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difference in the marginal costs of shipment and the price elasticities of the demands. Two
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1 Introduction

We often encounter the situation in which the levels of transport costs differ from each other

if the directions of shipments are different, that is to say, the transport cost necessary to

ship goods from one region to another is not equal to the cost necessary to ship them in

the opposite direction. Casual observation suggests that the levels depend on the sizes of

the demands for transport services or shipments: if the demand for the shipment from one

region to another is larger than the counterpart in the opposite direction, the former costs

more than the latter. This asymmetry of the transport costs is not a thing which is so

trivial that one can ignore when explaining the determination of the geographical pattern

of economic activities.

Consider, for instance, an economy with two regions, West and East, where more eco-

nomic activities are located in West than in East but the difference is quite small. Because

the amount of the shipment from West to East is larger than that from East to West, we

expect that the transport cost to ship goods in the former direction is higher than the cost

to ship them in the latter direction. It implies that the import is less expensive in the

West than in East up to the difference in the transport cost, other things being equal. This

affects the relative sizes of the force that promotes geographical agglomeration of economic

activities (a ‘centripetal force’) and the force that promotes their geographical dispersion (a

‘centrifugal force’), which determine the geographical pattern. On the one hand, consumers

find themselves more affordable in West, because of the less expensive imports there, than

in East, ceteris paribus. This gives them an incentive to locate in West, which works as a

centripetal force. On the other hand, firms attempt to exploit the opportunity of the less

competition pressure from the imports by locating in East rather than in West; a centrifugal

force. Unfortunately, which force, the centripetal or centrifugal force, dominates the other

is ambigous. In any case, nonetheless, we can assert that the asymmetry of the transport

costs gives a substantial impact on the relative sizes of the two counteracting forces, and

thus, greatly affects the spatial distribution of economic activities.

The purpose of this paper is to study how the asymmetry of transport costs affects

the economic geography. For that purpose, a two region model with a transport sector is

constructed. As in the standard models in the literature, I focus on two distribution patterns,

the symmetric distribution pattern, in which mobile factors are distributed equally in the

two regions, and the agglomeration pattern, in which they are concentrated in one region;

and examine the conditions for each of them to be supported as a stable equilibrium pattern

taking into account the possibility that the transport costs become asymmetric.

Here, it is important to emphasize that in this piece of research, the asymmetry is not

something to be assumed but something to be generated as a result of the behaviors of
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transport firms. Although there would be many reasons for the asymmetry, the following

two are particularly considered in this paper.

The first reason is related to a technology. Notice that the shipments in one direction and

in the opposite direction are usually joint products of a transport firm. One consequence is

that the marginal cost of shipping in a certain direction depends on the amounts of not only

the shipment in that direction but also on the shipment in the opposite direction. This point

would be better understood by a simple example. Let us consider a carrier based in Chicago,

say, which owns some cargo trucks. It probably keeps them at its sites within or around

Chicago when they are idle. This means that the trucks delivering goods to, say, Seattle,

will eventually have to come back to Chicago. Suppose that the carrier gets the order to

ship 100 units of goods from Chicago to Seattle. To fulfill the order, 10 trucks need to be

dispatched. Then, they can carry goods from Seattle to Chicago on their returning trip with

virtually 0 marginal cost unless the amount of the return cargo exceeds 100 units, because

the 10 trucks must return to Chicago anyway. In general, if there is a physical requirement

that transport equipments eventually return to the place of their departure, the marginal

cost to ship goods in one direction differs in size from that in the opposite direction: it is

positive in the direction with a greater demand but 0 in the opposite direction.

The second reason for the asymmetry is a monopolistic industry structure of the transport

sector. As long as the price elasticities of the demand for the transport services in the two

directions are not equal to each other, carriers with a certain size of monopoly power attempt

to price discriminate. If larger demand is associated with lower price elasticities, they charge

a higher price for the transport service in the direction with a greater demand.

So as to pay full attention to those two factors, I consider the situation in which trans-

port firms produce the transport services (shipments) in the two directions jointly, and the

marginal costs to produce them are inter-dependent as has been explained in the above illus-

trative example. Furthermore, it is assumed that they compete with each other à la Cournot

in an oligopolistic market. Then, I show that whether each of the two patterns is supported

as a stable long-run equilibrium depends on several key parameters. For one thing, higher

elasticity of substitution in consumers’ preference makes the symmetric distribution pattern

more likely to occur while the agglomeration pattern less likely to occur. Furthermore, the

higher the marginal cost of shipment associated with the binding capacity, the less likely

it is that the symmetric distribution pattern and agglomeration pattern are supported as a

stable long-run equilibrium patterns.

For all its importance, the asymmetry of the transport costs has seldom attracted at-

tentions of researchers. Even in the field of new economic geography, which underscores

the role of the transport costs in the determination of the geographical pattern of economic
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activities, the possibility of the asymmetry has been ignored (see Fujita et al. (1999); Fujita

and Thisse (2000); and Fujita and Thisse (2002)). This disregard is, for the most part, own-

ing to the fact that to give proper regard to the two reasons of the asymmetry mentioned

earlier involves embodying the transport sector explicitly in the model and analyzing how

each transport firm behaves. It obviously makes the analysis much more complex, which

most of the studies have been avoided.1 There are a few exceptions. Takahashi (2006b) dis-

cusses the behaviors of individual transport firms to obtain welfare implications in a general

equilibrium setting. Behrens et al. (2006), on the other hand, examine the impacts of the

regulation of a transport sector upon the welfare levels paying attention to the incentives of

transport firms, though in a very simple way.

The paper is organized as follows. In the next section, I present a basic model. Section 3

formulates the transport sector and solves the problem faced by each transport firm. In the

subsequent two sections, the symmetric distribution pattern and the agglomeration pattern

are examined in order. We derive the conditions for each pattern to be supported as a stable

equilibrium pattern. Finally, Section 6 concludes.

2 Model

As a basic framework, I use the model used in Takahashi (2006a), which is a modified version

of the analytically solvable model by Forslid and Ottaviano (2003).

2.1 Basic Framework

There are two regions, denoted by 1 and 2; and two goods, an intermediate and a final

good. Total labor force consists of workers and entrepreneurs. The workers are not endowed

with the skill necessary to produce the final good and thus work in the intermediate sector.

There are 2 units of workers in the economy, who cannot migrate across the regions. They

are distributed equally in the two regions: 1 unit lives in each region. The entrepreneurs

are, on the other hand, endowed with the skill so that they can engage in the production of

the final good. Furthermore, they can freely move across the two regions. Their number is

fixed at n, of which λ1n live in region 1 and λ2n live in region 2 (λ1 + λ2 = 1). Instead of

λ1 and λ2, a parameter λ ∈ [0, 1] with λ ≡ λ1 (λ2 = 1 − λ) will be often used when doing

so is more convenient.

