W (t−∆)

)
+

N(t)∑
i=N(t−∆)+1

log
(
1 + Yi

)
. (21)

We consider the probability transition density p(x; ∆|y, k) that satisfies19

Pr
[
X(t) ∈ [x, x+ dx]

∣∣X(t−∆) = y,N(t)−N(t−∆) = k
]
= p(x; ∆|y, k)dx. (22)

By assumption, W (t)−W (t−∆) ∼ N (0,∆) and log(1 + Yi) ∼ N (µ, δ2). Then, from (21),

p(x; ∆|y, k) = 1√
ξ2∆+ kδ2

ϕ

(
x− y −

(
γ − 1

2
ξ2
)
∆− kµ√

ξ2∆+ kδ2

)
. (23)

Furthermore, because X(t −∆) and N(t) − N(t −∆) are independent, the variable repre-

senting the number of jumps is integrated out from the probability transition density as

p(x; ∆|y) = p(x, y; ∆)

p(y; ∆)
=

∞∑
k=0

p(x, y, k; ∆)Pr[N(t)−N(t−∆) = k]

p(y; ∆)Pr[N(t)−N(t−∆) = k]
(24)

=
∞∑
k=0

p(x, y, k; ∆)Pr[N(t)−N(t−∆) = k]

p(y, k; ∆)
(25)

=
∞∑
k=0

p(x; ∆|y, k) Pr[N(t)−N(t−∆) = k]. (26)

19We focus on the transition density here because the stationary distribution does not exist, as in the case
of the geometric Brownian motion. However, it is possible to “stabilize” the process so that the stationary
distribution exists. One possible way is to allow for the possibility of people’s death. In such a model, Gabaix
et al. (2016) show in Proposition 8 that if the initial distribution and distribution of jump amplitudes both
have Pareto tails, the stationary distribution also has a Pareto (upper) tail.
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Because N is a Poisson process with rate λ,

Pr[N(t)−N(t−∆) = 0] = 1− λ∆+ o(∆), (27)

Pr[N(t)−N(t−∆) = 1] = λ∆+ o(∆), (28)

Pr[N(t)−N(t−∆) ≥ 2] = o(∆). (29)

Hence, we approximate N(t)−N(t−∆) by the random variable Z that follows the Bernoulli

distribution with parameter λ∆ for a short time interval ∆. Then, we have

p(x; ∆|y) ≈
∑

z∈{0,1}

p(x; ∆|y, z) Pr(Z = z) (30)

= λ∆p(x; ∆|y, 1) + (1− λ∆)p(x; ∆|y, 0). (31)

Therefore,

X(t)|X(t−∆) = y ∼ λ∆×N
(
y +

(
γ − 1

2
ξ2
)
∆+ µ, ξ2∆+ δ2

)
+ (1− λ∆)×N

(
y +

(
γ − 1

2
ξ2
)
∆, ξ2∆

)
. (32)

Note that our estimation result is consistent with the regularity conditions behind (32).

First, for the approximation through the Bernoulli distribution to be accurate, ∆ must be

sufficiently small. Thus, one of the two normal distributions must have a sufficiently small

weight. This means that θ ≥ 1
2
must be sufficiently large, and our estimate of θ is around

0.87. Second, because µ, δ > 0, the normal distribution having the smaller weight must have

the larger mean and variance. Because the estimates of µ2 and σ2 are larger than those of µ1

and σ1, respectively, this condition is also met. Therefore, we may conclude that the above

model is relevant to our data.20

20Note that if we do not approximate N(t) − N(t − ∆) by using the Bernoulli distribution,
the transition density is an infinite mixture of the normal distributions according to the Pois-

son distribution. In fact, because Pr[N(t) − N(t − ∆) = k] = (λ∆)k

k! e−λ∆, p(x;∆|y) =
∞∑
k=0

(λ∆)k

k!
e−λ∆ 1√

ξ2∆+ kδ2
ϕ

(
x− y −

(
γ − 1

2ξ
2
)
∆− kµ√

ξ2∆+ kδ2

)
. Yu (2007) proposes a method of approximat-

ing the likelihood function based on this density.
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6 Conclusion

By using the network theory-based map equation method following Rosvall and Bergstrom

(2008) and smartphone GPS data, we delineated “cities” in Japan that are independent of

administrative boundaries and then examined the size distribution of the delineated cities.

