
 

 

 

CSIS Discussion Paper No. 149 

 

 

 

 

 

Descriptive measures of point distributions summarized over the entire spatial scale 

 

 

 

Yukio Sadahiro 

 

 

July 2017 

 

 

 

Center for Spatial Information Science, The University of Tokyo 

5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan 

Phone: +81-471-36-4310 

Fax: +81-3-5841-8521 

sada@csis.u-tokyo.ac.jp  



1 
 

 

Abstract 

 

Keywords: point distributions, spatial scale, summary measures, visualization 

 

Visualization is a first step of exploratory point pattern analysis. It is often recommended to visualize 

point distributions at various spatial scales from local to global, because it permits us to detect spatial 

patterns of different scales that are useful for building research hypotheses. Visual analysis, however, 

takes a considerable amount of time especially when numerous maps are explored. Five measures are 

developed in this paper that summarize the properties of point distributions over the entire range of spatial 

scales. The maps of the measures help us to capture efficiently the overall spatial pattern of point 

distributions. Numerical experiments and applications to real data analysis are performed to test the 

validity of the proposed measures. The results reveal the effectiveness of the measures as well as their 

shortcomings to be revolved in future research. 
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1. Introduction 

Visualization is a first step of exploratory point pattern analysis (Kovalerchuk and Schwing 

(2005); Oyana and Margai (2015)). Dot maps indicate the exact location of points using map symbols. 

Quadrat method generates lattices, counts the number of points in each cell, and visualizes them as grid 

maps. Kernel smoothing converts point distributions into smooth surfaces represented by hill-shaded and 

contour maps (Silverman (1986); Scott (2015)). These maps provide us a lot of useful information on the 

spatial pattern of point distributions that are helpful for building research hypotheses. 

Spatial scale plays a key role in quadrat method and kernel smoothing. Large cells and windows 

yield smooth maps that reveal the global structure of point distributions. Small ones are appropriate for 

exploring the local pattern since they emphasize the details of point distributions. Analysts are 

recommended to try various spatial scales from local to global to capture spatial patterns of a wide variety 

of scales. 

Recent GIS software permit us to easily visualize point distributions with changing the spatial 

scale of visualization. They generate grid maps and kernel surfaces of different scales very rapidly. Visual 

analysis, however, takes a considerable amount of time and is inevitably subjective when treating 

numerous maps generated at various scales. It is not easy to evaluate and memorize many spatial patterns 

in a consistent and objective way. The difficulty increases when many distributions are analyzed 

simultaneously as is often seen in ecology and biology. 

One approach to this problem is to choose an optimal scale in visual analysis. The optimal 

window width is proposed in kernel smoothing that minimizes the difference between point distribution 

and kernel surface, or more precisely, approximately minimizes the mean integrated square error in 

density estimation (Silverman (1986); Sheather (2004); Scott (2015), Sheather (2004)). Spatial scan 

statistics define the optimal window as maximizing the difference in point density between inside and 

outside the window (Kulldorff (1997); Tango and Takahashi (2005)). Visualization at an optimal scale, 

unfortunately, inevitably conceals the spatial patterns observed at the other scales. Point clusters observed 

at a certain scale may not be visualized at the optimal scale. Moreover, the optimal scale depends on the 

spatial pattern of point distributions. Different distributions have different optimal scales so that the maps 

generated at their own optimal scales are not comparable with each other. 

Summary measures of point distributions are an alternative to optimal scaling that also reduce 

the time of exploratory analysis. χ2-statistic used in quadrat method evaluates the nonuniformity of point 

distributions. K-function evaluates the clustering degree of points (Ripley 2005). Spatial median and the 

number of peaks are basic measures in kernel smoothing. These measures summarize the properties of 

point distributions at a certain scale represented as cell size, circle radius, and window width. Measures 

calculated at various scales are visualized as graphs whose x-axis is spatial scale that permit us to grasp 

efficiently the properties of the distributions over different scales. 