1Some works discuss the endogenous determination of the transport costs; but do not deal with the

transport sector explicitly. Mori and Nishikimi (2002), for instance, examine the effect of the economy of

density on transport costs. Bougheas et al. (1999), and Mun and Nakagawa (2005) study the impacts of

infrastructure investment. Finally, Takahashi (2006a) examines the selection of the transport technology,

which affects the levels of transport costs.
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The intermediate is a homogeneous product and produced in a competitive sector. Each

worker produces 1 unit of the intermediate, whose price, therefore, equals his wage rate in

each region. The cost to ship the intermediate from one region to the other is assumed to

be 0 so that the prices of the intermediate and, consequently, the wage rates of workers are

equalized in the two regions. The wage rate is taken as a numeraire.

On the contrary, the final good is a differentiated product and produced by a monopo-

listically competitive sector. Each entrepreneur owns a firm which produces a variety in the

region of her residence. Thus, there are n varieties in the economy of which λin are produced

in region i (i = 1, 2). Taking a unit appropriately, we can consider that each firm produces

1 unit of a variety from 1 unit of the intermediate using the skill of an entrepreneur. All the

revenue left after the payment for the intermediate is taken by the entrepreneur. In other

words, the profit of a firm is equal to 0:

pq − 1 · q − w = 0, (1)

where p and q denote a price and an amount of a variety produced, and w a wage rate

received by an entrepreneur.

The workers and entrepreneurs have the same preference represented by a utility function,

U = [
∫ n

0
x(k)ρ dk]1/ρ, where ρ ∈ (0, 1), and x(k) denotes the amount of the kth variety.

The entrepreneurs sell their varieties at the price that maximizes their own wages. Since

not only they are subject to the same technological condition but also all the varieties enter

the utility function in a symmetric manner, they charge the same price as long as they are

located in the same region. Thus, I denote the prices of a variant produced in respective

regions by p1 and p2.

Next, I introduce transport costs. It takes no cost to carry the final good within the same

region. However, in order to carry it across the regions, consumers need to buy transport

services, which are provided by transport firms or ‘carriers’. The prices of the services are

assumed to be proportional to the values of the good to be shipped. Let τi ∈ (0, 1) be

the proportional coefficient for the transport service that carriers the good from region i to

region j (i = 1, 2 and j 6= i). Here, remember that the subscript of τ refers to the region of

the origin of the shipment. Then, in order to have 1 unit of a variety shipped from region

i to region j, consumers pay τipi, which is a price of the transport service, or, in a more

ordinary expression, a transport cost, in that direction. The delivered price in region j of

the k-th variety produced in region i is, therefore, equal to (1 + τi)pi. Here, we are taking

into account the possibility that the transport costs may differ from each other depending on

the direction of shipment, that is, τ1 is not necessarily equal to τ2. This point distinguishes

the model from the conventional ones. In what follows, it is more convenient to use notation

ti ≡ 1+ τi as a measure of the prices of the transport services or transport costs rather than
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τi (i = 1, 2).

Let Xii and Xij be the total demands for a variety produced in region i, by the region i

consumers and region j consumers, respectively. Applying the standard procedure to derive

consumers’ demand functions yields

Xii = p−σ
i Pσ−1

i Yi (i = 1, 2) (2)

and

Xij = t−σ
i p−σ

i Pσ−1
j Yj . (i = 1, 2; j 6= i) (3)

Here, σ ≡ 1/(1 − ρ) > 1 is an elasticity of substitution, Yi is an aggregate income and

Pi =
[
n
(
λip

1−σ
i + λjt

1−σ
j p1−σ

j

)] 1
1−σ

(i = 1, 2; j 6= i) (4)

is a price index in region i. Since the amount of each variety produced in region i, qi, must

be equal to its demand, we have

qi = Xii + Xij . (i = 1, 2; j 6= i) (5)

An entrepreneur in region i maximizes her wage given by wi = piqi − 1 · qi (i = 1, 2) (see

(1)), setting the price at

p1 = p2 = p ≡ σ

σ − 1
. (6)

The wage received by an entrepreneur is reduced to

wi =
1

σ − 1
qi. (i = 1, 2) (7)

Moreover, because transport firms earn no profit, as will be explained later, the aggregate

income consists of workers’ and entrepreneurs’ earnings:

Yi = 1 + λinwi. (i = 1, 2) (8)

This completes a description of a basic framework.

2.2 Short-Run Equilibrium

Before deriving the short-run equilibrium, it is useful to introduce one additional parameter,

θi ≡ λi + λjt
1−σ
j (i = 1, 2; j 6= i). Notice that θ−1

i = pXii/(Yi/n), where the numerator

represents the actual level of the spending on each home variety by region i consumers while

the denominator represents the hypothetical level that would prevail if they consume the

home varieties and the imports equally. Because the imports are in fact more expensive

than the home products up to the transport cost, they spend more money on each home

variety than each foreign variety. Thus, θ−1
i > 1 as long as the transport cost from region
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j to region i is positive (tj > 1). The inverse of θi measures this home product bias effect.

With this interpretation, it is straightforward to explain how θi depends on tj and λi. First,

dθi/dtj < 0: as the transport cost of the import declines, θ−1
i decreases in correspondence

with the abatement of the home product bias effect. When the transport cost becomes

0 (tj = 1) at one extreme, θ−1
i reaches 1: consumers spend their income equally among

the home products and the imports. Second, dθi/dλi > 0: as more varieties come to be

produced in the home region, the competition among the home varieties becomes severer,

which relatively reduces the spending on each home variety.

A system of equations (2) to (8) determines a short-run equilibrium, in which en-

trepreneurs’ distribution, λ, is given. Substituting (2) to (7) into the two equations in

(8) and solving these equations simultaneously, we can obtain the equilibrium values of Y1

and Y2:

Yi =
σθi

(
σθj − λj + λit

−σ
i

)
(σθ1 − λ1)(σθ2 − λ2) − λ1λ2t

−σ
1 t−σ

2

. (i = 1, 2; j 6= i) (9)

Y1 and Y2, in turn, give the equilibrium values of the demand variables, Xii’s and Xij ’s,

by (2) and (3):

Xii =
(σ − 1)Yi

σnθi
(i = 1, 2)

Xij =
(σ − 1)t−σ

i Yj

σnθj
. (i = 1, 2; j 6= i)

(10)

This would be a good place to note that the transport costs affect the wage rates through

substitution effect between imports and domestic products. Suppose that ti rises, which

implies that the region i products become more expensive in region j (j 6= i). Then, the

entrepreneurs in region i will be disappointed to find that the demand for their export

decline, which causes the fall in their wage rate (an export price effect), ceteris paribus.

At the same time, those in region j will be happy because the domestic demand for their

products expands due to the rise in the import price and therefore their wage rate rise (an

import price effect). To sum up, the rise in ti is followed by a fall in wi by the export price

effect and a rise in wj by the import price effect, other things being constant.

