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Accuracy of Areal Interpolation: A Comparison of Alternative Methods

Abstract

This paper discusses the accuracy of spatial data estimated by areal interpolation. A

stochastic model is proposed which represents areal interpolations in diverse geographic

situations. The model is used to examine the relationship between estimation accuracy

and the spatial distribution of estimation error from a theoretical viewpoint. The analysis

shows that the uniformity in error distribution improves the accuracy of areal

interpolation. Four areal interpolation methods are then assessed through numerical

examinations. From this it is found that the accuracy of simple interpolation methods

heavily depends on the appropriateness of their hypothetical distributions, whereas the

accuracy of intelligent methods depends on the fitness of the range of supplementary data

for that of true distribution.

Keywords: areal interpolation; accuracy; error distribution; stochastic model.
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1. INTRODUCTION

Spatial data, especially socioeconomic data, are often provided in an aggregated

form though they are originally disaggregated. Census data, for instance, are aggregated

across census tracts in order to keep confidentiality of subjects. Landuse data are

sometimes aggregated across administrative units or square lattice for the reduction of

data volume. Since there are a wide variety of zonal systems used for data aggregation, it

is a basic function of GIS to integrate multiple spatial databases having incompatible zonal

systems into one database on a common zonal system.

Integration of spatial data requires a data transfer from one zonal system to another.

This process is called areal interpolation, which is inevitably uncertain to some extent

because it involves data estimation based on arbitrary assumptions on the distribution of

spatial objects. Hence, in order to improve estimation accuracy, numerous areal

interpolation methods have been proposed in the literature (Wright, 1936; Markoff and

Shapiro, 1973; Tobler, 1979; Goodchild and Lam, 1980; Lam, 1983; Flowerdew and

Green, 1991; Rhind, 1991; Goodchild et al., 1993; Burrough and McDonnell, 1998).

Along with the development of new methods, there has arisen a need for

comparison of estimation accuracy between interpolation methods. To meet this demand,

geographers have recently compared the accuracy of areal interpolation methods.

Langford et al. (1991) investigated the accuracy of three areal interpolation methods.

They estimated the population distribution of northern Leicestershire by regression

models where landuse data were used as independent variables. Goodchild et al. (1993)

proposed an interpolation method using ancillary data called "control zones" in which

population density was reasonably assumed to be constant. They employed seven

interpolation methods including their new method to estimate the population of counties in

California and compared the accuracy of estimates.

Most of comparative studies including the above two papers have been performed

on a single geographic situation. Hence it is questionable whether the obtained results

have global applicability (Fisher and Langford 1995). To solve the problem, Fisher,

Langford, and their colleagues have advocated the use of Monte Carlo simulation

(Langford et al., 1993; Fisher and Langford, 1995, 1996; Cockings et al., 1997). Monte

Carlo simulation allows us to test interpolation methods in a variety of geographic

circumstances so that the results have wider applicability. Fisher and Langford (1995),

for instance, discussed estimation accuracy of five interpolation methods considering

diverse combinations of source and target zonal systems. They successfully obtained full

distributions of estimation errors which were valuable information to assess the

interpolation methods.

Unfortunately, Monte Carlo simulation is computationally expensive. The
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computational cost is a serious problem especially in its application to areal interpolation,

because it involves the polygon overlay operation which requires rather complicated

algorithms in GIS. Realization of a number of spatial relationships between source and

target zones requires considerable calculation. Furthermore, estimation accuracy depends

not only on the relationship between source and target zones but also on the distribution

of spatial objects, say, population distribution. Analysis of its effect imposes further

complexity on computation and consequently makes Monte Carlo simulation impractical.

Motivated from the above discussion, we employ a theory-based approach to

compare estimation accuracy among areal interpolation methods. Our approach is based

on a stochastic model that represents diverse geographic situations, and the model

requires far less computational cost than Monte Carlo simulation. In addition to this

advantage, it allows us to discuss theoretically the relationship between estimation

accuracy and areal interpolation methods.

In the following section we outline the process of areal interpolation and propose a

method for analyzing its accuracy. In Section 3 we discuss the relationship between the

accuracy of areal interpolation and the spatial distribution of estimation errors from a

theoretical point of view. In Section 4 we numerically examine the accuracy of four areal

interpolation methods. Finally we summarize the conclusions obtained in this paper with

discussion.