One of the drawbacks of summary measures is that they do not convey directly the spatial 
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information on point distributions. For instance, summary measures do not indicate the location, size, and 

shape of point clusters. They are not effective to discuss the spatial relationship between point 

distributions. Some measures do not distinguish the same spatial pattern at different location since they 

are insensitive to the congruent transformation. To complement these measures, this paper proposes a new 

method of visualizing point distributions for exploratory spatial analysis. The method calculates summary 

measures that outline the properties of point distributions over the entire range of scales at each location 

and visualizes their spatial distributions as maps. These measures and the aforementioned ones are 

complementary to each other, i.e., the former encapsulate the properties of point distributions over the 

entire range of scales at each location, while the latter summarize the properties over the whole area at 

each spatial scale. Section 2 defines summary measures of point distributions. Measures for evaluating a 

single distribution of points are proposed, which are further extended to treat multiple distributions. 

Section 3 performs numerical experiments to test the validity of the proposed measures. Section 4 applies 

the measures to the analysis of real datasets. Section 5 summarizes the conclusions with discussion. 

 

2. Methods 

2.1 Evaluation of a single distribution of points 

Suppose there are n points Π={P1, P2, ..., Pn} in region S. Let zi be the location of ith point. 

Function F0(x, w0; Π) is the density of points within distance w0 at location x: 
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Function F0(x, w0; Π) becomes large where points are clustered, while it is small where points are sparse. 

Distance w0 works as a scale parameter at which F0(x, w0; Π) is evaluated. A large w0 considers points in 

a wide area, and consequently, gives a global view on point distributions. A small w0 focuses on the local 

variation of point distribution. Function F0(x, w0; Π) becomes smooth if w0 is large while a small w0 yields 

a rough function. 
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Function f0(x, w0; Π) indicates the relative density of points while F0(x, w0; Π) is the absolute density. 

The former is useful for comparing the spatial patterns between different distributions. 

 Both F0(x, w0; Π) and f0(x, w0; Π) are the functions of location x and scale w0. Given a certain 

w0, we can create the maps of these functions. If location x is specified, we can visualize the functions as 

graphs whose x-axis is w0. Figure 1 shows seven distributions of points labelled ΠA-ΠG in square region 

S. Figure 2a illustrates the graphs of F0(x, w0; Π) as functions of w0, where x is the center of the region. 

Points ΠA-ΠC clustered at the center in Figure 1 yield monotonically decreasing functions in Figure 2a. 

Points in ΠD and ΠE are distributed close to the boundaries, and consequently, F0(x, w0; Π) monotonically 

increases with w0. Donut-shaped distributions of ΠF and ΠG generate unimodal and bimodal functions in 

Figure 2a, respectively. 

Figure 2b shows f0(x, w0; Π) of the distributions in Figure 1. The functions almost inherit the 

topological properties of F0(x, w0; Π), though the two figures may look quite different. Points in ΠA-ΠC 

have monotonically decreasing functions in both in Figures 2a and 2b. Points in ΠF and ΠG have one 

and two peaks, respectively, in both figures. 

 

 

 

Figure 1 Seven distributions of points. 

 

(a) Distribution ΠA (b) Distribution ΠB (c) Distribution ΠC (d) Distribution ΠD

(e) Distribution ΠE (f) Distribution ΠF (g) Distribution ΠG
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Figure 2 Density functions of points in Figure 1. (a) F0(x, w0; Π), (b) f0(x, w0; Π), (c) f(x, w; Π), (d) 

function f’(x, w; Π). 

 

 Functions F0(x, w0; Π) and f0(x, w0; Π) indicate the degree of point clustering around x at 

various scales from local to global. Summary measures of these functions with respect to w0 are useful in 

exploratory analysis since we can visualize the measures as maps. The maps permit us to grasp the spatial 

pattern of point distributions efficiently, and consequently, save our time of visual analysis with 

continuously changing the spatial scale. Suppose, for instance, the mean of f0(x, w0; Π) with respect to w0. 