However, this is not the end of the story: in addition to these direct effects, there are

indirect effects through the changes in the regional incomes. The fall in wi and the rise in wj

bring about a decrease in Yi and an increase in Yj , respectively. For wi, the decrease in Yi

works adversely but the increase in Yj works favorably. The overall direction of the change

depends on the sizes of the changes in respective regional incomes and the sensitivities of

the wage rate to these changes. When the two regions are sufficiently ‘alike’, the decrease

in Yi gives a greater impact on wi than the increase in Yj because of the home product

bias effect. In that case, wi tends to fall: the indirect regional income effect reinforces the

direct effects. However, if region j is much ‘bigger’ than region i, that is, if it has a quite
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large population and/or a big advantage in the transport costs (the transport cost to ship

the goods from that region to the other is much less expensive than the counterpart in the

opposite direction), the effect of the increase in Yj dominates that of the decrease in Yi; and

therefore the changes in the regional incomes result in the rise in wi.

2.3 Long-Run Equilibrium

In the long run, entrepreneurs move freely across the regions. The long-run equilibrium

is the pair of prices and distribution of entrepreneurs for which they have no incentive to

change their locations. Let vi(λ) be the indirect utility for an entrepreneur living in region

i:

vi(λ) =
wi

Pi
=

(σ − 1)(nθi)
1

σ−1

[
σθj − λj + t−σ

i

(
σθi + λjt

−σ
j

)]
σn

[
(σθ1 − λ1)(σθ2 − λ2) − λ1λ2t

1−σ
1 t1−σ

2

] . (i = 1, 2; j 6= i) (11)

Then, an interior distribution pattern λ ∈ (0, 1), for which at least some entrepreneurs are

located in each region, is a long-run equilibrium pattern if v1(λ) = v2(λ). The agglomeration

pattern with λi = 1 is so if vi(1) ≥ vj(1) (i = 1, 2; j 6= i).

In addition, suppose that the equilibrium distribution pattern is perturbed by the relo-

cation of infinitesimally small numbers of entrepreneurs. If they cannot become better off,

the equilibrium pattern is considered to be stable. Formally, the equilibrium pattern λ is

stable if and only if
v1(λ) ≥ v2(λ − ε) and v2(λ) ≥ v1(λ + ε) when λ ∈ (0, 1)

v1(1) ≥ v2(1 − ε) when λ = 1

v2(0) ≥ v1(ε) when λ = 0,

where ε > 0 is a number arbitrarily close to 0.

This condition can be expressed in a more convenient manner. First, recall that v1(λ) =

v2(λ) for any equilibrium pattern with λ ∈ (0, 1). Therefore, v1(λ) ≥ v2(λ−ε) in the first line

is equivalent to v2(λ) ≥ v2(λ− ε) at the equilibrium pattern. The similar argument applies

to the second inequality. Second, for the equilibrium pattern with λ = 1 (an agglomeration

pattern), we can distinguish two cases, the case with v1(1) = v2(1) and the case with

v1(1) > v2(1). In the first case, the same logic applies: v1(1) ≥ v2(1 − ε) is equivalent to

v2(1) ≥ v2(1 − ε). In the second case, the requirement for the stability is automatically

satisfied as long as v2(λ) is continuous at λ = 1, which, it will be shown, holds true. The

similar argument can be used for the equilibrium pattern with λ = 0 (another agglomeration

pattern). Putting these results altogether, the stability condition for the equilibrium pattern
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λ can be rewritten as follows:

both
dv1(λ)

dλ
≤ 0 and

dv2(λ)
dλ

≥ 0 holds when λ ∈ (0, 1),

at least either
dv2(1)

dλ
≥ 0 or v1(1) > v2(1) holds when λ = 1, and

at least either
dv1(0)

dλ
≤ 0 or v1(0) < v2(0) holds when λ = 0.

(12)

3 Transport Sector

There are m ≥ 1 transport firms or carriers, which produce transport services. The unit is

normalized so that 1 unit of the services is necessary to ship 1 unit of the final good from

one region to the other. This implies that the demand for the transport service from region

i to region j 6= i is equal to that for the import of the final good in region j from region i,

that is, λinXij , which is expressed as a function of t1, t2 and λ:

Zi(t1, t2 : λ) ≡ λinXij =
λit

−σ
i (σ − 1)

(
σθi − λi + λjt

−σ
j

)
(σθ1 − λ1)(σθ2 − λ2) − λ1λ2t

−σ
1 t−σ

2

, (i = 1, 2, j 6= i) (13)

where (10) is used. On the other hand, the total supply of the service from region i to region

j 6= i is equal to
∑m

k=1 zk
i , where zk

i is the amount of the service in that direction provided

by the k-th carrier. The prices of the transport services, t1 and t2, are determined so that

the demand for each service becomes equal to its supply. In other words, they are given as

solutions to the following system:
Z1(t1, t2 : λ) =

m∑
k=1

zk
1

Z2(t1, t2 : λ) =
m∑

k=1

zk
2 .

(14)

Furthermore, the transport services are produced from the intermediate. It is convenient

to distinguish two components. One is the intermediate used as a fixed input: each carrier

needs to use F units of the intermediate no matter what the production levels are. Thus,

it bears the fixed cost whose amount is equal to F . The other is the intermediate used as a

variable input. The number or the scale of the equipments necessary to ship the final good,

such as cargo ships, freight cars and cargo trucks, evidently depends on the amount of the

shipment. The payment for them comprises a variable cost.

For this variable cost, furthermore, I impose an important assumption: there is a physical

requirement that transport equipments eventually return to the place of their departure.

Then, as has been explained in the introduction by a simple illustrative example, the variable

cost of carriers depends on the amount of shipment in one of the two directions, the amount

that is larger than the other, namely, max[zk
1 , zk

2 ]. In addition, it is assumed that the variable
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cost is proportional to zk
i when zk

i ≥ zk
j (j 6= i) with the proportionality constant being equal

to c.

Recalling that carriers receive pτi ≡ p(ti − 1) for 1 unit of the transport service from

region i to region j 6= i, we can write down the k-th carrier’s profit as

πk ≡ p(t1 − 1)zk
1 + p(t2 − 1)zk

2 − c max[zk
1 , zk

2 ] − F. (15)

Each carrier chooses its level of production given the other carriers’ levels à la Cournot, that

is, it maximizes its profit subject to

zk
i + Z−k

i = Zi(t1, t2 : λ) (i = 1, 2), (16)

where Z−k
i is the amount of the transport services from region i to region j 6= i produced

by the other firms, i.e., Z−k
i ≡

∑
l 6=k zl

i.

