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Abstract 

 

We develop a kernel density estimation method for estimating the density of points on a network 

and implement the method in the GIS environment. This method could be applied to, for instance, 

finding ‘hot spots’ of traffic accidents, street crimes or leakages in gas and oil pipe lines. We first 

show that the application of the ordinary two-dimensional kernel method to density estimation 

on a network produces biased estimates. Second, we formulate a ‘natural’ extension of the 

univariate kernel method to density estimation on a network, and prove that its estimator is 

biased; in particular, it overestimates the densities around nodes. Third, we formulate an 

unbiased discontinuous kernel function on a network, and fourth, an unbiased continuous kernel 

function on a network. Fifth, we develop computational methods for these kernels and derive 

their computational complexity. We also develop a plug-in tool for operating these methods in 

the GIS environment. Sixth, an application of the proposed methods to the density estimation of 

bag-snatches on streets is illustrated. Lastly, we summarize the major results and describe some 

suggestions for the practical use of the proposed methods. 
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1. Introduction 

The objectives of this study are: to formulate a kernel density estimation method for estimating 

the density of points on a network; to develop its computational method; to construct a GIS-

based tool for executing the method; and lastly, to show its actual application. 

 

The potential demand for this method is large, because in the real world there are numerous 

events that can be analyzed in terms of the density of points on a network. Examples include car 

crashes on streets, animal roadkills on forest roads, urban crime sites, tree spacing along the 

roadside, seabirds located along a coastline, beaver lodges in a watercourse, levee crevasse 

distribution on river banks, leaks in gas and oil pipelines, breaks in a wiring network, and 

disconnections on the Internet. In addition to these events, another broad class of events that can 

be represented by the density of points on a network is the class of those events that occur 

alongside rather than directly on a network such as facilities located alongside street networks 

within densely inhabited areas. For instance, the entrances to almost all facilities in a city are 

adjacent to a street and users access amenities through these. Consequently, the distribution of 

almost all facilities within an urbanized area can be represented by the distribution of points on 

networks. 

 

Although there is a great amount of potential demand for analyzing these events, few methods 

had been developed until recently. There were several reasons for this delay: detailed point-

location data on networks, such as traffic accident spots on street networks, were not easily 

available; managing network data was difficult; and computation on a network was much harder 

than on a plane. In recent years, these technical difficulties have been resolved to a great extent 

by easily accessible detailed spatial data through the Internet and user-friendly Geographical 

Information Systems (GISs) that manage network data. However, theoretical methods for spatial 

analysis on networks are far behind these advances, although some initial studies are found in the 

literature (Miller, 1994; Okabe et al., 1995; Okabe and Yamada, 2001; Spooner et al., 2004; 

Decker, 2005; Yamada and Thill, 2004; Lu and Chen, 2006; Xu and Sui, 2007; Yamada and Thill, 

2007; ABC). Because of the lack of theoretical methods, researchers analyze the above events 

with methods that may lead to misleading conclusions (Yamada and Thill, 2004; Lu and Chen, 

2006). Practitioners, such as traffic managers and police officers, would also appreciate theory-

based tools for precise detection of ‘hot spots’ or ‘black spots’ of traffic accidents and street 

crimes (Okabe et al., 2000a, b). 

 

One of the most frequently demanded methods for analyzing the above types of event is a 
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method for estimating the density of points on a network. A convenient method in practice is as 

follows. First, we apply the ordinary two-dimensional kernel density estimation method to points 

on a plane in which a network is embedded, and estimate the two-dimensional density. Second, 

we derive the density of points on the network from the density along the line segments forming 

the network, that is, the vertical intersection of the density surface along the line segments. 

However, Satoh and Okabe (2005) showed that this estimation produces a bias, because when 

points are distributed according to a uniform distribution on a network, the density estimated by 

the above method does not produce a uniform distribution. A few attempts at density estimation 

on a network can be found in the literature. Flahaut et al. (2003) developed a kernel density 

estimation method on a simple network, but the network is very simple, i.e., a line. Borruso 

(2004, 2005) dealt with density estimation on a network using GIS, but did not explicitly discuss 

the bias of the estimator. We formulate three types of kernel function on a network, and explicitly 

examine whether the estimators using those functions are biased or unbiased. The method can be 

used extensively for analyzing the events mentioned above, in particular, street crime analysis 

and traffic accident analysis. 

 

This paper consists of seven sections including this introductory section. Section 2 fixes a 

general framework commonly used throughout this paper. Section 3 formulates a ‘natural’ 

extension of the ordinary kernel function on a plane to a network. Because this extension is 

likely to yield misleading conclusions, we develop two types of kernel functions on a network: a 

discontinuous kernel function in Section 4 and a continuous kernel function in Section 5. In 

Section 6 we derive the computational complexity of these functions and develop a GIS-based 

tool. Using this tool, we demonstrate in Section 7 an actual application to the density estimation 

of bag-snatches on streets in Kyoto. The last section summarizes the major results and refers to 

an unsolved problem. 

 

2. General framework 
We consider a connected finite network N  = ( , )V L  embedded in a plane, consisting of a set of 

nodes, V , and a set of links, L . The network N  is assumed to be planar (i.e., links in L  do not 

intersect each other except at nodes in V on a plane), and nondirected (i.e., links are two-way). 

Let L�  be the union of all links in L  including the nodes in V  (note that L�  is sometimes referred 
to as the set of points constituting L� ). For an arbitrary point y  on L� , we construct a subset, yL , 

of L�  in such a way that the shortest-path distance between y  and any point on yL  is less than or 

equal to h  (the heavy line segments in Figure 1). For an arbitrary y , we define a function, 

)(xK y , satisfying 
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)(xK y ≥ 0 for x ∈ yL , 

= 0 for x ∈ \ yL L� ,      (1) 

∫
∈ yLx

y xxK d)(  = 1,      (2) 

 
where \ yL L�  in equation (1) means the complement of yL  with respect to L� , and the integral 

over yx L∈  in equation (2) means the integral along the all line segments of yL . 

 

 
Figure 1: Kernel functions with centers at y  and y′  on L�  of N . 

 
We refer to the function )(xK y  as a kernel function at y ; y  as the kernel center of )(xK y ; yL  

as the kernel support of )(xK y ; and h  as a bandwidth. The form of the function )(xK y  may 

vary from location y  to location y ′ , or may not. The kernel support may be a line segment, a 

tree or it may include cycles (the heavy lines in Figures 1 and 2). 