It becomes large where point clusters are observed consistently over a wide range of scales. Detection of 

such clusters is important and often critical in point pattern analysis and spatial statistics (Ord and Getis 

(1995); Anselin et al. (2008)). 

 One difficulty in the calculation of summary measures lies in the infinite range of scale 

parameter w0, from zero to infinity. This prohibits us from calculating the mean of f0(x, w0; Π) in section 

[0, ∞) (details are discussed later in Appendix). We thus introduce a new parameter w ranging from zero 

to one that has a one-to-one correspondence with w0: 
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Parameter w0 is given by 

 ( )0 log 1w w= − . 

500

400

ΠA

ΠA

ΠB

ΠB

ΠD

ΠD

ΠE

ΠE

ΠG

ΠG

ΠG

ΠG

ΠF

ΠF

ΠC

ΠC

300

200

100

0

250

200

150

100

50

0

0 1w0

w0

(a)

(b)

ΠAΠB

ΠD

ΠE

ΠF

ΠC

250

200

150

100

50

w
(c)

0 1

ΠA

ΠB

ΠD

ΠE

ΠF

ΠC

1.0

0.6

0.8

0.4

0.2

w
(d)



6 
 

(4) 

Functions F0(x, w0; Π) and f0(x, w0; Π) become 
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respectively. Figure 2c shows f(x, w; Π) of the distributions in Figure 1. The function still keeps the 

topological properties of F0(x, w0; Π) with the finite range of parameter w. 

 Another difficulty in the calculation of summary measures is caused by the undefinability of 

F(x, w; Π) and f(x, w; Π). They are not defined at the locations of points, where the numerator of Equation 

(5) is positive while the denominator is equal to zero. Integral of f(x, w; Π) with respect to w is 

incomputable, on which basic measures including the mean and variance are defined. One method to 

resolve the problem is to transform f(x, w; Π) into another function of a finite range: 

 ( ) ( ), ;' , ; 1 f wf w e− ΠΠ = − xx . 

(7) 

Figure 2d shows f'(x, w; Π) that ranges from zero to one. The mean of f'(x, w; Π) is given by 

 ( ) ( )
1

0
; ' , ; d

w
f w wµ

=
Π = Π∫x x . 

(8) 

The mean indicates the average degree of point clustering around location x. The variance of f'(x, w; Π) 

is also a basic statistic: 

 ( ) ( ){ }1 22

0
; ' , ; d

w
f w wσ µ

=
Π = Π −∫x x . 

(9) 

Variance evaluates the stability in the degree of point clustering. If µ(x; Π) is large and σ2(x; Π) is small, 

it is highly plausible that a large and dense cluster of points exist around x. Small µ(x; Π) and σ2(x; Π) 

indicate that few points exist around x. 

Both mean and variance concern the degree of point clustering at each location. In contrast, 
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range represents the spatial extent of point distribution around each location. It is defined as the average 

of w weighted by f'(x, w; Π): 

 ( )
( )

( )

1

0
1

0

' , ; d
;

' , ; d
w

w

wf w w
r

f w w
=

=

Π
Π =

Π

∫
∫

x
x

x
. 

(10) 

Range r(x; Π) shows a large value when points are located away from x such as ΠD and ΠE in Figure 1. 

Distributions ΠA and ΠB have small r(x; Π) because points are clustered around x. 

 The above three measures are defined based on f'(x, w; Π) that was introduced to avoid the 

undefinability of f(x, w; Π). An alternative to resolve the problem is to define summary measures that can 

be calculated directly from f(x, w; Π). The median of f(x, w; Π), which is denoted by m(x; Π), substitutes 

for the mean of f'(x, w; Π). It is defined in an implicit form as 
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where ξ( f(x, w; Π), s) is a binary function: 
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Median m(x; Π) ranges from zero to infinity. Similar to mean µ(x; Π), m(x; Π) indicates the average 

degree of point clustering around location x. It becomes large where clusters are observed consistently 

across different scales. 