In its decision making, each carrier anticipates how its production levels affect the trans-

port prices. Totally differentiating each of the two equations in (14) and solving the derived

system simultaneously, we obtain
∂t1

∂zk
1

∂t2
∂zk

1

∂t1
∂zk

2

∂t2
∂zk

2

 =
1

Z00

 Z22 −Z21

−Z12 Z11

 , (17)

where Zij ≡ ∂Zi(t1, t2 : λ)/∂tj and Z00 ≡ Z11Z22 − Z12Z21 (i = 1, 2; j 6= i). Here, take a

look at Zij more closely. Since Zi(t1, t2 : λ) = λinXij , changes in the transport prices are

transmitted to Zi(t1, t2 : λ) only through Xij . As is clear from (3), t1 and t2 affect Xij via

three channels: first, directly; second, through Yj ; and finally, through Pj . It is not plausible,

however, that the carriers take into account such far-flung effects as those of the changes

in regional incomes and price indices. More appropriate description would be that they

consider only the direct effects, or, in other words, that they are ‘regional income takers’

and ‘price index takers’. Under this assumption, they evaluate Zii at −σZi(t1, t2 : λ)/ti

while Zij at 0 (i = 1, 2; j 6= i). If this is the case, we have
∂ti

∂zk
i

= − ti
σZi(t1, t2 : λ)

∂ti
∂zk

j

= 0

(i = 1, 2, j 6= i) (18)

by (17). The regional income and price index taker assumption is not only appropriate for

a description of the real world but also helpful in keeping the model simple.

In the rest of the paper, furthermore, we will focus on the symmetric equilibria in which

all the carriers produce the same amounts of the transport services. Let us use the asterisk

to denote the variables at the symmetric equilibrium. By definition, we have

m∗z∗i = Zi(t∗1, t
∗
2 : λ) (i = 1, 2) (19)
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for given λ.

Finally, the number of carriers is determined by free entry and exit. To keep the model

tractable, I ignore the integer constraint. Then, the 0-profit condition prescribes

p
(
t∗1−1

)
Z1(t∗1, t

∗
2 : λ)+p

(
t∗2−1

)
Z2(t∗1, t

∗
2 : λ)−c max

[
Z1(t∗1, t

∗
2 : λ), Z2(t∗1, t

∗
2 : λ)

]
−m∗F = 0.

(20)

4 Symmetric Distribution Pattern

In this section, we examine the equilibrium at the symmetric distribution with λ = 1/2 and

the condition for a symmetry breaking.

4.1 Short-Run Equilibrium

First of all, let us derive the short-run equilibrium realized when the distribution of en-

trepreneurs is symmetric or almost symmetric. Without loss of generality, suppose that

λ ≥ 1/2. The analysis is made up of two steps. First, we consider the situation in which all

the competitors of one carrier, the k-th carrier, are producing the same amounts of the trans-

port services in the following two senses; the same amounts among carriers (zl
i = zh

i , h 6= l)

and the same amounts with respect to the two directions of shipment (zl
i = zl

j , j 6= i). It

will be shown that the best strategy of the k-th carrier is to do the same as the competitors

do. Second, because this result gives a justification for us to limit our attention to the case

in which the amounts of the services produced by each firm are equal with respect to the

directions of shipment, we solve the k-th carrier’s profit maximization problem with the

constraint of zk
i = zk

j . The solutions are then evaluated under the supposition that all the

carriers are symmetric.

Let us begin with the first step. All the carriers except the k-th produce z0 units of z1

and z0 units of z2. Suppose that the shipment of the k-th carrier is not balanced: without

loss of generality, we assume that zk
1 < zk

2 . Then, can it raise the profit by increasing zk
1?

Using (18), we obtain

∂πk

∂zk
1

= p

[
t′1

{
1 − zk

1

σZ1(t′1, t
′
2 : λ)

}
− 1

]
∂πk

∂zk
2

= p

[
t′2

{
1 − zk

2

σZ2(t′1, t′2 : λ)

}
− 1

]
− c,

(21)

where t′1 and t′2 represent particular levels of transport prices corresponding to this unbal-

anced situation. Because zk
1 < zk

2 , zk
2 becomes a capacity constraint and thus increasing zk

2

involves an additional marginal cost, c. This is why ∂πk/∂zk
2 contains the negative term of

−c while ∂πk/∂zk
1 does not.

10



The market clearing prescribes

Zi(t′1, t
′
2 : λ) = zk

i + (m − 1)z0 (22)

because each of m − 1 carriers produces z0 units (see (16)). Using this, we can show that

∂πk/∂zk
1 always exceeds ∂πk/∂zk

2 as long as λ is sufficiently close to 1/2. Thus, the carrier

can raise its profit by either enhancing the production of zk
1 or reducing that of zk

2 . This

implies that it chooses the production levels with zk
1 = zk

2 .

Lemma 1. Suppose that all the carriers except the k-th produce z1 = z2 = z0 units of the

transport services. Then, there is ε > 0 such that the k-th carrier chooses the production

levels with zk
1 = zk

2 for any λ ∈ [1/2, 1/2 + ε].

The proof is relegated to the appendix.

Because the k-th carrier chooses zk
1 and zk

2 with zk
1 = zk

2 , its problem is to maximize the

profit given by (15) with the constraint that zk
1 = zk

2 . It is straightforward to derive the first

order condition. Furthermore, recall that we focus on the symmetric equilibrium in which

all the carriers produce the same amounts of the transport services, that is, z∗1 units of z1

and z∗2 units of z2. Applying (19) and z∗1 = z∗2 to the first condition yields

tS1 + tS2 =

[
2σ + c(σ − 1)

]
mS

σmS − 1
, (23)

where the superscript S refers to the equilibrium at the symmetric or almost symmetric

distribution pattern. What is more, because Z1

(
tS1 , tS2 : λ

)
= Z2

(
tS1 , tS2 : λ

)
(see (19)), (13)

implies that

(σ − 1)
[
(1 − λ)2

(
tS1

)σ − λ2
(
tS2

)σ
]

+ σλ(1 − λ)
(
tS1 − tS2

)
= 0. (24)

Finally, the 0-profit condition, (20), is reduced to

[
2σ + c(σ − 1)

]
Z1

(
tS1 , tS2 : λ

)
− FmS(σ − 1)(σmS − 1) = 0, (25)

where Z1

(
tS1 , tS2 : λ

)
= Z2

(
tS1 , tS2 : λ

)
is used again. Those three equations give the equi-

librium prices and the equilibrium number of the carriers. Thus, we have established the

following proposition.

Proposition 1. There is ε > 0 such that there exists an equilibrium with zk
1 = zk

2 = zS for

all k and for any λ ∈ [1/2, 1/2 + ε]. The equilibrium prices and the equilibrium number of

the carriers are given as the solutions of the system consisting of (23) to (25).

11



Next, let us examine the special case of the symmetric distribution pattern, λ = 1/2.

First of all, it immediately follows from Proposition 1 and (23) that there exists a unique

equilibrium with

t̄S =

[
2σ + c(σ − 1)

]
m̄S

2
(
σm̄S − 1

) > 1, (26)

where t̄S and m̄S represent the values of tS and mS when λ = 1/2, respectively. It is

straightforward to see that t̄S decreases with m̄S : when the sector is more competitive, the

equilibrium price becomes lower. This is a standard result of the Cournot oligopoly model.

Furthermore, (25) gives m̄S as a solution to

2
[
2σ + c(σ − 1)

]
2 + σm̄S(σ − 1)(2 + c) + 2α(σ − 1)(σm̄S − 1)

− Fm̄S = 0, (27)

where

α ≡

[
m̄S

{
2σ + c(σ − 1)

}
2(σm̄S − 1)

]σ

.