 

 
   (a)          (b)         (c)          (d) 

Figure 2: Various types of kernel support 

 

Suppose that n  points, nyy ,,1 … , are independently distributed on L�  according to an unknown 

probability density function )(xf  defined on L� , and let 
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We call the value of )(xK  the kernel estimator for )(xf  at x , and the estimation of )(xf  by 

)(xK  the kernel density estimation method or the kernel method for short. The objective of this 

study is to develop a kernel method for estimating the density of points on a network. 

 

One might notice from Figure 2a that the kernel method for univariate probability density 

functions (referred to as the univariate kernel method) can be applied to estimating part of the 
probability density function )(xf  on a network. This is true for Figure 2a, but it is not true for 

Figures 2b, c and d, where the degree of a node (i.e., the number of links meeting at the node) is 
three or more. To treat the cases in Figure 2 separately, we consider the subset )1(V  of the nodes 

of V  with degree one (the white circles in Figure 3) and the subset )3(≥V  of the nodes of V  with 

degree three or more (the black circles in Figure 3). We construct the ith subset of L� , denoted by 

iL )1( , in such a way that the shortest-path distance between the ith node of )1(V  and any point on 

iL )1(  is less than or equal to 2 h ; similarly, we construct the ith subset of L� , denoted by iL )3(≥ , in 

such a way that the shortest-path distance between the ith node of )3(≥V  and any point on iL )3(≥  is 

less than or equal to 2 h  (the heavy lines in Figure 3). Then the complement of ∪i iL )1(  and 

∪i iL )3(≥  with respect to L� , i.e., SL  = L� \ {∪i iL )1( ∪ ∪i iL )3(≥ }, consists of simple line segments 

(the hairlines in Figure 3). 

 
Figure 3: Three types of subsets of L� : iL )1( , iL )3(≥  and SL . 

 
We can apply the univariate kernel method for density estimation to each line segment in SL . 

Note that in this case, we can use as observed points not only those on these line segments but 

also those on the buffer zone line segments with width h  (the hairlines in Figure 4a) that are 

included in L� . Because the kernel functions with centers outside the extended line segments (the 
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heavy line segment and the hairline segment in Figure 4a) do not affect the density estimation at 

a point on the line segment (the heavy line in Figure 4a), we do not encounter the edge problem 
for SL . 

 

 

(a)    (b) 
Figure 4: The edge problem does not exist for SL  but does for iL )1( . 

 
However, when we apply the univariate kernel method to line segments in )1(L  (e.g., 1)1(L  in 

Figure 3), we do encounter the edge problem, because the broken line in Figure 4b does not exist 

in L� . Many methods for treating the edge problem have been proposed in the literature of the 
univariate kernel method, and those methods can be applied to )1(L  (see among others Devroye 

and Gyorfi (1985); Eggermont and LaRiccia (2001); Scott (1992); Silverman (1986); Tapia and 

Thompson (1978)). 

 
The density estimation for ( 3)iL ≥  is completely different from the univariate kernel method and 

there are few studies of it in the literature. This estimation is particularly important for spatial 

analysis on networks, because many events, such as traffic accidents, tend to occur around 

intersections, and unbiased estimators are indispensable. Therefore, we focus on the density 
estimation on ( 3)iL ≥ . 

 
The kernel method must estimate an unknown probability density function )(xf  using the given 

observed points, nyy ,,1 … , without parameters (i.e., nonparametric estimation); the function is 

not specified. However, in spatial analysis, we often start with the complete spatial randomness 

(CSR) hypothesis; that is, points are assumed to be independently distributed on L�  according to 

the uniform probability density function, i.e., 

)(xf  = 1
| |L�

, x L∈ � ,      (4) 

 

where | |L�  denotes the total length of the links forming the network N . If points are actually 

generated according to this distribution, kernel estimators are expected to produce the uniform 

probability density; otherwise, the kernel estimators produce a bias, which is defined by: 

 

h h hh2
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)()]([E)( xfxKxB −= ,     (5) 

 

where E is the expectation operator. 

 
For a general function )(xf , the expected value of )(xK  is obtained from 

 

E[ ( )] ( ) ( )dy
y L

K x K x f y y
∈

= ∫
�

.     (6) 

In theory, we can generally examine whether or not an estimator is unbiased using this equation 
(i.e., E[ ( )K x ] = )(xf ), but in practice, the derivation of this integral is very hard without 

specifying the form of )(xf  for ( 3)iL ≥ . Therefore, in this study, as a first step, we attempt to find 

unbiased kernel functions when )(xf  is given by the uniform probability density function 

(equation (4)), i.e., one of the most fundamental hypotheses in spatial analysis. This way of 

examination is similar to that of the ordinary krigging method, where the expected value (bias) 

and variance are derived under the assumption that an unknown density is specified as uniform 

over space (Cressie, 1991, Section 3.2). 

 

Many possible kernel functions can be defined on a network. They may be characterized by the 

following properties. 

 
Property 1 (unimodal): )(xK y  is unimodal. 

Property 2 (modal point = center): The modal point of )(xK y  is at y . 

Property 3 (continuous): )(xK y  is continuous with respect to x . 

 

One might consider that these properties (Figure 5a) are ‘desirable’. In fact, frequently used 

univariate kernel functions satisfy these properties, perhaps because space on a line is isotropic 
(i.e., no difference between directions). However, space on ( 3)iL ≥  is not isotropic. In fact, as 

illustrated in Figure 5, the space on the right-hand side and that on the left-hand side of y  are 

qualitatively different: on the left-hand side, a line splits into two lines at the intersection. If we 

consider this nonisotropic property, Properties 2 and 3 are not always ‘desirable’ for kernel 
functions on ( 3)iL ≥ . Reflecting this nonisotropy around nodes, the modal point may not be at y  

(Figure 5b) or a kernel function may be discontinuous at a node (Figure 5c). 
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(a)     (b)    (c) 

Figure 5: Three types of kernel function: (a) the kernel center coincides with the modal point; (b) 

the kernel center does not coincide with the modal point; (c) the kernel function is discontinuous 

at a node. 

 
Most univariate kernel functions are symmetric at y , but we cannot use the same concept for 

kernel functions on the kernel support ( 3)iL ≥ , because the kernel support is a tree or it may 

include cycles, which are not symmetric. However, we may consider these functions ‘symmetric’ 
in the sense that values at the same distance from the kernel center y  are the same, i.e.: 

 
Property 4 (equal-distance/equal-density): For x  and x′  ( xx ′≠ ) on iL )3(≥ , if the shortest-path 

distance ),( yxd  between x  and y  is the same as that ),'( yxd  between x′  and y , i.e., ),( yxd  

= ),'( yxd , then )(xK y  = )(xK y ′  (Figure 6). 

 

 

 
Figure 6: Property 4 (equal-distance/equal-density property). 