Extent e(x; Π) is an alternative to range r(x; Π) defined based on f(x, w; Π). This measure 

evaluates the relationship between w and f(x, w; Π) by extending the Spearman’s rank correlation 

coefficient. Suppose we divide section [0, 1] into m subsections, in each of which a representative w is 

defined at the center: 
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The set of f(x, w; Π) values corresponding set Wm is given by 
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Let R(ψi; Ψm) be the rank of ψi in set Ψm in ascending order. The Spearman’s rank correlation coefficient 
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between Wm and Ψm is 
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Increasing m to infinity, we define e(x; Π): 
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Similar to the Spearman’s rank correlation coefficient, e(x; Π) ranges from -1 to 1. Extent e(x; Π) shows 

a large value when points decrease with an increase of w around x as seen in ΠA and ΠB in Figure 1. Points 

in ΠD and ΠE increase with w, and consequently, e(x; Π) takes a small value. 

 The five measures proposed above evaluate the degree of point clustering from different 

perspectives. Mean µ(x; Π) and median m(x; Π) focus on the average degree of point clustering across 

different scales. Range r(x; Π) and extent e(x; Π) concern the spatial extent of point distribution at each 

location. Variance σ2(x; Π) indicates the stability in the degree of point clustering with respect to the scale 

of analysis. The maps of these measures reveal the spatial patterns of point distributions evaluated across 

different scales, including important point clusters observed consistently over the entire range of scales. 

 

2.2 Analysis of the relationship between multiple distributions of points 

 This subsection extends the proposed measures for the analysis of the relationship between two 

and more distributions of points. The former consists of the evaluation of the change of a single 

distribution and the comparison of two different distributions. 

We first discuss the change of point distribution from Π to Π'. Our primary interest lies in the 

areas where points significantly increase or decrease. The difference between the distributions is 

represented by 
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A variant with a finite range is defined as 

( ) ( ), ; , '' , ; , ' 1 f wf w e ∆− Π Π
∆ Π Π = − xx . 

(18) 
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These functions indicate the increase in point density from Π to Π'. They permit us to evaluate the change 

of point distribution by extending the five measures proposed in the previous subsection. The mean, 

variance, and range of f'∆(x, w; Π, Π') are given by 
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0
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respectively. Median m∆(x; Π, Π') is defined based on f∆(x, w; Π, Π') as 
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Π Π Π Π =∫ x x . 

(22) 

Extent e∆(x; Π, Π') is defined similarly according to Equation (16). Mean µ∆(x; Π, Π') and median m∆(x; 

Π, Π') show large positive values where points greatly increase, while the decrease of points yields 

negative values. Range r∆(x; Π, Π') and extent e∆(x; Π, Π') behave in the opposite way, i.e., they become 

negative where points increase. Variance σ2
∆(x; Π, Π') is always positive and behave independently of 

the other measures. 

 Comparison of two different types of points Π1 and Π2 can be performed in two different ways. 

If a focus is on the absolute difference between Π1 and Π2, we can follow the above procedure by replacing 

Π and Π' with Π1 and Π2. If an interest lies in the difference in the relative spatial patterns of Π1 and Π2, 

we need to standardize each density function before comparison. The difference between Π1 and Π2 is 

represented as 
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(24) 

Summary measures are defined based on these functions. Mean, for instance, is given by 

( ) ( )
1

1 2 1 20
; , ' , ; , dR Rw

f w wµ ∆ ∆=
Π Π = Π Π∫x x . 

(25) 

 The above measures are applicable to the analysis of the relationship between more than two 

distributions of points. If we have numerous distributions, classification is also effective because we can 

focus on the comparison between a smaller number of groups rather than the comparison between 

individual distributions. Classification utilizes the integrals of the above measures over the whole area. 

For instance, the integral of µ∆(x; Π1, Π2) is given by 

( ) ( )1 2 1 2, ; , dRS
dµ µ ∆∈

Π Π = Π Π∫x
x x . 