2. AREAL INTERPOLATION MODEL

Areal interpolation is a process of transferring data from one zonal system to

another. Let us consider, for instance, a zonal system shown in Figure 1a. Point objects

such as individual people or households are distributed over the zones, and the number of

point objects is recorded in each zone. A target zone is overlaid on the zones (Figure 1b)

and we want to know the number of points contained in the target zone which is directly

unobservable. In such a case we employ areal interpolation to estimate the number of

points from the source data.

Figure 1. Areal interpolation. a) A zonal system, b) an overlaid target zone. The number

in parenthesis indicates the number of points in each zone.

Areal interpolation can be mathematically represented as follows. In this paper we

focus on the estimation of count data in the union of a source zone S and a target zone T.

Let f(x) be the density function of point objects in S. In usual areal interpolation methods

an estimator function of f(x) is implicitly employed. For instance, the areal weighting

method assumes a constant density in S, that is, it assumes f(x) to be a uniform
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distribution. Pycnophylactic interpolation method uses another smooth continuous

surface (Tobler, 1979). Hence we denote an estimator of f(x) as f̂ x( )  which we call

estimator function (Figure 2). Note that the volume-preserving principle (Lam, 1983)

restricts f̂ x( )  to satisfy

f̂ f
S S

x x x x
x x

( ) = ( )
∈ ∈∫ ∫d d . (1)

For convenience we denote the volume shown above as V hereafter.

Figure 2. A density function f(x) and its estimator function f̂ x( )  in one dimensional case.

In the above setting, the number of points in S∩T and its estimator are given by

M f
S

= ( ) ( )
∈∫ x x x

x
1 d (2)

and
ˆ ˆM f

S
= ( ) ( )

∈∫ x x x
x

1 d , (3)

respectively, where 1(x) is the indicator function of T defined by

1
1

0
x

x
( ) =

∈



if T

otherwise
. (4)

To evaluate the accuracy of areal interpolation, we consider a variety of spatial

relationships between the source and target zones. More explicitly, we assume that the

target zone T is dropped randomly in such a way that it intersects S, given the density

function f(x), its estimator f̂ x( ) , and the shape and size of S and T (similar approach was

employed in Sadahiro, 1998a, 1999b). We call this stochastic process areal interpolation

model. The accuracy of interpolation is measured by the mean square error given by

E dM̂ M E f
S

−( )





= ( ) ( ){ }



∈∫

2 2

1∆ x x x
x

, (5)

where

∆f f fx x x( ) = ( ) − ( )ˆ . (6)

We refer the function ∆f(x) as error distribution function since it represents the spatial

distribution of estimation errors. After a few steps of calculation (see Sadahiro 1998b for

details), we obtain

E d dˆ
' ;

;M M
m T S T

m T f f
SS

−( )





=
∩ ≠ ∅( ) −( ) ( ) ( )

∈∈ ∫∫
2 1

x t x t x t
xt

∆ ∆ , (7)

where m(T; S∩T≠∅ ) and m(T; l) are the measure of the set of all figures congruent to T

intersecting S and that containing two points separated by a distance l, respectively

(Santaló, 1976). These measures are computable by at least numerical calculations

(Sadahiro, 1999a), hence it is possible to compare areal interpolation methods in terms of

estimation accuracy using equation (7).

The above equation, however, is somewhat intractable because the computation of
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m(T; l) often involves complicated geometrical calculations. To obtain a more operational

representation of accuracy, we assume that the target zone T is large enough that the

incircle of T is larger than the circumcircle of S. If both S and T have rounded shapes, the

size of these zones can be almost equal. This assumption seems realistic in areal

interpolation, because S and T are usually convex in a global scale or T is fairly larger

than S (otherwise areal interpolation may yield considerably imprecise estimates).

If the above assumption holds, we can approximate m(T; l) by
m T l A L lT T;( ) ≈ −2 2π , (8)

where AT and LT are the area and perimeter of T, respectively (Stoyan and Stoyan, 1994;

Sadahiro, 1998a). Substitution of equation (8) into equation (7) yields

E d dˆ
' ;

M M
L

m T S T
f fT

SS
−( )





= −
∩ ≠ ∅( ) − ( ) ( )

∈∈ ∫∫
2 2

x t x t x t
xt

∆ ∆ . (9)

Since we are interested in comparing various areal interpolation methods, we keep the

shape and size of S and T fixed hereafter. Then it is enough to consider

I f f
SSε = − − ( ) ( )

∈∈ ∫∫ x t x t x t
xt

∆ ∆ d d (10)

for the purpose of assessing the accuracy of areal interpolation. We call this value error

index, and use it as a measure of estimation accuracy in the following sections.