 
In panels (a) and (b) in Figure 7, the shape of the kernel support yL  and that of 'yL  are the 

‘same’ except for the angles between links ( 'θθ ≠ ). In such a case, it seems to be appropriate to 

assume that the shape of the kernel function is invariant with respect to an angle. Stated a little 

more explicitly: 

 

Property 5 (invariant with respect to a vertex angle): If the graph consisting of a node and links 
in yL  is isomorphic to the graph consisting of a node and links in 'yL , and if the length of each 

link in yL  and that of its corresponding link in 'yL  are the same, then the equation )(xK y  = 

( )yK x′ ′  holds for a point x  on yL  and its corresponding point 'x  on 'yL . 

 

y y y

h h

h
x'x
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Figure 7: Property 5 (invariant with respect to an angle). 

 
Property 6 (symmetric with respect to two kernel centers): The kernel function )(xK y  is 

symmetric with respect to x  and y , i.e., 

 
( ) ( )y xK x K y=  for ,x y L∈ � .     (7) 

 
This property means that the value of the kernel function ( )yK x  at x  is the same as that of 

( )xK y  at y  (Figure 8). 

 

 
Figure 8: Property 6 (symmetric with respect to two kernel centers). 

 

The above properties are all geometrical properties of kernel functions. Last, we add an 

important statistical property. 

 
Property 7 (unbiased): The estimator )(xK y  is unbiased, i.e., ( ) 0,B x x L= ∈ �  for the uniform 

density function ( )f x  given by equation (4). 

 

In the subsequent three sections, we formulate three types of kernel function on a network in 
terms of a function, ( )k x , defined on the real axis R that satisfies: 

 
(i) ( ) ( )k x k x= −  for any Rx∈ ; 

(ii) ( )d 1k x x
∞

−∞
=∫ ; 

(iii) For a positive real h , ( ) 0k x =  if | |x h≥ , and ( ) 0k x >  if | |x h< ; 

(iv) ( )k x  is nonincreasing for 0 x≤ < ∞ ; 

(v) ( )k x  is continuous with respect to x . 

θ 'θ θ≠

y

x x′
y

y x

( )yK x( )xK y
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We call this function the base kernel function. The base kernel function satisfies Properties 1, 2, 

3, 4 and 7 (Properties 5 and 6 are not applicable). 

 

3. The class of ‘similar’ shape kernel functions 

In estimating a univariate probability density function, we usually use a unimodal, symmetric 
and continuous kernel function )(xK y  (Properties 1, 2, and 3 in Section 2), and its shape does 

not change with respect to the location of its kernel center y . One might also wish to use this 

type of kernel function for density estimation on a network N , and such a kernel function can be 
applied to the line segments in SL  (the hairlines in Figure 3). However, it cannot be applied to 

the density estimation on ( 3)iL ≥ , because the kernel support, usually a tree form, changes 

according to its kernel center y . Yet, one might wish to use the ‘similar’ shape kernel function 

)(' xK y  as shown in Figure 9a, where the shape of )(' xK y  along lines 2l  and 1l  and that along 3l  

and 1l  are the same as the shape of the base kernel function ( )k x  (Figure 9b). However, the 

function )(' xK y  violates equation (2), because the integral of )(' xK y  with respect to x  over 

iL )3(≥  is more than unity. To make it unity, )(' xK y  is multiplied by a scaling factor )(yc  so that 

the integral of )(yc )(' xK y  over its kernel support is unity (Figure 9c). 

 

 

(a)        (b)    (c) 
Figure 9: A function (a) with shapes along 1l  and 2l  (or 3l ) that are the same as that of the base 

kernel function (b), and a function (c) with a shape along 1l  and 2l  (or 3l ) that is similar to that of 

the base kernel function. 

 
To formulate this ‘similar’ shape kernel function mathematically, we consider ( 3)iL ≥  consisting of 

n  links, 1,..., nl l  meeting at v  as in Figure 10a, and the path consisting of il  and 1l  through v  

(e.g., the heavy lines in Figure 10a). We indicate a point x  (a location vector) on the path by the 

point x  (a location scalar) on the real-value axis in Figure 10b (where the origin of the axis 

corresponds to v ). 

 

 

1l
2l

3l

1l
2l

3l
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(a)           (b) 

Figure 10: Links meeting at a node and the ‘similar’ shape kernel function shown on the real-
value axis representing il  and 1l  (e.g., the heavy line segments 2l  and 1l ). 

 
On the axis formed by il  and 1l  ( 2,...,i n= ), we can define the ‘similar’ shape kernel function 

( )yK x  as 

 
( )yK x  = ( )k x y−  for | |y h≥  ( 1l ),    (8) 

( )yK x  = ( )c y ( )k x y−  for 0 | |y h≤ ≤  ( 2 ,..., nl l )   (9) 

 

(Figure 10b), where 

( )c y  = 0
1

1 ( 2) ( )d
y h

n k x y x
−

+ − −∫
 for 0 y h≤ ≤  ( 1l ),  (10) 

0

1

1 ( 2) ( )d
y h

n k x y x
+

+ − −∫
 for 0h y− ≤ ≤  ( 2 ,..., nl l ). 

 

Because the denominator of equation (10) is larger than unity, we obtain the relation 

 
0< ( )c y <1 for hy <|| .     (11) 

 
As can be seen from equations (8) and (9), the kernel function ( )yK x  is ‘similar’ in the sense 

that the shape of ( )yK x  along il  and 1l  ( 2,...,i n= ) is similar up to a scaling factor ( )c y  to the 

base kernel function ( )k y x− . 

 
Since the integral on the domain 0≤≤− xhy  (or hy ≤≤0 ) in equation (10) (the shaded area in 

Figure 10) decreases (or increases) as y  increases for hy <<0  (or 0<<− yh ), we obtain the 

relation 

 

0y h− y h y h+1l
2l

3l
4l

v

( )k x h−( ) ( )c y k x y−
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d ( ) 0
d
c y

y
>  for hy <<0 ; d ( ) 0

d
c y

y
<  for 0<<− yh .  (12) 

 

The ‘similar’ shape kernel function is a natural extension of the univariate kernel function and 

many researchers are tempted to use it for density estimation on a network. If the ‘similar’ shape 

function is unbiased, that would be correct. However, we now show that this function is biased. 
To this end, we derive the expected value of ( )yK x  at x  with respect to y  on the network. 

Noticing that placing the kernel function at a point y  in | |x y h− >  does not affect the expected 

value at x , we consider only the part of the network in which | |x y h− ≤ . Because the shape of 

( )yK x  changes qualitatively at a node (the origin in Figure 11), we divide 0≤ x ≤ 2h  into two 

intervals: h ≤ x ≤ h2  (Figure 11a) and 0≤ x ≤ h  (Figure 11b). 