(26) 

Measure dµ(Π1, Π2) works as a distance measure since it becomes large if Π1 and Π2 have different spatial 

patterns. Calculating dµ(Π1, Π2) between every pair of distributions, we obtain a distance matrix. This 

gives us a basis for classifying the distributions by using cluster analysis methods (Everitt et al. (2011); 

Hennig et al. (2015)). 

 

3. Numerical experiments 

 This section tests the performance of the proposed measures through numerical experiments. 

Evaluation is based on whether they visualize the properties of point distributions clearly and 

appropriately, especially whether they are helpful for the detection of point clusters. Subsections 3.1 and 

3.2 treat a single distribution of points and the changes in a point distribution, respectively. Points are 

distributed in a square region of side 1.0 in all the experiments. Every distribution consists of point clusters, 

each of which follows a two-dimensional Gaussian distribution. We call the center of Gaussian 

distribution a seed. Variables n and ρ denote the number of points and the standard deviation of Gaussian 

distribution, respectively. 

 

3.1 Visualization of a single distribution 

Figure 3a shows a point distribution consisting of one large (CC) and four small (CR, CL, CT, 

CB) clusters. The small clusters share the same spatial extent (ρ) with different densities (n/ρ2). Figure 3b-

d show the kernel density distributions of different window widths generated from the point distribution. 

Figure 3e-i show the distributions the proposed measures. Mean µ and median m are large where 

points are clustered while variance σ2, range r, and extent e are small in those areas. Measures µ and m 

have rough surfaces in Figures 3e and 3f where the global pattern and point clusters are not clear. Measures 

m and e, on the other hand, successfully displays all the small clusters. Median m is close to kernel surface 
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K1, though the peaks of small clusters are located a little inside of their seeds. Range r looks similar to K3, 

in both of which only the smallest cluster CR is not clearly recognizable. Extent e is close to K1 except its 

rough contour lines. 

Measures µ and m aim to indicate the density of points, while r and e intend to represent the 

size of point clusters. Figure 3g shows that m successfully visualizes the difference in point density among 

the small clusters. Measures r and e, on the other hand, do not fully achieve their purpose since they 

visualize denser clusters as larger ones. These measures are affected by point density at least to some 

extent. 

 

 

 

Figure 3 Point distribution and its summary measures. 

 

Figures 4 and 5 focus on the effect of the size and density of point clusters on the performance 

of the proposed measures. Four clusters in Figure 4a share the same size (ρ) but differ in point density 

(n/ρ2). Surfaces of µ and σ2 are both smoother than those in Figure 3 because the points are more tightly 

clustered. Measures µ, σ2 and m successfully visualize the difference in point density among the clusters. 

Measures r and e are expected to visualize all the clusters in the same size, which is not fully attained. 

Though e yields better result than r, both visualize the clusters in different sizes. 

Four clusters in Figure 5a consist of the same number of points with different spatial extents, 

and consequently, they are different in both size and point density. Measures µ, σ2, and m correctly 

visualize the difference in point density among the clusters, and e indicates the difference in cluster size. 

Range r visualizes the four clusters almost in the same way, which implies that r tends to represent the 

number of points rather than the spatial extent of point clusters. 
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Figure 4 Point distribution and its summary measures. 

 

 

 

Figure 5 Point distribution and its summary measures. 

 

 Figures 6 and 7 consider the cases where one large and five small clusters are arranged rather 

irregularly. The small clusters share the same size and density in each figure. Points are more tightly 

clustered in Figure 6a than those in Figure 7a so that point clusters are more easily detectable in the former. 

Mean µ and variance σ2 have rough surfaces where clusters are rather undistinguishable. Median m also 

fails to visualize the clusters clearly in both figures; some are combined into one while others are covered 

by the larger cluster. Measures r and e perform better than the other measures. Extent e displays small 
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clusters more separately than r, especially in Figure 6. 

 

 

 

Figure 6 Point distribution and its summary measures. 

 

 

 

Figure 7 Point distribution and its summary measures. 