3. ACCURACY OF AREAL INTERPOLATION AND SPATIAL

DISTRIBUTION OF ESTIMATION ERRORS

As seen in equation (10), the accuracy of areal interpolation depends on the error

distribution represented by ∆f(x). To understand this relationship more deeply, we

investigate how the form of ∆f(x) affects the error index Iε taking some typical examples.

In the following discussion, we focus on a small subregion of S∩T denoted by U

(Figure 3). Keeping ∆f(x) in S∩T\U fixed, we discuss how the form of ∆f(x) in U

affects Iε. The region U is divided into four congruent subregions (not necessarily

squares) U1, U2, U3, and U4, in each of which ∆f(x) has a constant value (Figure 4).

Figure 3 The region U in S∩T.

Figure 4 An example of the error distribution ∆f(x) in U.

3.1 Degree of Estimation Errors

We start with the two cases shown in Figure 5. As shown in the figure, the

absolute value of ∆f(x) in Case 1b is larger than that in Case 1a by d (d>0).

Figure 5 The error distribution function ∆f(x) in U (a>0, b<0).
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We wish to examine in which case estimates are more accurate. Though the answer

is intuitively obvious, it would be meaningful to discuss this question in a theoretical

way.

Let us denote the error index of the Case i as Iε(i). The index Iε(1a) is then written

as

I f f

f f

a K K b K K

a k k k b k k k

ab k

SS

S US U

ε 1

2 2

2 2

2

3 4 1 2

2
33 34 44

2
11 12 22

13

a d d

d d

( ) = − − ( ) ( )

= − − ( ) ( )

− +( ) − +( )
− + +( ) − + +( )
−

∈∈

∈∈

∫∫
∫∫

x t x t x t

x t x t x t

xt

xt

∆ ∆

∆ ∆
\\

++ + +( )k k k14 23 24

, (11)

where

Ki US U i

= −
∈∈ ∫∫ x t x t

xt
d d

\
(12)

and

kij UU ji

= −
∈∈ ∫∫ x t x t

xt
d d . (13)

The index Iε(1b) is also given by a similar equation. Then we have
I I dK dK dK dK

d b a k k

d b a d k k

d a b k k a b d k k

d a b k k d k k

ε ε1 1 2 2 2 2

4

4

4

4

1 2 3 4

11 12

13 14

11 12 13 14

14 11 13 14

b a( ) − ( ) = + − −

+ −( ) +( )
− − −( ) +( )

≈ − −( ) +( ) + − +( ) +( ){ }
= −( ) −( ) + +(( ){ } > 0

. (14)

From equation (14) we obtain
I Iε ε1 1b a( ) > ( ). (15)

This confirms that estimation accuracy increases as the absolute value of the error

distribution function ∆f(x) decreases.

3.2 Uniformity in Error Distribution

We then proceed to the second example shown in Figure 6. Though the sum of

∆f(x) in U is equal in both cases, its spatial allocation is different: in Case 2a the error is

uniformly distributed whereas in Case 2b the error distribution has spatial variation.

Using this example we investigate whether the uniformity of ∆f(x) improves estimation

accuracy.

Figure 6 The error distribution function ∆f(x) in U.
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The difference between Iε(2a) and Iε(2b) is given by
I I dK dK dK dK

d k k

d k k

ε ε2 2 2 2 2 2

4

4 0

1 2 3 4

2
14 11

2
14 11

b a( ) − ( ) = + − −

+ −( )
≈ −( ) >

. (16)

From equation (16) we have
I Iε ε2 2b a( ) > ( ). (17)

Inequality (17) implies that the spatial variation of estimation error increases the error

index Iε. This leads to a conclusion that the uniformity of ∆f(x) improves the accuracy of

areal interpolation.

3.3 Scale of Uniformity in Error Distribution

The analysis of Case 2 suggests that the uniformity is a desirable property of ∆f(x).