 

 
(a)     (b) 

Figure 11: Derivation of the expected value of ( )yK x  with respect to y  when (a) h ≤ x ≤ h2  

and (b) 0≤ x ≤ h . 

 
In the former interval, the kernel function ( )yK x  is effective on x  if x h y x h− ≤ ≤ + , and the 

shape of the kernel function qualitatively changes at h . Therefore, the expected value of ( )yK x  

with respect to y  in x h y x h− ≤ ≤ +  is obtained from 

 

E( ( )yK x ) = ( ) ( )d
h

x h
c y k x y y

−
−∫ + ( )d

x h

h
k x y y

+
−∫ .   (13) 

 

Because relations (11) and (12) hold, the expected value has the following properties for x  in 

h < x < h2 . 

 
E( ( )yK x ) < 1,      (14) 

dE( ( ))
d

yK x
y

 > 0.     (15) 

 

This implies that the kernel estimator is biased at x  when h < x < h2 . 

0 h 2hx
x h− x h+

0 h 2hx
x h− x h+
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In the interval 0 < x  < h , noticing that the form of the kernel function changes qualitatively at 0 
and h , we obtain the expected value of ( )yK x  at x  with respect y  from 

 

E( ( )yK x ) = ( )d
x h

h
k x y y

+
−∫ +

0
( ) ( )d

h
c y k x y y−∫ + )1( −n

0
( ) ( )d

x h
c y k x y y

−
−∫ . (16) 

 

From this equation and equations (10)–(12), we obtain 

 

E( (0)yK ) = 
0

( ) (0 )d
h
c y k y y−∫ + )1( −n

0
( ) (0 )d

h
c y k y y

−
−∫  

> 
0

(0) ( )d
h
c k y y∫ + )1( −n

0
(0) ( )d

h
c k y y∫  = 

n
2

2
1 + )1( −n

n
2

2
1  = 1.  (17) 

 

Therefore, the kernel function is biased not only when h  < x  < h2  but also when 0 < x  < h  

(except at a point). Figure 12 illustrates the case that the base kernel function ( )k x  is given by 

the Epanechinikov (1969) function, i.e., 

 

( )k x  = 23 3
4 4

x− , 0 | | 1x≤ ≤ ,       

0, | | 1x ≥       (18) 

 

 
Figure 12: The estimator of the ‘similar shape’ kernel function with the base kernel function 

defined by equation (18). 

 

This result warns us that if we use the ‘similar’ shape kernel function (which is a ‘natural’ 

extension of the univariate symmetric kernel function) in a network, then the estimator leads to a 

1.20
1.00

0 1 2

( )yK x

x



 13

false conclusion that the points tend to gather around nodes, even though the true process is that 

the points are uniformly distributed on the network. 

 

4. The class of equal-split kernel functions 

To avoid false conclusions, we must use unbiased kernel functions. This section formulates such 

a kernel function. 

 

We assume that the length of any cycle in a network is greater than 2h  where h  is the 

bandwidth of the base kernel function ( )k x . Let x , y L∈ �  be two points on the links L~  and let 
p  be the shortest path from y  to x  (the heavy line in Figure 13). Because the length of any 

cycle in the network is greater than 2h , the shortest path p  is unique, and moreover, the length 

of any other path from y  to x  (if it exists) is longer than h . 

 

First, we consider the case in which x  does not coincide with a vertex of L , and second, the 
case in which it does. In the first case, as shown in Figure 13, let 1 2, ,..., sv v v  be the nodes on the 

path p  that one visits in this order when traveling from y  to x  along the shortest path p . 

Furthermore, let in  denote the degree of the node iv  for 1,2,...,i s= , and let ( , )d y x  be the 

shortest path distance from y  to x . In these terms, we define a function as 

 

1 2

( ( , ))( )
( 1)( 1) ( 1)y

s

k d y xK x
n n n

=
− − −"

 for 0 ( , )d y x h≤ ≤ .   

0, ( , )d y x h≥ .     (19) 

 

 

Figure 13: Equal-split kernel function 

 
This definition can be understood intuitively in the following manner. Suppose that y  is on a 

y 1v
2v
x

1l

2l

3l

x′ 2l′

3l′

( ( , ))k d y x

1 ( ( , ))
2

k d y x

1 ( ( , ))
4

k d y x
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link 1l . If x′  is also on the same link 1l  (Figure 13), then ( ) ( ( , ))yK x k d y x′ ′= , that is, the kernel 

function ( )yK x′  coincides with the base kernel function ( ( , ))k d y x′ . Next, suppose that there is 

exactly one node 1v  on the path p . Imagine that we travel along the path p  from y  to x . Then 

we encounter 1 1n −  links, i.e., 2l  and 2l′  at 1v  in Figure 13 (other than the link along which we 

have traveled, e.g., 1l ), we chose the one forming the path p  (e.g., 2l  in Figure 13). At node 1v , 

the value 1( ( , ))k d y v  is equally divided into 1 1n −  values (e.g., 1 1n −  = 2 in Figure 13), each of 

which is assigned to each link ( 2l  and 2l ′  in Figure 13). If there are two or more nodes on the 

path p  (e.g., 2v  in Figure 13), we divide the value again and assign them to each link equally 

(e.g., 3l  and 3l ′  in Figure 13). In this manner, the value of ( )yK x  is determined by delivering the 

value of ( ( , ))k d y x  to the branch links equally at every node on the path p  from y  to x . 

 
The function ( )yK x  defined by equation (19) admits Properties 1 (unimodal), 2 (modal 

point = center) and 5 (invariant w.r.t. an angle). However, as is seen in Figure 13, the function is 
not a continuous function of x : even if the base kernel function ( ( , ))k d y x  is continuous, it is 

discontinuous at the nodes. 

 
Now we wish to confirm that the function ( )yK x  defined by equation (19) is truly a kernel 

function (i.e., equations (1) and (2)). Because of the property (iii) of the base kernel function, 

equation (1) is satisfied. 

 
We now consider the shortest path from x  to y , i.e., the reverse path of the path p . By 

definition, we obtain ( )xK y  as 

 

1 1

( ( , ))( )
( 1)( 1) ( 1)x

s s

k d x yK y
n n n−

=
− − −"

.    (20) 

 

Comparing equations (19) and (20), we obtain the equation 

 
( ) ( )y xK x K y= .      (21) 

 

Therefore, the kernel function defined above satisfies Property 6 (symmetric with respect to two 
kernel centers, y  and x ). 