 

3.2 Visualization of changes in a point distribution 

 This subsection discusses the changes in a point distribution. We assume unmovable points, i.e., 

their change is limited to generation and disappearance. Other dynamic changes such as movement and 

integration are out of scope of this paper. 
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Figures 8 and 9 treat the cases where only the cluster generation is observed. One large and 

three small clusters are generated (red circles) where one large and five small clusters already exist (blue 

circles). Measures m∆, r∆, and e∆ successfully detect the generation of large cluster in both figures, while 

it is not clear in µ∆ and σ∆
2. Small clusters are also clear in e∆ and r∆, although the latter to a lesser extent 

in Figure 9. Small clusters in m∆ are detectable but their location is different from their actual ones. 

Measures µ∆ and σ∆
2 fail to visualize the small clusters clearly except the one at the lower-left corner in 

Figure 8. 

 

 

 

Figure 8 Cluster generation in a point distribution. The distribution originally consists of one large and 

five small clusters (blue circles). One large and three small clusters are newly generated (red circles). 
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Figure 9 Cluster generation in a point distribution. The distribution originally consists of one large and 

five small clusters (blue circles). One large and three small clusters are newly generated (red circles). 

 

Figures 10 and 11 treat the cases where both cluster generation and disappearance occur. A point 

distribution initially consists of two large and eight small clusters. One large and three small clusters 

disappear, while the same number of clusters are generated. Measures µ∆ and m∆ become positive (red 

shades) while r∆ and e∆ become negative (navy shades) where clusters are generated. Measures r∆ and e∆ 

detect point clusters almost successfully except the cases where cluster generation and disappearance 

closely occur as observed at the center in both figures. Median m∆ is similarly effective in Figure 10, but 

tends to locate point clusters inward in Figure 11 where points are more dispersed in each cluster. 

Measures µ∆ and σ∆
2 are not effective due to their rough distributions. 

 

 

 

Figure 10 Cluster generation and disappearance in a point distribution. The distribution originally 

consists of two large and eight small clusters (blue and yellow circles). One large and three small 

clusters disappear (yellow circles), while one large and three small clusters are generated (red circles). 
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Figure 11 Cluster generation and disappearance in a point distribution. The distribution originally 

consists of two large and eight small clusters (blue and yellow circles). One large and three small 

clusters disappear (yellow circles), while one large and three small clusters are generated (red circles). 

 

4. Application to real data 

 This section applies the proposed measures to the analysis of real data. Subsection 4.1 evaluates 

the change of the distribution of convenience stores in Tokyo, Japan. Subsection 4.2 analyzes the change 

in the number of children in the Greater Tokyo Area by using spatially-aggregated census data. Subsection 

4.3 classifies the distributions of commercial facilities in Chiba, Japan, by using the distance measures 

proposed in Subsection 2.2. 

 

4.1 Distribution of convenience stores in Tokyo 

Figures 12a and 12b show the distributions of convenience stores in Tokyo listed in the 

telephone directory of the NTT TownPage cooperation. Stores had increased from 2070 in 1990 to 3382 

in 2000, during which period 1949 new stores opened (Figure 12c) and 637 stores were closed (Figure 

12d). Closed stores are distributed rather uniformly while new stores are clustered in some areas. 

Figure 12e-Figure 12g show the distribution of calculated measures. We omit µ∆ and σ2
∆ due to 

the space limitations. Measures m∆ and r∆ are positive while e∆ is negative over the whole area, because 

stores had increased as a total during this period. Measures m∆ and r∆ clearly indicate the global pattern 

of new stores, i.e., new stores opened more in the central area than in the surrounding area. Extent e∆ 

reveals smaller clusters of new stores that are not easily recognizable in Figure 12c. Figure 13 shows the 

distributions of new and closed stores overlaid on the distribution of e∆. A close relationship exists 

between e∆ and new stores in Figure 13a. The relationship, on the other hand, is not clear in Figure 13b. 
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One reason for this is that closed stores are fewer than new ones. The spatial pattern of new stores masks 

that of closed stores. Another reason is that closed stores are distributed rather uniformly as seen in Figure 

12d. They do not contain large clusters that greatly reduce the value of e∆. 