The uniformity, however, can be obtained in a variety of scales, from global to local.

Consequently, we next examine which uniformity in ∆f(x) is more desirable, global

(Case 3a) or local (Case 3b).

Figure 7 The error distribution function ∆f(x) in U.

The index Iε(3a) is written as

I f f

f f

a K K b K K

a k k k b k k k

ab k

SS

S US U

ε 3

2 2

2 2

2

2 3 1 4

2
11 14 44

2
22 23 33

12

a d d

d d

( ) = − − ( ) ( )

= − − ( ) ( )

− +( ) − +( )
− + +( ) − + +( )
−

∈∈

∈∈

∫∫
∫∫

x t x t x t

x t x t x t

xt

xt

∆ ∆

∆ ∆
\\

++ + +( )k k k13 24 34

. (18)

The index Iε(3b) is also given by a similar equation. The difference of the indices is given

by
I I a b K K

k k a ab b

k k a b

ε ε3 3 2

2 2

2

2 4

14 12
2 2

14 12
2

b a( ) − ( ) = −( ) −( )
+ −( ) − +( )

≈ −( ) −( )

. (19)

If a≠b then equation (19) is positive. Thus we have
I Iε ε3 3b a( ) > ( ) . (20)

Inequality (20) suggests that the global uniformity is more desirable than the local

uniformity. Areal interpolation should be performed so that f̂ x( )  fits globally for f(x).

From the above analyses, we obtained some desirable properties of areal



7

interpolation methods. The first analysis showed that the estimation accuracy increases as

the absolute value of the error distribution function ∆f(x) decreases. This is an intuitively

understandable result because Iε increases in proportion to the square of ∆f(x) as shown

in equation (10). In the second analysis we found that the uniformity of ∆f(x) improves

estimation accuracy. This implies that local but serious estimation error may considerably

reduce estimation accuracy. The third analysis showed that the global uniformity is more

important than the local uniformity in terms of estimation accuracy. These results can be

summarized as shown in Figure 8.

Figure 8 The error distribution function ∆f(x) and estimation accuracy.

4. NUMERICAL EXAMINATIONS

In the previous section we have investigated the relationship between the accuracy

of areal interpolation and spatial distribution of estimation errors. Since we employed a

theory-based method in the analysis, the obtained results are rigid and deepen our

understanding of areal interpolation. On the other hand, since no specific interpolation

method was referred in the discussion, one might think that the results are abstract and

difficult to apply to the choice of areal interpolation methods. Hence in this section we

analyze the accuracy of areal interpolation in a more concrete way. To this end, we

numerically evaluate four areal interpolation methods that are widely used in geography

and GIS using the areal interpolation model proposed in Section 2.

We adopt a circle of radius 1.0 as the source zone S. This is because the circle is a

good approximation of convex figures in terms of the accuracy of areal interpolation

(Sadahiro 1999b). The representative point is located at the center of S whose locational

vector is indicated by z (Figure 9). For the volume V, we try both 1/2π and 2π.

Figure 9 The source zone S and its representative point.

4.1 Areal Interpolation Methods

In numerical examinations we consider four methods of areal interpolation: 1) areal

weighting, 2) point-in-polygon, 3) kernel, and 4) intelligent methods. The first three

methods are often called simple methods in contrast to intelligent methods which use

supplementary data in estimation process. We successively outline these methods with the

representation of the estimator function f̂ x( )  (for derivations of f̂ x( ) , see Sadahiro,

1998b).

(1) Areal weighting method
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The areal weighting method is one of the most popular simple methods, which is

frequently used when no information is available on the distribution of spatial objects.

This method assumes that spatial objects are uniformly distributed in the source zone

(Figure 10a). Consequently, the estimator function f̂ x( )  is written as

f̂
f VSx

x x
x( ) =

( )
=∈∫ d

π π
. (21)

(2) Point-in-polygon method

In GIS the number of spatial objects in a zone is often recorded as an attribute of the

representative point of the zone. The point-in-polygon method sums up all the counts

allocated to representative points that are included in the target zone (Okabe and Sadahiro,

1997; Sadahiro, 1998a). This implies that the method assumes all the spatial objects to be

located exactly on the representative point (Figure 10b). Hence the estimator function

f̂ x( )  is given by a delta function which is represented as the equation

ˆ ,

,
f

V

r
C r

C r
x x z

x z
( ) = ∈ ( )

∉ ( )






π 2

0
(22)

in the limit r→0, where C(z, r) is the circle of radius r whose center is located at z.