Contrary to previous observations in which the power law has been regarded as an important

regularity, we found that mixing lognormal distributions is sufficient to describe the city size

distribution and hence the Pareto distribution does not play a role. We argued that in such

a case, the jump diffusion process is relevant to the stochastic process of the city population.

Having said that, a fundamental problem in this literature is that how our cities look

like is decided by our definition of city. Hence, it is important to connect the definition of

city to economics. One possible way of doing so might be to consider a coalition formation

game of local governments (Weese, 2015). One conceptual advantage of the map equation

method is that it is explicitly formulated as an optimization problem. Moreover, it is well

known that minimizing the entropy, as in the map equation method, is related to finding the

equilibrium of logit-type discrete choice models. Hence, there would be potential for doing

this in the map equation method.

Appendix

A1 Comparison with the modularity method

Several methods have been proposed for community detection as summarized in Fortunato

and Hric (2016). Among other things, Farmer and Fotheringham (2011) use the modularity

method of Newman and Girvan (2004) to delineate metropolitan areas. This method searches

for a community partition such that the volume of flows within a community is large, whereas

that of flows between communities is small. The performance of a community partition is

evaluated relative to the case where cells are placed completely at random. Specifically, if

cells are placed at random, the expected number of commuting trips from cells i to j is

N × Ni

N
× Nj

N
=

NiNj

N
. The modularity is then defined as

Q =
1

N

∑
i,j

(
Nij −

NiNj

N

)
δij, (33)

where δij = 1 if cells i and j belong to the same community and δij = 0 otherwise. The

modularity method finds the community partition that maximizes the modularity, which does

not depend on the free parameters. However, because
NiNj

N
only depends on the numbers of
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workers in each cell, it can take a large value even if the two cells are far apart as long as

they host large numbers of workers. Owing to this, Farmer and Fotheringham (2011), who

use commuting flow data in Ireland, needed to discount the flow volumes by geographical

distance to obtain communities of reasonable sizes. However, this means that the resulting

community structure depends on the discounting method. The map equation method, on

the contrary, does not use information on the population of each cell and hence spatial

discounting is not necessary. In fact, the volume of the flow of people, which is the only

information used by the map equation method, naturally tends to be small as the distance

between origin and destination becomes large. Moreover, the map equation method can

accommodate the hierarchical structure of communities and hence detect various scales.

Hence, we do not have to explicitly take the distance into account.

A2 DPLN

As demonstrated by Eeckhout (2004), conditional on the city age and population in the

previous period, the city size distribution is given by a lognormal distribution if the logarithm

of the city population follows a geometric Brownian motion. Specifically, let S(t) be the city

population at time t, and suppose that it obeys the following process:

dS(t) = γS(t)dt+ ξS(t)dW (t), (34)

where W is a Wiener process. Given S(0) = s0, it follows from the standard Itô calculus

that the solution to (34) is

S(t) = s0e
(γ− 1

2
ξ2)t+ξW (t). (35)

Let X(t) = log S(t). Then,

X(t) = X(0) +

(
γ − 1

2
ξ2
)
t+ ξW (t). (36)

Suppose that S(0) is lognormally distributed with mean ν and variance τ 2 (i.e., X(0) ∼
N (ν, τ 2)). Because W is a Wiener process (i.e., W (t) ∼ N (0, t)), we have

X(t) ∼ N
[
ν +

(
γ − 1

2
ξ2
)
t, τ 2 + ξ2t

]
. (37)

The distribution above depends on t, which is the city age in our context. Giesen and