 



 15

Next consider the second case, where the point x  is at a vertex, say 0v , with degree 0n . For 

another point y , let p  be the shortest path from x  to y , and let 0 1, ,..., sv v v  be the sequence of 

vertices that we encounter as we move from x  to y  along p . We define 

 

)),((2
)1()1)(1(

1)(
011

yxdk
nnnn

yK
ss

x −−−
=

− "
.   (22) 

 

This definition differs from equation (19) by the term 0/2 n . The intuitive meaning of this 

definition is as follows. If x  is a general point on a link, it can be regarded as a degree-two 

vertex, and equation (19) implies that the total density is equally split in two directions at x  and 

the value along one direction is represented by this expression. 

 
Now, we suppose that x  is at a vertex with degree 0n , and we want to split the total density to 

0n  branches equally. For this purpose 2 should be replaced by 0n . This is why the term 0/2 n  is 

included. 

 

We should note that for this case equation (21) does not hold. However, x  being at a vertex is a 

rare case; if x  is uniformly distributed on N , it is of measure 0 for x  to be at a vertex. Hence, 

the following discussion is valid. 

 
Recall that the value of ( ( , ))k d y x  to the branch links is assigned equally at every node; 

consequently, the total of the assigned values is the same as that of ( ( , ))k d y x , and because 

( )d 1k x x
∞

−∞
=∫  holds for the base kernel function ( ( , ))k d y x , we see that the equation 

 

( )d 1yx L
K x x

∈
=∫ �

     (23) 

 

holds. Therefore, the function defined by equation (19) satisfies the definition of the kernel 

function given by equations (1) and (2). We refer to it as the equal-split kernel function. 

 

From equations (21) and (23), we obtain 

 

∫∫ ∈∈
==

Lx yLy x xxKyyK ~~ 1d)(d)( .   (24) 
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Therefore, the kernel estimator by the kernel function given by equation (19) is proved to be 
unbiased. This property holds for any base kernel function ( )k x  forming the equal-split kernel 

function ( )yK x  of equation (19); consequently, the equal-split kernel function produces a broad 

class of kernel functions. 

 

5. The class of equal-split continuous kernel functions 

The equal-split kernel function defined in Section 4 is discontinuous at each node. This property 

looks peculiar on an isotropic line, but as Figure 14a shows, a network space is not isotropic 
around a point near a node (e.g., y  near v  in Figure 14a). Therefore, discontinuous kernel 

functions are not always peculiar. Yet it seems desirable to use a continuous kernel function, and 

so we develop such a function in this section. We first formulate a continuous kernel function in 
the simple case in which its kernel support consists of n  links, 1,..., nl l , meeting at one node, v , 

and the length of each link is not shorter than the bandwidth h  (Figure 14a). The formulation in 

the general case in which links meet at more than one node on the kernel support is essentially 

similar to the simple case, but its derivation is lengthy. It is hence shown in the Appendix. 

 
We regard two links, 1l  and il  ( 1i ≠ ), connected at v  (Figure 14a) as a real-value axis (as in 

Figure 14b), and the origin on the axis corresponds to y . In a heuristic manner, we define a 

function as 

 
( )yK x  = )(xk  for hdxh −≤≤− 2 , 

2( ) (2 )nk x k d x
n
−

− −  for 2d h x d− ≤ ≤ , 

2 ( )k x
n

 for d x h≤ ≤ .     (25) 

 

An example is illustrated in Figure 14. 

1l ily

y v
1l

2l

3l

4l 2 ( )k x
n

0 hd2d h− 2dh−

( )k x

2( ) (2 )nk x k d x
n
−

− −
(2 )k d x−

v
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(a)       (b) 

Figure 14: Equal-split continuous kernel function illustrated (a) on a network embedded in a 
plane; (b) on the axis representing 1l  and il . 

 
Because ( ) (( 2) / ) (2 ) (2 / ) ( )k d n n k d d n k d− − − =  holds, the above function is continuous at d . 

Moreover, noticing that 
2

(2 )d ( )d
d h

d h d
k d x x k x x

−
− =∫ ∫ , we have 

 

2

2 2

2 2( )d [ ( ) (2 - )]d ( 1) ( )d 1
d h d h

h d h d h

nk x x k x k d x x n k x x
n n

−

− − −

−
+ − + − =∫ ∫ ∫ .  (26) 

 

Therefore, the function defined by equation (25) is a kernel function. 

 
As Figure 14a shows, the shape of the kernel function is the same on 2 3,l l  and 4l , as with the 

equal-split kernel function shown in Figure 13 (the shape on 2l  and the corresponding line 

segment on 2l′ ). The equal-split kernel function in Section 4 and the kernel function in this 

section differ in the assignment of values to 2 3,l l  and 4l : the latter adjusts the values to make the 

function continuous in the ‘local area’ around the vertex v , i.e., the area in which the distance 

from the vertex v  is within h d− . We refer to the kernel function defined by equation (25) as the 

equal-split continuous kernel function. 

 

We now want to prove that the equal-split continuous kernel function is unbiased. We first 

consider the simple case, i.e., n  links meeting at one node v  as shown in Figure 14a (e.g., 

4n = ) or Figure 15a (e.g., 3n = ) and prove that the kernel function given by equation (25) is 

unbiased. We consider an arbitrary point on a link, say x  in Figure 15a. Because the bandwidth 

is h , we focus on the kernel function having its center within h  from x  (the heavy line 
segments in Figure 15a). We consider two links, e.g., 1l  and , 2,3il i = , and represent them as a 

real-valued axis as shown in Figure 15b, where x  and v  correspond to the origin and the point at 

d , respectively, in Figure 15b (note that x  and y  are regarded as real values on the axis). In the 

figure, three kernel functions with centers placed at h− , 2d h−  and h  are depicted (for ease of 

illustration, the kernel functions are not curved). 
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(a) (b) 

Figure 15: Links meeting at v  and the equal-split continuous kernel functions with centers at 

, 2h d h− −  and h . 

 
The density at the origin (corresponding to x  in Figure 15a) is given by (0 )k y−  for 

2h y d h− ≤ ≤ − ; it is given by (0 ) (( 2) / ) (0 2 )k y n n k d y− − − − +  for 2d h y d− ≤ ≤ ; and it is 

given by (2 / ) (0 )n k y−  for d y h≤ ≤  on 1n −  links. Therefore, the density at the origin (0)D  is 

obtained from 

 

(0)D  = 
2

2

2 2( )d [ ( ) ( 2 )]d ( 1) ( )d
d h d h

h d h d

nk y y k y k d y y n k y y
n n

−

− −

−
− + − − − + + − −∫ ∫ ∫ . (27) 

 

Because the equation 

2
( 2 )d ( )d

d h

d h d
k d y y k y y

−
− + = −∫ ∫      (28) 

 

holds, equation (27) is written as 

 

(0)D  = 
2

2
( )d ( )d ( )d ( )d 1

d h d h h

h d h d h
k y y k y y k y y k y y

−

− − −
− + − + − = =∫ ∫ ∫ ∫ .  (29) 

Therefore, the kernel estimator in equation (25) is unbiased. 