(3) Kernel method

Kernel method is originally a statistical method used for nonparametric density

estimation (Silverman, 1986; Scott, 1992). However, it is also applicable to areal

interpolation when the locational data of representative points are available (Bracken and

Martin, 1989, 1995; Bracken, 1993). Kernel method treats the representative point as a

"high information point," that is, it assumes point objects to be clustered around the

representative point. The probability density function called kernel is placed on the

representative points to create a smooth surface.

There have been proposed various kernel functions in the literature. From these

functions we choose the conical kernel for numerical examinations (Figure 10c).

Mathematical representation of f̂ x( )  is somewhat complicated because of the volume-

preserving principle. Suppose that the slope of the cone λ  is given. The estimator

function f̂ x( )  is then represented as follows:

              if 
1
3

πλ < V  then

f̂ Vx x z( ) = +



 − −1 2

3π
πλ λ , (23)

              otherwise,
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f̂
V

if
V

otherwise
x x z x z( ) = − − − ≤







3 3

0

2

3 3
λ
π

λ
πλ . (24)

For the value of λ we try 1.0, 3.0 and 5.0.

(4) Intelligent method

As GIS and remotely-sensed satellite images become widely available, new areal

interpolation methods called intelligent methods have been developed (Fisher and

Langford, 1995, 1996; Langford et al., 1991; Goodchild et al., 1993). They use

supplementary data such as satellite images or landuse data in areal interpolation to

improve estimation accuracy.

Intelligent methods can be described mathematically by use of a supplementary

function ϕ (x) which represents additional data. Let us consider, for instance, the

dasymetric method which is often used for population estimation. Using landuse data this

method divides a source zone into subregions in each of which population density is

assumed to be constant. Typically, a source zone is divided into two subregions, that is,

residential and non-residential areas. In this case the function ϕ(x) is written as a binary

function

ϕ x
x

( ) =
∈




1

0

if R

otherwise
, (25)

where R indicates the residential area. The estimator function f̂ x( )  is then given by

f̂ V

S

x
x

x x
x

( ) = ( )
( )

∈∫
ϕ
ϕ d

. (26)

Since population density is highly correlated with landuse category, equation (25) may be

represented as

ϕ
α

x
x( ) =

( ) ≥



1

0

if f

otherwise
, (27)

where α is the lower limit of the population density of residential areas.

If more than two landuse categories are distinguishable, ϕ(x) is given by a stepwise

function
ϕ x x( ) = ∈k if Li i (28)

(Figure 10d), where Li  indicates the type i landuse area. Substituting equation (28) into

equation (26), we obtain the estimator function f̂ x( ) .

Linear regression models can be regarded as the case where the ϕ(x) is a linear

function of f(x) having a probabilistic error term ε, that is,

ϕ α β εx x( ) = + ( ) +f . (29)

Non-linear regression models can also be represented in a similar way.
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In numerical examinations, we try three forms of the supplementary function ϕ(x)

as follows.

Method I1: ϕ1

1 1

0
x

x( ) =
( ) ≥




if f

otherwise
(30)

Method I2: ϕ2

1 1

2 3 1 2 3

1 3 2 3 1 3

0 1 3

x

x

x

x

x

( ) =

( ) ≥
> ( ) ≥

> ( ) ≥
> ( )










if f

if f

if f

if f

/ /

/ / /

/

(31)

Method I3: ϕ3

3 3

2 3 2

1 2 1

0 1

x

x

x

x

x

( ) =

( ) ≥
> ( ) ≥
> ( ) ≥

> ( )










if f

if f

if f

if f

(32)

If ϕ(x)=0 for any x, we redefine the function as

ϕ x( ) = k . (33)

In this case the intelligent method is equivalent to the areal weighting method.

Figure 10 Estimator functions of areal interpolation methods. a) Areal weighting, b)

point-in-polygon, c) kernel, and d) intelligent methods.

4.2 Results

In order to assess the accuracy of the above interpolation methods, we employ four

types of point distributions as f(x): 1) cylinder, 2) conical, 3) annular, and 4) linear

distributions (Figure 11). The results of numerical examinations are successively

described in the following.