Thus, we have established the following result:

Corollary 1. When λ = 1/2, there is a unique equilibrium with t1 = t2 = t̄S and m = m̄S.

The two variables are implicitly determined by (26) and (27).

It is easily verified that

dm̄S

dc
< 0,

dm̄S

dF
< 0 and

dm̄S

dσ
< 0. (28)

Notice that t̄S decreases with m̄S , that ∂t̄S/∂c > 0 and that ∂t̄S/∂F = 0. Therefore, it

immediately follows from (28) that

dt̄S

dc
> 0 and

dt̄S

dF
> 0. (29)

The direction of the change in t̄S with respect to σ is ambiguous. Numerical simulation,

however, suggests the following. When c is relatively large, t̄S increases with σ (see Fig.

1 (a), which describes the case with c = 1 and F = 0.01). When c is relatively small, t̄S

first increases and then decreases (see Fig. 1 (b), which depicts the case with c = 0.1 and

F = 0.01).

4.2 Long-Run equilibrium

As has been mentioned, a distribution pattern is supported by a long-run equilibrium if

v1(λ) = v2(λ), provided that λ ∈ (0, 1). It is straightforward to see that this is satisfied

at the symmetric distribution pattern, λ = 1/2, and therefore, it is a long-run equilibrium

pattern. Thus, the rest of this section is devoted to the examination of the stability of the

12



symmetric distribution pattern. Henceforth, the argument λ of vi’s is often suppressed for

shortness’ sake as long as it yields no confusion, and, in addition, all the derivatives are

evaluated at λ = 1/2 unless otherwise mentioned.

Before proceeding to the analysis of stability, we need to introduce one additional as-

sumption. Recall that the stability is determined by whether an entrepreneur (or more

preciously, an infinitesimally small mass of entrepreneurs) becomes better off when she re-

locates. Theoretically, her relocation (change in λ) affects the equilibrium number of the

carriers operating in the transport sector, mS (through (25)), which in turn influences the

prices of the transport services, tS1 and tS2 (through (23) and (24)). Notwithstanding, I treat

mS as a constant as far as the stability of the equilibrium distribution pattern is concerned.

There are three justifications. First, the entry to and exit from the transport sector often

take a long period of time: they will take place after all the adjustments of consumers’

locations have finished. Therefore, to judge the stability of the equilibrium pattern, we can

focus on the period of time that is not too long for the carriers’ entry and exit to occur

but is long enough for the entrepreneurs’ location changes to be completed. Second, it is

not likely that an entrepreneur, when making the decision about the relocation, takes into

account the fact that the number of the active carriers changes if she relocates. Rather,

she would take it for granted that her action gives no impact on it. Third, the assumption

makes the analysis much more tractable.

Applying this assumption, we can easily determine the directions of changes in the trans-

port prices at or near the symmetric distribution. Totally differentiating (23) and (24)

provided that mS is fixed yields

dtS1
dλ

=
4(σ − 1)

(
tS

)σ

σ
[
1 + (σ − 1)

(
tS

)σ−1
] > 0 and

dtS2
dλ

= −dtS1
dλ

< 0

(30)

at λ = 1/2. The result is because as a region gets bigger, the demand for the shipment from

that region to the other swells while that in the opposite direction shrinks.

Now, we can show that the condition for the stability represented in the first line of (12)

is rewritten in terms of the relative levels of indirect utilities, v̂(λ) ≡ v1(λ)/v2(λ) (in this

paper, the circumflex always refers to the ratios of the variables with respect to region 1 to

those with respect to region 2):

Lemma 2. The symmetric distribution pattern is a stable equilibrium pattern if and only if

dv̂(1/2)/dλ ≤ 0.

The proof is relegated to the appendix.
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Now, we are ready to examine the stability condition, dv̂(1/2)/dλ ≤ 0. Let ŵ ≡ w1/w2

and P̂ ≡ P1/P2. Then, (11) implies that

dv̂

dλ
=

dŵ

dλ
− dP̂

dλ
, (31)

because v̂ = ŵ = P̂ = 1 at λ = 1/2. Since our main concern is on the question of

how the possibility of the asymmetric transport costs affects the stability, it would be worth

separating the effects of the induced changes in the transport costs. To do so, it is convenient

to look at the change in the relative wage rate and the relative price index one by one.

Let us begin with the change in the wage rates. Equations (2) - (7), along with the facts

that Ŷ ≡ Y1/Y2 = 1, that θ̂ ≡ θ1/θ2 = 1 and that dtS2 /dλ = −dtS1 /dλ (see (30)) at λ = 1/2,

imply that

dŵ

dλ
= −

2σ
[
tS +

(
tS

)σ{
σ + (σ − 1)tS

}]
β
(
tS

)
tS

[
1 +

(
tS

)σ
] dtS1

dλ
+

(
tS

)σ − 1

1 +
(
tS

)σ

(
dŶ

dλ

∣∣∣∣
tS
1 const

− dθ̂

dλ

∣∣∣∣
tS
1 const

)
, (32)

with

dŶ

dλ

∣∣∣∣
tS
1 const

=
8
(
tS

)σ(1 + tS)

β
(
tS

)[
tS +

(
tS

)σ
] > 0,

dθ̂

dλ

∣∣∣∣
tS
1 const

=
4
[(

tS
)σ − 1

]
tS +

(
tS

)σ > 0,

where all the derivatives and tS are evaluated at λ = 1/2 and

β
(
tS

)
≡ 1 + σtS + (σ − 1)

(
tS

)σ
> 0.

Equation (32) indicates that the impact of the change in the distribution of entrepreneurs

on the relative wage rate is decomposed into three parts.

First, it affects the relative wage rate through the transport costs. Suppose that λ rises.

As we have seen in (30), t1 rises and t2 falls, which provokes the substitution between imports

and domestic products. The rise in t1, on the one hand, induces the region 2 consumers

to substitute the domestic products for the imports from region 1, which results in the fall

in w1 (the export price effect in terms of region 1) and the rise in w2 (the import price

effect in terms of region 2). The fall in t2, on the other hand, promotes the substitution

of the imports for the domestic products in region 1, which again lowers w1 (the import

price effect in terms of region 1) and enhances w2 (the export price effect in terms of region

2). Consequently, the relative wage rate declines. As we have explained before, however,

there is also an indirect effect through the changes in the regional incomes (regional income

effect). The two regions are sufficiently ‘alike’ in the sense explained in Section 2.2, the

regional income effect reinforces the direct effects just mentioned. Hence, the total effect on

the relative wage rate is negative, which is captured by the first term in (32).
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Second, the distribution of entrepreneurs affects the regional incomes even if the transport

cost remained the same. The relative regional income rises as a result of the increase in λ.

This is because of the demand linkage effect : when a region has more population, the demand

for the varieties produced in that region increases. This effect is represented by the term

dŶ /dλ
∣∣
tS
1 const

.