 

 

 

Figure 12 Convenience stores in Tokyo, Japan, in 1990 and 2000. 
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Figure 13 New and closed convenience stores in Tokyo, Japan, between 1990 and 2000. 

 

4.2 Distribution of children in the Greater Tokyo Area 

The proposed measures are applicable to point data aggregated by spatial units such as census 

tracts and zip codes. This subsection analyzes the change in the number of children in the Greater Tokyo 

Area, Japan (Figure 14a). Population had increased continuously from 1995 to 2005 in this area due to 

centralization, while the birth rate had gradually decreased. Our interest lies in the spatial pattern of the 

change in the distribution of children. 

Figure 14b shows the change in the number of children from 1995 to 2005 aggregated at the 

city level in the census data. Though we can see that children had increased in the central and some 

surrounding areas, local variation of the distribution prevents us of grasping the overall pattern of the 

change. Figure 14c-e show the distribution of calculated measures. Similar to Figure 12, m∆ and r∆ are 

positive while e∆ is negative over the whole area in Figure 14, which implies that children had increased 

as a whole during this period. The scale of spatial pattern revealed by m∆, r∆ and e∆ changes from global 

to local in this order. Median m∆ indicates that children had increased more in the central area than in its 

surroundings. Range r∆ adds local clusters in the north area, represented as cities such as Maebashi, 

Utsunomiya and Mito. Extent e∆ visualizes the local clusters more clearly, and detects even smaller 

clusters including Oyama, Tsuchiura, Choshi and Mobara. Extent e∆ also reveals the detailed spatial 

pattern of children increase in the central area of Tokyo. 
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Figure 14 Change in the number of children between 1995 and 2005 in the Greater Tokyo Area. White 

lines in Figure 14a indicate railway lines. 

 

4.3 Classification of the distributions of commercial facilities 

This subsection applies the proposed measures to the classification of the distributions of 

commercial facilities in Chiba, Japan. The data are based on the list of shops and restaurants provided by 

the NTT TownPage cooperation. We classify nineteen types of commercial facilities by their spatial 

patterns. The k-medoids method (Everitt et al. (2011); Hennig et al. (2015)) uses dm, dr, and de as distance 

measures in classification. 

Figure 15 shows the distributions of commercial facilities classified based on de where k=4. We 

omit the other results since dm and dr yielded similar classifications. Group G1 is the largest group 

containing convenience stores, vegetable stores and noodle restaurants that provide commodities and 

reasonable food. Shops are widely spread in both residential and commercial areas to satisfy the frequent 

demand of residents and workers. Facilities in G2 are rather clustered around railway stations. Group G3 
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is smaller and more tightly gathered around railway stations. People visit G2 and G3 stores less frequently 

such as pubs, bars, cosmetic shops and book stores. The stores form clusters around railway stations to 

offer opportunities for comparison and multipurpose shopping. Group G4 consists of gas stations and 

supermarkets that are dispersed over the whole area. Unlike other commercial facilities, gas stations and 

supermarkets are not found around railway stations. They do not need to be close to railway stations where 

the land price is relatively high because people usually visit these facilities by car. 

The above classification looks generally reasonable. Each group consists of commercial 

facilities that share similar spatial patterns as seen in Figure 15, which reflects the properties of goods and 

services provided by the facilities. 

 

 
 

Figure 15 Classification of commercial facilities in Chiba, Japan. 

 

5. Concluding discussion 

A new method of visualizing point distributions was proposed. Measures µ, σ2, m, r, and e and 

their extensions summarize the properties of point distributions evaluated over the entire range of scales. 

The measures were developed for exploratory purposes, i.e., they are expected to help us building research 

hypotheses. Visual analysis of these measures should be followed by confirmatory analysis that tests the 
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significance of the hypotheses, which is out of scope of the paper. 