Suedekum (2014) assume that the city age is exponentially distributed with rate parameter
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λ. Hence, the density function of t is fT (t) = λe−λt. Then, the unconditional density of X is

fX(x) =

∫
1

σt

ϕ

(
x− µt

σt

)
fT (t)dt, (38)

where ϕ is the standard normal density, µt = ν +
(
γ − 1

2
ξ2
)
t, and σ2

t = τ 2 + ξ2t. Let

m(z) = 1−Φ(z)
ϕ(z)

where Φ is the standard normal cumulative distribution. It is shown that

fX(x) =
αβ

α + β
ϕ

(
x− ν

τ

){
m

(
ατ − x− ν

τ

)
+m

(
βτ +

x− ν

τ

)}
, (39)

where α and −β (α, β > 0) are the roots of the following equation:

ξ2

2
z2 +

(
γ − 1

2
ξ2
)
z − λ = 0. (40)

References

Bee, M., Riccaboni, M. and Schiavo, S. (2013). The size distribution of us cities: Not

pareto, even in the tail. Economics Letters, 120 (2), 232–237.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory. John Wiley &

Sons.

Eeckhout, J. (2004). Gibrat’s law for (all) cities. The American Economic Review, 94 (5),

1429–1451.

— (2009). Gibrat’s law for (all) cities: Reply. The American Economic Review, 99 (4),

1676–1683.

Farmer, C. J. and Fotheringham, A. S. (2011). Network-based functional regions.

Environment and Planning A, 43 (11), 2723–2741.

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486 (3), 75–174.

— and Hric, D. (2016). Community detection in networks: A user guide. Physics Reports,

659, 1–44.

Gabaix, X. and Ioannides, Y. M. (2004). The evolution of city size distributions. Hand-

book of regional and urban economics, 4, 2341–2378.

—, Lasry, J.-M., Lions, P.-L. and Moll, B. (2016). The dynamics of inequality. Econo-

metrica, 84 (6), 2071–2111.

19



Giesen, K. and Suedekum, J. (2014). City age and city size. European Economic Review,

71, 193–208.

—, Zimmermann, A. and Suedekum, J. (2010). The size distribution across all cities–

double pareto lognormal strikes. Journal of Urban Economics, 68 (2), 129–137.

Horanont, T., Phithakkitnukoon, S., Leong, T. W., Sekimoto, Y. and

Shibasaki, R. (2013). Weather effects on the patterns of people’s everyday activities:

a study using gps traces of mobile phone users. PloS one, 8 (12), e81153.

Ioannides, Y. and Skouras, S. (2013). Us city size distribution: Robustly pareto, but

only in the tail. Journal of Urban Economics, 73 (1), 18–29.

Levy, M. (2009). Gibrat’s law for (all) cities: Comment. The American Economic Review,

99 (4), 1672–1675.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.

Journal of financial economics, 3 (1-2), 125–144.

Mori, T. and Smith, T. E. (2015). On the spatial scale of industrial agglomerations.

Journal of Urban Economics, 89, 1–20.

Newman, M. E. and Girvan, M. (2004). Finding and evaluating community structure in

networks. Physical review E, 69 (2), 026113.

Reed, W. J. (2002). On the rank-size distribution for human settlements. Journal of Re-

gional Science, 42 (1), 1–17.

— and Jorgensen, M. (2004). The double pareto-lognormal distribution - a new parametric

model for size distributions. Communications in Statistics-Theory and Methods, 33 (8),

1733–1753.

Rosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on complex networks

reveal community structure. Proceedings of the National Academy of Sciences, 105 (4),

1118–1123.

— and — (2011). Multilevel compression of random walks on networks reveals hierarchical

organization in large integrated systems. PloS one, 6 (4), e18209.

Rozenfeld, H. D., Rybski, D., Gabaix, X. and Makse, H. A. (2011). The area and

population of cities: new insights from a different perspective on cities. The American

Economic Review, 101 (5), 2205–2225.

20



Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models, vol. 11.

Springer Science & Business Media.

Weese, E. (2015). Political mergers as coalition formation: an analysis of the heisei munic-

ipal amalgamations. Quantitative Economics, 6 (2), 257–307.

Yu, J. (2007). Closed-form likelihood approximation and estimation of jump-diffusions with

an application to the realignment risk of the chinese yuan. Journal of Econometrics,

141 (2), 1245–1280.

21


	Introduction
	The Model
	Data
	Detected Communities
	City Size Distribution
	Stochastic process behind the Gaussian mixture

	Conclusion