Third and finally, the change in the distribution of entrepreneurs is transmitted to the

wage rates through the change in the size of the home product bias effect even if the transport

costs remain unchanged. As more varieties come to be produced in a region, competition

among them becomes intensified. This counteracts the home product bias effect and raises θ

in that region. Therefore, the increase in λ results in the rise in θ̂. This effect is represented

by dθ̂/dλ
∣∣
tS
1 const

.

Next, we turn our eyes to the change in the price index. It is straightforward to see

dP̂

dλ
= − 2

(σ − 1)
[
tS +

(
tS

)σ
][

2
{(

tS
)σ − tS

}
+ (σ − 1)

dtS1
dλ

]
< 0, (33)

where again all the derivatives are evaluated at λ = 1/2. Two factors affect the ratio of the

price index. The first is a direct effect: as more entrepreneurs choose to locate in region 1,

the mass of varieties produced there increases, which lowers the relative price index. The

second is the effect through the change in the transport costs. When λ increases, t1 rises

and t2 falls. As a result, the region 1’s import from region 2 relatively falls compared to

that of the region 2’s import from region 1; and, consequently, the ratio of the price indices

falls. Both effects are negative and therefore the total effect is also negative.

Substituting the relevant expressions to (31) and arranging it yields

dv̂

dλ
=

2

β
(
tS

)
(σ − 1)(1 + tS)

[
t +

(
tS

)σ
][

2γ
(
tS

)
+ (σ − 1)δ

(
tS

)dtS1
dλ

]
(34)

where all the derivatives are evaluated at λ = 1/2, and

γ
(
tS

)
≡ 2

(
tS

)σ(σ − 1)(1 + tS)
[(

tS
)σ − 1

]
+ β

(
tS

)[(
tS

)σ − tS
][

σ + (2 − σ)
(
tS

)σ
]
,

δ
(
tS

)
≡ 1 − σ

(
tS

)σ[
σ + (σ − 2)tS

]
− 2

(
tS

)2σ−1[
σ2 + (σ − 1)2tS

]
.

If dtS1 /dλ were 0, the equation dv̂/dλ would give a conventional break point for the

symmetric distribution pattern. In that case, the pattern would be stable if γ
(
tS

)
≤ 0

and unstable otherwise. Notice that γ
(
tS

)
> 0 for tS that is sufficiently close to 1. This

is because γ(1) = 0 and dγ(1)/dtS = 8σ(σ − 1) > 0. On the other hand, we note that

γ
(
tS

)
< 0 for sufficiently high tS , because γ

(
tS

)
approaches negative infinity as tS goes

to infinity. Thus, the symmetric pattern is, for a given value of σ, stable if tS given by

(26) becomes sufficiently high while it is unstable if tS becomes sufficiently small. The
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conclusion that the high (low, resp.) transport cost tends to make the symmetric pattern

stable (unstable, resp.) is along the line of the conventional literature of the new economic

geography.

What is missing in the literature is, however, the term containing dt1/dλ at the square

brackets in (34). This term represents the effect through the change in the transport cost due

to the profit maximizing behaviors of the carriers. Since dt1/dλ > 0, this effect works toward

the direction to stabilize the symmetric pattern if δ
(
tS

)
< 0 and the direction to destabilize

it if δ
(
tS

)
> 0. Several observations follow with respect to δ

(
tS

)
. First, δ

(
tS

)
= (tS−1)2 > 0

for any tS at σ = 1. By continuity, it implies that δ
(
tS

)
> 0 for σ sufficiently close to 1.

Therefore, the transport cost effect works against the stabilization when σ is sufficiently

small. Second, δ
(
tS

)
< 0 for any σ > 2.2 Thus, the effect stabilizes the symmetric pattern

whenever σ > 2. Third, notice that dδ
(
tS

)
/dtS > 0. We have already seen that as c and/or

F rises, the equilibrium t̄S rises (see (29)) because fewer carriers come to operate in the

sector. Consequently, δ
(
tS

)
increases for given σ: as a result of the rise in c and/or F , it

becomes more likely that the transport effect works to destabilize the symmetric pattern.

We have established the following.

Proposition 2. i) The transport cost effect works to stabilize, rather than to destabilize,

the symmetric pattern if σ > 2; and furthermore, it works to destabilize the pattern if σ is

sufficiently small.

ii) As c and/or F rises, it becomes more likely that the transport cost effect works to desta-

bilize the symmetric pattern.

Finally, what can we say about the overall stability? To examine the stability in terms

of the three parameters, c, F and σ, is not straightforward because the key equations are

highly nonlinear and some of them give the solution only implicitly. Thus, the best strategy

would be to rely on some numerical analysis. Fig. 2 shows how c affects dv̂/dλ for a given

value of F = 0.01 and σ. The three panels describe the cases with different values of σ,

namely, σ = 1.5, σ = 2 and σ = 3. When σ is low (σ = 1.5), the symmetric pattern is

stable for small c but unstable for large c, that is, it ‘breaks’ when c is greater than a critical

value. When σ is high (σ = 2 or σ = 3), the symmetric pattern is stable even for sufficiently

small c: it never breaks. Thus, concerning the stability of the symmetric pattern, the size of

parameter c matters only when σ is low. The numerical simulation suggests that the same

conclusion applies to parameter F : its size matters only when σ is low; and in that case,

the higher F is, the more likely it is that the symmetric pattern becomes unstable.

2This is because 1 < σ(tS)σ[σ + (σ − 2)tS ].
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5 Agglomeration

In this section, let us focus on the case in which almost all the entrepreneurs are located in

region 1, that is, λ is sufficiently close to 1. The other polar case with λ being sufficiently

close to 0 is similarly analyzed. The short-run equilibrium is characterized first; and then

its sustainability is discussed.

5.1 Short-Run Equilibrium

When λ is sufficiently close to 1, we expect that carriers produce the transport service from

region 1 to region 2 more than that from region 2 to region 1 since most of the varieties are

produced in region 1, which implies that almost all the demand for transport services comes

from the consumers in region 2: most of the variants are produced in region 1. Indeed, it

turns out that there is an equilibrium in which all the carriers produce z∗1 and z∗2 units with

z∗1 > z∗2 for given λ.

This is shown through several steps. First, it is shown that no carrier has an incentive

to choose z1 and z2 with z1 < z2 when all the other carriers produce z0
1 and z0

2 units with

z0
1 > z0

2 . Second, the profit maximization problem of a representative carrier, which is

subject to the constraint z1 > z2, is solved. Here, I focus on the case of symmetric carriers

in the sense of (19): any of them produces z∗1 and z∗2 units. Third and finally, it is verified

that the solution to the maximization problem indeed satisfies z∗1 > z∗2 .