Measures µ and σ2 are extensions of descriptive measures widely used in general statistics. 

Numerical experiments, unfortunately, showed that µ and σ2 are not necessarily effective for visual 

analysis. Rough surfaces of these measures often too much emphasize the local variation of point 

distributions so that the global pattern and point clusters are not easily recognizable. The strength of µ 

and σ2, however, should not be underestimated. Their definition is clear and interpretation is 

straightforward because they are based on popular measures in general statistics. We should resolve the 

shortcomings of these measures to improve their performance. 

The other three measures showed good results in both numerical experiments and real 

applications. They permit us to grasp the overall spatial pattern as well as detect point clusters and changes 

in point distributions. This saves our time of visual analysis with continuously changing the spatial scale. 

The maps of the three measures visualize the spatial patterns of different scales. Median m outlines the 

global pattern of point distributions, while r and e rather focus on the local details. 

A weakness of m is that it tends to locate point clusters inward from their true locations as seen 

in Figures 8 and 9. It occurs primarily due to the edge effect, i.e., calculation of f(x, w; Π) and f'(x, w; Π) 

does not consider the points outside the study region that can potentially exist. All the measures suffer 

from the edge effect, though it was not evident in r and e in numerical experiments. We should try edge 

correction methods proposed in spatial statistics and image processing such as periodic edge correction 

and reflection correction methods in future research (Stoyan and Stoyan (1994); Wiegand and Moloney 

(2013)). 

Extent e was found to be effective for the detection of point clusters. The primary objective of 

e, however, is to represent the spatial extent of point distribution around each location. This has not been 

fully attained because e is affected by the relative density of points in the neighborhood. Further 

improvement is necessary for e to be more independent of point density. 

This paper assessed the performance of the proposed measures by visually comparing their 

spatial pattern with point distributions. We chose this approach to grasp the properties of the measures 

from various perspectives. Further evaluation includes cartographic experiments, questionnaire survey, 

and quantitative assessment. Experiments should test whether analysts can correctly understand the spatial 

pattern of point distributions and detect point clusters in the maps of the proposed measures. The 

performance of the measures can be assessed through questionnaire survey and the quantitative analysis 

of the results. 

Dynamic changes such as movement, integration, and division of points were out of scope of 

this paper. However, recent development of tracking technology such as GPS, laser and video tracking 

systems permits us to obtain detailed point data that changes continuously. We should test the performance 

of the proposed measures in the analysis of dynamic data as well as develop further measures that can 

capture the properties of dynamic changes more appropriately. 
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Appendix 

 Mean and variance are basic measures of continuous functions. The mean of density function 

f(x, w0; Π) is defined as 

 ( ) ( )1

01
0 0 00

1

1Mean , ; lim , ; d
w

ww
f w f w w

w =→∞
Π = Π   ∫x x . 

(A1) 

The mean defined above, however, is not meaningful since it is equal to one almost everywhere and 

undefined at the locations of points. The former occurs because f(x, w0; Π) is almost independent of 

location x when w0 is large enough, i.e., 

 ( )0
0

1, ;f w
w

Π ≈x . 

(A2) 
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Substituting this approximation into Equation A1, we obtain 
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(A3) 

The second problem occurs because f(x, 0; Π) is the delta functions divided by n at the locations of points, 

i.e., 

 ( ) ( ),0; 0 : if iΠ = ∀ ≠x x z  

(A4) 

and 

 ( ),0; 1f dΠ =∫x
x x  

(A5) 

Density function f(x, w0; Π) is not integrable at w0=0 and thus its mean is not definable at the locations of 

points. 

 The variance of density function f(x, w0; Π) is defined as 
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(A6) 

Substituting approximations A2 and A3 into the first term of the above equation, we obtain 
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(A7) 

The first term of the right hand is undefinable, and consequently, Var[f(x, w0; Π)] is undefinable almost 

everywhere. 