 

The comparison between equation (27) and equation (29) shows a very nice property: the 

integral of the kernel function across the points on the n  heavy line segments in Figure 16a 

( 3n = ) is equivalent to that of the base kernel function across one heavy line segment in Figure 

16b. We use this nice property to treat the general case. 

 

0h− h
2d h−

d
1l

2l

3l

vx

1l , 2,3il i =
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Figure 16: The density at x  estimated by the kernel function moving along links 1 2 3, ,l l l  (a) is 

equivalent to the kernel function moving along a line l  (b). 

 

We next consider the somewhat more general case shown in Figure 17a where a kernel support 

includes two nodes at which two or more links meet. Because the estimator at an arbitrary point 
x  is obtained by adding the value of the kernel function placed at y  and evaluated at x  across 

any point y  on the kernel support (the heavy lines in Figure 17a), we can decompose the integral 

domain. First we consider the integral domain shown in Figure 17b. As proved above (recall 
Figure 16a, b), the integral across line segments 1 2 3, ,l l l  and 4l  is equivalent to the integral of the 

base kernel function across the line segment 1l′  in Figure 17c. Then, in the same manner, the 

integral across the line segments 5 6,l l  and 1l′  is equivalent to the integral of the base kernel 

function ( )k x  across the line segment 1l′′  in Figure 17d. Because the integral of the base function 

across the support line is unity, the kernel estimator of the kernel function ( )yK x  formulated 

above is unity. Therefore, the estimator is unbiased. 

 
Figure 17: Equivalence of the density estimation at x  by integrating over domains (a), (b), (c) 

and (d). 

1l
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4l
1vx5l

6l

2v
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2v x

1l′′

(a) (b)

(c) (d)

2l
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x1l v

0h−
2d h−

d h
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Last, we consider the most general case, in which a kernel support includes three or more nodes 

with degrees of three or more, as shown in Figure 18a. First we consider the integral along the 
line segments 7 8,l l  and 6l′  in Figure 18b. This value is equivalent to that for the line segment 6l  

in Figure 17a. The integral along the line segments in Figure 17a is equivalent to that along the 

line segment in Figure 17d. Therefore, as shown above, the integral of the kernel function at x  

across y  on the kernel support in Figure 18a is unity, showing that the estimator is unbiased. 

This completes the proof that the equal-split continuous kernel function is unbiased. This 
property holds for any base kernel function ( )k x  forming the equal-split continuous kernel 

function ( )yK x  of equation (25); consequently, the equal-split continuous kernel function 

produces a broad class of kernel functions. 

 

 
(a)      (b) 

Figure 18: Equivalence of the density estimation at x  in the general case. 

 

In closing this section, we make two important remarks on the applicability of the equal-split 

function (Section 4) and the equal-split continuous function (Section 5). 

 

First, we assumed that their kernel supports did not include cycles (Figure 2a–c). One reason for 

this was to avoid lengthy explanation. We should note that both kernel functions can be applied 

to cases in which their kernel supports include cycles (Figure 2d) and we can show that they give 

unbiased estimators (the proof is almost the same as in Section 5). However, the kernel functions 

have two modes, because their tails overlap on the cycles. Therefore, Property 1 (unimodal) is 

not satisfied. 

 
Second, we obtained the unbiased estimators for ( )f x  when the function ( )f x  was given by 

equation (4), i.e., the uniform probability density function, because the CSR is one of the most 

fundamental hypotheses in spatial analysis. We usually start with this hypothesis, but if observed 
data do not support it we examine an alternative hypothesis. If ( )f x  is explicitly given, we can 

obtain unbiased estimators for any function ( )f x  through the following probability integral 

transformation (Okabe and Satoh, 2005). 

1l
2l

3l

4l
1vx5l

6l′

2v

3v
7l

8l
8l

7l 6l′
3v
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Let ( )if x  be part of ( )f x  with its domain given by a link il  of L ; let t  be the path distance 

from an end point of il  to a point on il ; let ( )if t  be the density of points at t  on il ; il ′  = ( )i if l ; 

and let z  be given by 
0

( ) ( )d
t

iz t f t t= ∫ . Then the probability density function ( )ig z  of z  follows 

the uniform probability density function on il ′ . Let L′  = { 1 ,..., nl l′ ′ }, ( , )N V L′ ′= , and 

( ),  for j i j j iy f y y l′ = ∈ . Then the equal-split or equal-split continuous kernel functions generated 

at 1 ,..., ny y′ ′  on the network N ′  are unbiased estimators, as we have proved in the preceding 

sections (notice that ( )ig z , 1,..,i n=  are the uniform probability density functions on N ′ ). 

 

6. Computational implementation in the GIS environment 

Having formulated two unbiased kernel functions in Sections 4 and 5, we now discuss how to 

implement these functions in the GIS environment and develop a user-friendly tool. Such a GIS-

based tool is in great demand by nonmathematical researchers analyzing events occurring on 

networks in many fields, as discussed in the introduction, in particular for traffic accident 

analysis and street crime analysis. 

 

The common task is to find the links that are within the shortest-path distance h  from a given 

kernel center (where h  is the bandwidth). This can be done using the shortest-path operation of 

the GIS. The underlying computation behind this operation is based on the computation of the 

shortest-path tree rooted at a given kernel center. The algorithms for this construction have been 

well developed in operations research, based on Dijkstra’s (1959) algorithm (Aho et al., 1983). 
This has computational complexity of order O ( log )V Vn n  where Vn  is the number of nodes in a 

given planar network. Because the number of points having their density estimated on the 
network is n , the total order of computational complexity becomes O ( log )V Vnn n . 

 

Once the links within h  are obtained, the next task is to compute the value of a kernel function 

on each link. When we use the equal-split kernel function in Section 4, the computation is done 

by equation (19), and it requires a constant time for each link. Because the number of links 

constituting the network is Ln , and the number of points is n , the total computational 

complexity is O ( )Lnn . This order is not affected by the complexity of a kernel support (compare 
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with the next case). 