Let us begin with the first step by examining the profit maximization of a single carrier,

say the k-th carrier, when every other carrier produces z0
1 and z0

2 units, given λ. Suppose

that the k-th carrier produces zk
1 and zk

2 units with zk
1 ≤ zk

2 . Its marginal profits are

given by (21), because zk
2 becomes the capacity constraint. Furthermore, Zi(t′1, t

′
2 : λ) =

zk
i +(m− 1)z0

i , where t′1 and t′2 are the prices realized in this specific situation. In addition,

let t01 and t02 be the prices when all the carriers including the k-th produce z0
1 and z0

2 units.

If ∂πk/∂zk
1 > ∂πk/∂zk

2 for any zk
1 and zk

2 with zk
1 ≤ zk

2 , then the k-th carrier can raise its

profit by relatively increasing the production of z1 compared to that of z2. In this case,

therefore, the carrier is inclined to choose zk
1 and zk

2 with zk
1 > zk

2 , which I prove in the

following lemma.

Lemma 3. Suppose that all the carriers except the k-th produces z0
1 and z0

2 units of the

transport services with z0
1 > z0

2 . Then, as long as t01 > t02, the k-th carrier chooses the

production levels with zk
1 > zk

2 .

The proof is tedious and relegated to the appendix.
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Now, let us proceed to the second step. Because Lemma ?? guarantees, as long as t01 > t02,

that the k-th carrier has no incentive to choose zk
1 and zk

2 with zk
1 ≤ zk

2 , it suffices to solve

the profit maximization problem with the constraint zk
1 > zk

2 . The necessary condition is

given as
∂πk

∂zk
1

= p

[
t1

{
1 − zk

1

σZ1(t1, t2 : λ)

}
− 1

]
− c = 0

∂πk

∂zk
2

= p

[
t2

{
1 − zk

2

σZ2(t1, t2 : λ)

}
− 1

]
= 0.

(35)

Assuming the symmetry among carriers, we can obtain the following equations:

t∗1 = tA1 ≡
[
σ + c(σ − 1)

]
mA

σmA − 1

t∗2 = tA2 ≡ σmA

σmA − 1
.

(36)

Therefore, we have indeed t∗1 > t∗2, which is assumed in Lemma ?? as t01 > t02. Here, it is

worth noting that parameter c, the marginal cost of the binding transport service, plays a

critical role in the determination of the transport prices. At a limit case with c = 0, the two

transport prices become equal. As it rises, the divergence between them increases. Thus, c

corresponds to the degree of the asymmetry in the transport prices.

The last step is to verify that the solution is consistent with the supposition that z∗1 > z∗2 .

Take a look at the limit case with λ = 1. The total amounts of the transport services are

given as

Z1(t∗1, t
∗
2 : 1) =

σ − 1
σt∗1

, Z2(t∗1, t
∗
2 : 1) = 0. (37)

Since Z1(t∗1, t
∗
2 : 1)/m∗ > Z2(t∗1, t

∗
2 : 1)/m∗, we have z∗1 > z∗2 for λ = 1. Because no regime

change occurs, as has been discussed in Lemma ??, the solution to the maximization problem

is continuous. Consequently, for λ sufficiently close to 1, it must still hold that z∗1 > z∗2 .

These steps establish the following result:

Proposition 3. There is ε > 0 such that for any λ ∈ [1 − ε, 1], there exists an equilibrium

with zk
1 = zA

1 and zk
2 = zA

2 for all k with zA
1 > zA

2 . The equilibrium prices satisfy (36).

Finally, let us examine the special case of the agglomeration, namely, the case with λ = 1.

Substituting (36) and (37) into (20) yields m = m̄A ≡ 1/µ, where µ ≡
√

Fσ is a parameter

which measures the size of the fixed cost. The transport prices are, consequently, given by

t1 = t̄A1 ≡ σ + c(σ − 1)
σ − µ

t2 = t̄A2 ≡ σ

σ − µ
.

(38)

Corollary 2. When λ = 1, the equilibrium prices and the number of carriers are given by

t̄A1 and t̄A2 , and m̄A, respectively.

18



5.2 Long-Run Equilibrium

As has been mentioned earlier, the agglomeration pattern with λ = 1 is supported by the

long-run equilibrium if v1(1) ≥ v2(1), and if so, it is stable if at least either dv2(1)/dλ ≥ 0

or v1(1) > v2(1) holds. Recall that the condition dv2(1)/dλ ≥ 0 matters only when v1

and v2 happen to become equal to each other at the agglomeration pattern. Because there

is no reason to believe that such is an important and often observed situation in the real

world, I rather focus on the case with v1(1) > v2(1). In short, the case with v1(1) =

v2(1) is disregarded as a singular situation. According to the terminology in the literature,

furthermore, I say that the agglomeration pattern is sustainable when it is supported as a

stable equilibrium pattern, that is, when v1(1) > v2(1), and unsustainable when v1(1) <

v2(1). To put it another way, it is sustainable when v̂(1) > 1 and unsustainable when

v̂(1) < 1, where v̂(1) turns out to be equal to

v̂(1) =
σt̄A1

(
t̄A2

)σ(1 + t̄A1 )

1 + σt̄A1 +
(
t̄A1

)σ(
t̄A2

)σ(σ − 1)
. (39)

Our goal is to find how this sustainability is affected by parameters, c, σ and µ. To

begin with, the next result immediately follows from (39) (the proof is again relegated to

the appendix):

Proposition 4. i) When σ ≤ 2, the agglomeration pattern is sustainable for any c and µ.

ii) When σ > 2, it is unsustainable for sufficiently large c.

The reason why sufficiently large c makes the agglomeration pattern unsustainable is

not obvious. Indeed, c is related to the sustainability in a quite complicated way. The first

thing to note is that it affects the sustainability only through t̄A1 (as c rises, t̄A1 rises as (38)

indicates): (39) shows that v̂(1) does not depend on c directly. Therefore, in order to answer

the question of how c affects the sustainability, it suffices to study the impact of the change

in t̄A1 on v̂(1), given that t̄A2 is fixed.

The impact is decomposed to that on the wage rates and that on the price indices, as

before. On the one hand, the relative wage rate, ŵ ≡ w1/w2, decreases with t̄A1 . Too see

this, note that

w1 =
1

nσ

(
Y1 +

Y2

t̄A1

)
=

1 + t̄A1
nt̄A1 (σ − 1)

w2 =
1

nσ

[(
t̄A1

)σ−1
Y2 +

Y1

(t̄A2 )σ

]
=

(
t̄A1

)σ−1
[
σ − 1 +

(
t̄A1

)−σ(
t̄A2

)−σ(1 + σt̄A1 )
]

nσ(σ − 1)
.