Figure 11 Forms of the function f(x). a) Cylinder, b) conical, c) annular, and d) linear

distributions.

(1) Cylinder distribution

Equation (10) and the results obtained in Section 3 indicate that areal interpolation

yields better estimates if the estimator function is close to the true distribution.

Consequently, for instance, the point-in-polygon and kernel methods are expected to give

better results when point objects are clustered around the representative point. To confirm

this we examine how the degree of concentration affects the accuracy of estimates using

the cylinder distribution, a typical concentrated distribution of point objects. The radius of

the cylinder indicated by r changes from 0 to 1 as shown in Figure 12. The height of the

cylinder is denoted by h.
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Figure 12 Cylinder distributions.

The relationship between the radius r and estimation accuracy is depicted in Figure

13. The results are quite consistent with our intuition. As the distribution becomes

concentrated estimation accuracy of the point-in-polygon method linearly increases

whereas that of the areal weighting method decreases. The kernel methods are in the

middle of these methods. The accuracy of the intelligent methods is noteworthy: the error

index Iε is nearly always zero. This is because the stepwise functions assumed in the

intelligent methods fit locally-uniform distributions.

Figure 13 Estimation accuracy on the cylinder distribution. r: the radius of the cylinder. h:

the height of the cylinder. Ki: the kernel method of λ=i. Ii: the intelligent method of the

function ϕi(x). a) V=1/2π, b) V=2π.

(2) Conical distribution

We next discuss the conical distribution as another example of centralized

distributions. The slope of the cone denoted by m increases gradually from 0 to 100

(Figure 14). The height of the cone is indicated by h.

Figure 14 Conical distributions.

The results are shown in Figure 15. Concerning the areal weighting and point-in-

polygon methods the results are quite understandable as in the case of the cylinder

distribution. On the other hand, it is counterintuitive that the intelligent methods do not

always give the best result among the four interpolation methods. For instance, let us take

a look at Figure 15a-2. When the slope m is between 1 and 2, the intelligent methods I1

and I3 are far less accurate than the areal weighting and kernel methods. The intelligent

methods do not suit the gently-sloping distribution, though they work successfully for the

distribution of a steep slope (see Figures 15a-1 and 15b-1). This can be partly understood

by looking carefully at Figure 15b-2. When the cone height h is around 5.0, the

intelligent method I3 whose boundary values are 1.0, 2.0, and 3.0 (recall equation (32))

gives better estimates than I1 and I2 having boundaries of smaller values. For h=2.1,

however, I3 is the least accurate among the intelligent methods. From this we can say that

estimation accuracy of the intelligent methods depends on the fitness of the range of the

stepwise function ϕ(x) for that of the density function f(x). They yield poor estimates if

the boundaries of ϕ(x) do not agree with the range of f(x).
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Another counterintuitive result is also found in Figure 15b. The intelligent method

I2 is less accurate than I1 for h>4.0, though I2 has a finer stepwise function than I1. This

is also caused by the lack of agreement between the ranges of ϕ(x) and f(x). The fineness

of the stepwise function sometimes makes areal interpolation less accurate, if the ranges

of supplementary data and true distribution do not agree.

One might think it strange that the intelligent methods yield the best estimates for

very large h, say, h=20.0. In such a case, however, f(x) is equal to zero in almost

everywhere so that the boundary setting of ϕ(x) scarcely affects the estimation accuracy.

Figure 15 Estimation accuracy on the conical distribution. m: the slope of the cone. h: the

height of the cone. Ki: the kernel method of λ=i. Ii: the intelligent method of the function

ϕi(x). a-1) V=1/2π, a-2) V=1/2π (magnified), b-1) V=2π, b-2) V=2π (magnified).

(3) Annular distribution

Contrary to the previous two distributions we next consider a disconcentrated

distribution, that is, the annular distribution. Using this distribution we analyze the

relationship between the degree of discentralization and the estimation accuracy of areal

interpolation. The radius of the hole indicated by r changes from 0 to 1 as shown in

Figure 16. The height of the annulus is denoted by h.

Figure 16 Annular distributions.

 The results are shown in Figure 17. It depicts that the simple methods fail to give

accurate estimates when point objects are distributed along the edge of the source zone.