 

When we use the equal-split continuous kernel function in Section 5, the computational 

complexity varies according to the complexity of the kernel support. In the simple case in which 

a kernel support consists of n  links meeting at one node and the length of each link is not shorter 

than the bandwidth h  (e.g., Figure 14a), the computation of equation (25) requires a constant 
time on each link. Therefore, the total computational complexity is O( )Lnn , which is the same 

as that of the equal-split kernel function. In a complex case, in which a kernel support includes 

three or more nodes with degree three or more (e.g., Figures 17a and 18a), the computational 

complexity depends on the ratio of the bandwidth to the length of a link. We notice from the 

procedure in the Appendix that the computation requires a constant time operation executed 

max

11
( ) ( )i

i i ii
h d d d+=
− −∏  times, where id  is the distance from a kernel center to the ith-nearest 

node, and maxi  is the maximum integer satisfying id h≤ . This implies that if the length of a link 

approaches zero, the computation time increases to infinity. Therefore, if the length of a link is 

much smaller than that of the bandwidth, the computation becomes intractable in practice. 

 

If visualization is required, we represent the network in terms of the many points forming the 

network (this may be called the raster representation in contrast to vector representation); we 

compute the values on all raster points (their number is denoted by m ) with respect to n  kernel 

functions having kernel centers placed at n  points on the network. Therefore, the computation 

order for visualization is O( )m n . 

 

Considering that the users analyzing the density of points on networks are not only academic 

researchers but also practitioners, such as transportation managers, police officers and volunteers 

of environment NPOs (e.g., animal roadkills), we have developed a GIS plug-in tool for the 

kernel functions in Sections 4 and 5. The software was written in C++ and is independent of GIS 

software packages. For users’ convenience, we have also developed an interface with ArcGIS, 

which will be included in SANET (Okabe et al., 2006a, b). The performance of this tool is 

discussed in the next section. 

 

7. Application 

This section shows an application of the kernel methods developed in the preceding sections to 

the density estimation of bag-snatches on streets in Kyoto, Japan. The street network consists of 

5191 links and 6761 nodes, and the total length amounts to 305.241 km. The data source is a 
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report by the Kyoto Police Office (http://www.pref.kyoto.jp/fukei/hanjou/). The number of 

locations where bag-snatches occurred on the street network was 146 (Figure 19) for the periods 

January–December in 2004 and December–February in 2005–2006. The digital street data were 

obtained from the Digital Map 2500 published from the Geographical Survey Institute, Japan. 

 

 
Figure 19: Locations of incidence of bag-snatches on the streets in Kyoto. 

 

First, we applied the equal-split kernel function formulated in Section 4 to the data in Figure 19. 

Part of the estimated density is illustrated in Figure 20. 

 

 

Figure 20: Density estimation of bag-snatches occurring on the streets in Kyoto by the equal-

split kernel function. 

 



 24

Second, we applied the equal-split continuous kernel function formulated in Section 5 to the 

same data. The result corresponding to that in Figure 20 is depicted in Figure 21. The bandwidth 

was 230 m for both kernel functions. 

 

 
Figure 21: Density estimation of bag-snatches occurring on the streets in Kyoto by the equal-

split continuous kernel function. 

 

As Figures 20 and 21 show, the equal-split kernel function tends to show more concentrated 

densities than the equal-split continuous function. However, this difference would be weakened 

if the number of incidence locations increased. Actually, if bag-snatches occur according to the 

uniform distribution, as we proved in Sections 4 and 5, both functions eventually give a constant 

density over the network as the number of event locations increases. 

 

As we noted in Section 6, in theory, one of the advantages of the equal-split kernel function is its 

short computation time. To confirm it in practice, we observed the computation times of both 

kernel functions. The computers used are DELL and HP. Their specifications were as follows. 

DELL: memory 2 GB, CPU Pentium 4 3.40 GHz; HP: memory 3.25 GB; CPU Intel Core (TM) 2 

2.66 GHz. Both used Windows XP. The results are shown in Table 1. 
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Table 1: Computation times 

 

 

We notice from this table that the computation times were almost the same for the 50 m 

bandwidth. The computation time of the equal-split kernel function increases relatively slowly 

with bandwidth, but as we theoretically examined in Section 5, the computation time of the 

equal-split continuous kernel function increases rapidly when the bandwidth is larger than 200 m. 

Considering that the average length of a link is 59 m in Figure 19, we may say that if a kernel 

support includes more than four nodes, the estimation by the equal-split continuous kernel 

function requires much time, more than 30 minutes in the case of Figure 19. Therefore, if we 

deal with event-points on a network with links less than one quarter of the bandwidth, then the 

equal-split kernel function would be more practical than the equal-split continuous kernel 

function. 

 

8. Conclusion 

We have formulated three types of kernel function: the ‘similar’ shape, equal-split and equal-split 

continuous kernel functions in Sections 3, 4 and 5, respectively. Their properties are summarized 

in Table 2 under the assumption that the base kernel function satisfies Properties 1, 2 and 3. 

 

 

 

 

 

 

 

Bandwidth
(m)

split
kernel

function
(sec)

Equal-split
continuous

kernel
function

(sec)

split
kernel

function
(sec)

Equal-split
continuous

kernel
function

(sec)

50 1.33 1.35 0.74 0.75
100 1.36 1.49 0.77 0.83
150 1.43 2.43 0.79 1.36
200 1.55 59.29 0.88 32.65
210 1.61 207.36 0.90 109.40
220 1.66 798.32 0.91 438.85
230 0.94 1777.49
240 0.99
250 1.86 1.04
300 2.74 1.50

DELL HP
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Table 2: Properties satisfied by the ‘similar’ shape, equal-split and locally adjusted equal-split 

kernel functions. 

 
 

The ‘similar’ shape kernel function is a natural extension of the ordinary univariate kernel 

function, and many researchers would be tempted to use it. However, as was shown in Section 3, 

its estimator is biased. If we use this kernel function, we may conclude, for instance, that traffic 

accidents tend to cluster around nodes, contrary to the fact that they occur uniformly on a street 

network. The ‘similar’ shape kernel function is likely to give misleading conclusions and so we 

do not recommend its use for spatial analysis on a network. 

 

The equal-spit kernel function satisfies five ‘desirable’ properties including the unbiased 

property that is not satisfied by the ‘similar’ shape kernel function. However, the function does 

not satisfy continuity at each node. This property looks peculiar in the univariate kernel functions, 

but as we discussed in Section 2, it does not always look peculiar on a network, because the 

topological property changes drastically at a node. 

 

If we want to use a continuous kernel function at nodes, we can use the equal-split continuous 

kernel function of Section 5. However, that function does not satisfy Property 2 (the modal point 

and the kernel center do not coincide) or Property 6 (the kernel function is not symmetric with 

respect to two kernel centers). 