This is obviously because the annular distribution is quite different from the distribution

assumed in the simple methods. Only the intelligent methods yield satisfactory results for

the annular distribution. The results warn us that it is quite dangerous to assume blindly

an arbitrary distribution in areal interpolation.

Figure 17 Estimation accuracy on the annular distribution. r: the radius of the hole. h: the

height of the annulus. Ki: the kernel method of λ=i. Ii: the intelligent method of the

function ϕi(x). a) V=1/2π, b) V=2π.

(4) Linear distribution

 We finally examine the linear distribution. This type of monotonous distribution,

though not necessarily linear, is often found in global population distribution. The slope

indicated by m changes from 0 to V/π as shown in Figure 18.



13

Figure 18 Linear distributions.

The results shown in Figure 19 are similar to those in Figure 17 in that the simple

methods are generally inaccurate. Estimation accuracy of the simple methods

monotonously reduces with an increase of m. On the other hand, the intelligent methods

yield better estimates for any m. Among the intelligent methods, I1 and I2 are better than

I3 for h<2.6 (Figure 19b), whereas I3 is better for larger h. This tendency was also found

in the conical distribution case (Figure 15b), which is caused by the disagreement

between the ranges of ϕ(x) and f(x) as discussed earlier.

Figure 19 Estimation accuracy on the linear distribution. m: the slope of the linear

distribution. h: the height of the distribution. Ki: the kernel method of λ=i. Ii: the

intelligent method of the function ϕi(x). a) V=1/2π, b) V=2π.

5. CONCLUDING DISCUSSION

In this paper we have analyzed the accuracy of areal interpolation from both

theoretical and empirical viewpoints. To keep generality in the analysis, we first

developed a stochastic process which we call areal interpolation model that represents

areal interpolation in diverse geographical situations. We then proposed a measure of

estimation accuracy called error index on the basis of the model.

The results obtained from theoretical considerations in Section 3 can be summarized

as follows: 1) estimation accuracy improves as the error at individual locations decreases;

2) estimation accuracy improves as the error distribution becomes smooth and uniform; 3)

the global uniformity in the error distribution is more important than the local uniformity

in terms of estimation accuracy. Though the first conclusion is not surprising, the second

and third results are useful for the evaluation of areal interpolation methods. The spatial

uniformity in the error distribution, or the global fitness of estimator function, is a

desirable property of areal interpolation methods.

From numerical examinations we obtained the following results: 1) intelligent

methods are generally more accurate than simple methods; 2) estimation accuracy of

simple methods heavily depends on the appropriateness of their hypothetical distributions;

3) estimation accuracy of intelligent methods depends on the fitness of the range of

supplementary data for that of true distribution; 4) if the ranges do not agree, intelligent

methods may yield poorer estimates than simple methods.

The above results are quite suggestive for the choice of areal interpolation methods.

However, they are clearly limited in several aspects. We finally discuss the limitations of
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this paper for further research.

First, the effects of the shape and size of the target and source zones are remained

to be analyzed. We have fixed these factors throughout the analysis in order to focus on

how the relationship between two spatial distributions, one is actual and the other is

assumed in areal interpolation, affects estimation accuracy. Though the influence of this

relationship is quite significant, geometrical properties of spatial units are also important.

Concerning the areal weighting method, their effects on estimation accuracy were

numerically investigated (Sadahiro, 1999b). However, the study was limited to one

interpolation method, so accuracy of other methods should be analyzed in relation to

geometrical properties of zones.

Second, we have discussed the accuracy of areal interpolation only for a pair of

source and target zones. This allows us to examine the relationship between estimation

accuracy and error distribution from a theoretical point of view. However, there is a clear

demand for theoretical analysis in more realistic situations - a combination of multiple

source and target zones. Though it is quite difficult to discuss estimation accuracy

keeping generality in complicated geographical circumstances, the difficulties have to be

overcome in future research.

Third, there still remain areal interpolation methods not examined in this paper. For

instance, the Poisson regression method (Flowerdew and Green, 1989) and the

pycnophylactic method (Tobler, 1979) should also be tested. Since they involve a

convergence calculation in estimation process, the first step to assess their accuracy is to

analyze the properties of the estimator function yielded from convergence calculation.

Once the estimator function is given in an analytical form, their accuracy can be evaluated

by the method proposed in this paper.
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