 

From a practical viewpoint, the equal-split kernel function is more advantageous than the equal-

split continuous kernel function in that the computational complexity of the former is much 

smaller than that of the latter when a network has short links compared with the bandwidth. We 

sometimes spent more than one hour running the tool for the equal-split continuous kernel 

function for actual street networks. Therefore, we suggest the use of the equal-split kernel 

Properties 1 2 3 4 5 6 7

Classes of
kernel functions unimodal

modal
point

=center
continuous

equal-
distance/
equal-
density

invariant
w.r.t.
angle

symmetric
w.r.t.
two kernel
centers

unbiased

Similar shape
(Section 3)

○ ○ ○ ○ ○ × ×

Equal-split
(Section 4)

○ ○ × × ○ ○ ○

Equal-split
continuous
(Section 5)

○ × ○ × ○ × ○

○: satisfied ×: not satidfied



 27

function when a network includes many short links in relation to the bandwidth. 

 

In closing this paper, we note two unsolved problems. First, having observed Table 2, one might 

wonder if any kernel function exists that satisfies all the properties listed there. We have searched 

for several years, but we have not yet found one. Nonetheless, we still feel that such a function 

exists. 

 

Second, we obtained the unbiased estimators for the uniform probability density function on 
( , )N V L=  or for a given explicit function ( )f x  on ( , )N V L= , which is transformed into 

( , )N V L′ ′=  by the probability integral transformation. In practice, however, the function ( )f x  

is unknown, and hence we would like to know under what conditions on ( )f x , the equal-split 

kernel function or the equal-split continuous function are unbiased. This problem can be 
discussed to a certain extent in the case of SL  by applying the theorems obtained for the 

univariate kernel functions (for example, see the theorems in Section 6.2 of Scott (1992)). 
However, these theorems cannot be applied to the cases of (1)L  and ( 3)L ≥ , and we have not yet 

succeeded in deriving the corresponding theorems for these cases. 

 

We hope that these problems will be solved by the reader. 

 

Appendix 

In a general case in which there is more than one node with degree three or more, such as the 

kernel support in Figure A1a, an explicit mathematical definition of the equal-split continuous 

kernel function would become very lengthy because there are many possible forms of kernel 

support. Therefore, we define it as a procedure. 

 

 
(a)     (b) 

Figure A1: A kernel support (a) and an enlarged part of it (b) 

 
We first construct a recursive function for determining the value of the kernel function ( )yK x  on 

the links incident to a node, v , of the kernel support with its center at y  (e.g., the heavy line 

segments in Figure A1a, which are enlarged in Figure A1b). Let ( )n v  be the degree of node v , 

and 1 ( )( ) { ,..., }n vL v l l=  be the set of links incident to v , where 1l  is the link that is included in the 

v

1v 2iv

3iv
4iv

1l

2l
y

4l

3l
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shortest path from the kernel center y  to v . Let iv  be a node of the link il  other than the node v , 

and let α  be a coefficient to be determined at every step, but at a node of degree one (i.e., an end 

node), we set α  = 0. 

 
Function 1( , , , )F v d lα  

Input: v  

d : a distance variable (to be determined at every step) 

α : a coefficient (to be determined at every step) 

1l  

( )n v  

( )L v  

( )k x : a base kernel function 

Output: ( )yK x , , 1,...,i vx l i n∈ =  

 
Step 1: For 1x l∈ , ( ) ( ) ( )y yK x K x k xα← + . 

Step 2: 1( , )d d d v v← +  

If h d< , then stop. 
Step 3: For all ( )il L v∈ . 

Step 3.1: If 1il l= , ( ) 2
( )

n v
n v

α α −
← − ; 

otherwise, 2
( )n v

α α← . 

Step 3.2: If 0α ≠ , then ( , , , )iF v d lα . 

 

With this function, the equal-split continuous kernel function is defined by the following 

procedure. Note that for operational convenience, we divide the link on which the kernel center 
y  is placed into two links and regard y  as a node. 

 

Procedure for defining the equal-split continuous kernel function 
Step 1: For all points x  on the kernel support yL , ( ) 0yK x ← , 

2
( )n y

α ← . 

0d ← . 
Step 2: For all links in ( )il L y∈ , compute ( , , , )iF y d lα . 
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This procedure fixes the initial setting in Step 1 and the equal-split continuous kernel function is 
obtained through the function 1( , , , )F v d lα  in Step 2. The value of the equal-split kernel function 

is successively determined along the paths starting from the kernel center y . Suppose that we 

are now in the j th phase and have reached a vertex v  (e.g., v  in Figure A1a) and obtained the 

equal-split continuous kernel function, ( ) ( )jg x  along the links forming the shortest path from the 

kernel center y  to the vertex v  (where x  is the shortest-path distance from y  to a point on the 

path, and ( ) ( )jg x  is written in terms of the degrees of nodes on the path and the base kernel 

function ( )k x ). After completing several steps in the above procedure, we can show that the 

kernel function in the ( 1j + )th phase for , 2,..., ( )il i n v=  is written as 

 

( 1) ( ) ( )( ) 2( ) ( ) (2 )
( )

j j j
v

n vg x g x g d x
n v

+ −
= − −  for 1x l∈ ,       (A1) 

( 1) ( )2( ) ( )
( )

j jg x g x
n v

+ =  for , 2,..., ( )ix l i n v∈ = .       (A2) 

 

From equation (A1), we obtain 1( ) (2 ( )) ( )j j
v vg d n v g d+ = , and from equation (A2), we obtain 

1( ) (2 ( )) ( )j j
v vg d n v g d+ = . Therefore, the equal-split continuous kernel function is continuous at 

v . This property holds for any node of the kernel support, showing that the equal-split 

continuous kernel function is truly continuous. 

 

We can show that the procedure in the function 1( , , , )F v d lα  assigns the value ( ) ( )d
v

h j

d
g x x∫  in 

the j th phase to the values on , 1,..., ( )il i n v=  in the ( 1j + )th phase according to 

 

( ) ( )

2

( ) 2 (2 ) ( )d
( )

v

v

d j j
vd h

n v g d x g x x
n v−

−
− −∫  for 1x l∈ , 

( )

2

2 ( )d
( )

v

v

d j

d h
g x x

n v−∫  for , 2,..., ( )ix l i n v∈ = . 

 
The sum of these two values multiplied by ( ) 1n v −  in the ( 1j + )th phase is equal to the value 

( ) ( )d
v

h j

d
g x x∫  in the j th phase. Therefore, the value is retained at every phase. Because the initial 

value at y  on the right-hand side is 
0

( )d 1/ 2
h
k x x =∫ , and the same for the left-hand side, the 

integral of the equal-split continuous kernel function over the kernel support is unity. This proves 



 30

that the equal-split continuous function is a kernel function. 
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