(40)

Now, we suppose that t̄A1 rises. First, this directly affects the wage rates through the

substitution between the import and the domestic products, namely, through the export
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price effects and the import price effects: w1 falls by the export price effect while w2 rises

by the import price effect. Second, these changes alter the regional incomes: Y1 declines

and Y2 increases. These effects are shown by the terms between the two equality signs in

each equation of (40): the direct effects (the export price effect for w1 and the import price

effect for w2) come through the change in t̄A1 and the indirect effects (the regional income

effects) come through the changes in Y1 and Y2. For w1, the sum of the export price effect

and the effect of the decline in Y1 dominates the effect of the rise in Y2 and therefore the

total effect is negative: w1 decreases with t̄A1 . For w2, however, the direction of the overall

change is ambiguous. When σ > 2, the substitution is so large that the sum of the import

price effect and the effect of the rise in Y2 dominates the effect of the decline in Y1, and as

a result, w2 increases. When σ is sufficiently close to 1, to the contrary, the decline in Y1

gives a severe impact and consequently, w2 declines. Yet even if w2 declines, the scale of

the decline is relatively small compared to that of the decline in w1. Therefore, ŵ ≡ w1/w2

decreases.

On the other hand, the relative price index, P̂ ≡ P1/P2, also decreases with t̄A1 . As t̄A1

rises, varieties, all of which are imported from region 1, become more expensive in region

2. Consequently, the price index in region 2, P2 = σt̄A1 n
1

σ−1 /(σ − 1), rises. Because t̄A1 does

not affect the price index in region 1, P1 = σn
1

σ−1 /(σ − 1), P̂ falls.

To sum up, as a result of the rise in t̄A1 , both the relative wage rate and the relative

price index fall. Because the two forces work on the relative indirect utility, v̂(1), in the

opposite directions, therefore, this information is not sufficient to determine whether v̂(1)

increase or not. However, it can be verified that when t̄A1 is large, the relative wage rate

declines more rapidly than the relative price index, which results in the decline of v̂(1).

Then, for sufficiently large t̄A1 , that is, for sufficiently large c, v̂(1) becomes lower than 1 and

the agglomeration pattern becomes unsustainable.

Some numerical simulation analyses may be helpful for us to obtain a clearer image of

the impacts of c on the sustainability. Fig. 3 shows how v̂(1) changes as c increases, for

given values of σ and F = 0.1. The four panels describe the cases with different values of

σ. First, when σ < 2 (the first panel shows the case with σ = 1.8), v̂(1) increases with

c and approaches positive infinity. Because v̂(1) > 1 at c = 0, the agglomeration pattern

is sustainable for any c ≥ 0. Second, when σ is of an intermediate size (the second panel

describes the case with σ = 2.2), v̂(1) > 1 at c = 0 and v̂(1) first increases and then decreases.

Because it eventually goes to 0, there is a critical value c∗ such that v̂(1)
>=
<

1 if c
<=
>

c∗.

Consequently, the agglomeration pattern is sustainable for c < c∗ while unsustainable for

c > c∗. Finally, when σ is large, v̂(1) decreases with c. If σ is moderately large (the case

with σ = 3 is described by the third panel), v̂(1) > 1 at c = 0. Therefore, there is a critical
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value c∗ explained above. If σ is too large (the case with σ = 7 is depicted by the last panel),

however, v̂(1) < 1 at c = 0. Thus, v̂(1) < 1 for any c ≥ 0: the agglomeration pattern is

unsustainable for any c ≥ 0.

We can obtain similar results for the change in F . Fig. 4 shows that, given c = 5, the

agglomeration pattern is sustainable for any F ≥ 0 when σ < 2 (see the first panel with

σ = 1.8), that it is sustainable for F < F ∗ but unsustainable for F > F ∗ when σ is of an

intermediate size (see the second panel with σ = 2.3), and that it is unsustainable for any

F when σ is large (see the last panel with σ = 3).

Finally, Fig. 5 describes the loci of (F, c) that makes v̂(1) equal to 1 for given values of

σ. Because ∂v̂(1)/∂c < 1 at v̂(1) = 1, v̂(1) < 1 at the area above each locus while v̂(1) > 1

at the area below it. Therefore, the agglomeration pattern is more likely to be sustainable

when c is lower. This result is consistent with our earlier finding. Furthermore, the figure

also suggests that lower σ is more likely to be associated with the sustainability. Lastly,

the effect of F is not necessarily monotone. To see this, consider the case with σ = 3 and

c = 0.65, for instance. For small F (F < 0.0211) and large F (F > 0.171), we have v̂(1) > 1:

the agglomeration pattern is unsustainable. For the intermediate values of F , however,

v̂(1) < 1 and therefore, it is sustainable. Nonetheless, this non-monotonicity occurs only

when c is sufficiently small: when c is large enough, v̂(1) < 1 for any F .

The next observation summarizes these simulation results.

Observation 1. As the varieties become more substitutable (σ becomes higher) and/or the

transport costs become more asymmetric (c becomes higher), one find sustaining the agglom-

eration pattern become more difficult.

6 Concluding Remarks

This paper has explored the impacts of the asymmetry of transport costs with regard to

the directions of shipments upon economic geography. In doing so, we have focused on the

asymmetry arising from the optimizing behavior of transport firms: they charge different

prices for the transport services involving shipments in different directions in response to the

difference in the marginal costs of shipment and the price elasticities of the demands. Two

cases are studied: the case where the economic activities are distributed equally between

regions and the case where they are concentrated in one region. It has been shown that higher

elasticity of substitution in consumers’ preference makes the symmetric distribution pattern

more likely to occur while the agglomeration pattern less likely to occur. Furthermore, the

higher the marginal cost of shipment associated with the binding capacity, the less likely
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it is that the symmetric distribution pattern and agglomeration pattern are supported as a

stable long-run equilibrium patterns.
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Appendix

Proof of Lemma 1.
Suppose that zk

1 < zk
2 . This immediately implies that Z1(t′1, t′2 : λ) < Z2(t′1, t′2 : λ) (see

(22)). However, (13) implies that

Z1(t′1, t
′
2 : 1/2)

Z2(t′1, t
′
2 : 1/2)

=
1 + (σ − 1)(t′2)

σ + σt′2
1 + (σ − 1)(t′1)σ + σt′1

.

Therefore, t′1 > t′2 in a sufficiently small neighborhood of λ = 1/2, that is to say, there exists
ε for which t′1 > t′2 for any λ ∈ [1/2, 1/2 + ε]. On the other hand, zk

1 < zk
2 together with

(22) implies that 1 − zk
1/σZ1(t′1, t

′
2 : λ) > 1 − zk

2/σZ2(t′1, t
′
2 : λ). These findings establish

that ∂πk/∂zk
1 > ∂πk/∂zk

2 for any λ ∈ [1/2, 1/2 + ε]. Therefore, the carrier can always raise
its profit either by augmenting zk

1 or by reducing zk
2 . Consequently, the profit is maximized

at (zk
1 , zk

2 ) with zk
1 ≥ zk

2 . By a similar argument, however, we can prove that the profit
maximization prescribes zk

1 ≤ zk
2 . Hence, zk

1 = zk
2 at the equilibrium. QED

Derivation of (28).
Notice that totally differentiating (27) yields

kmdm̄S + kcdc + kF dF + kσdσ = 0,

where

km ≡ −F − 2ζ1σ(m̄S)−1(σ − 1)
[
2σ + c(σ − 1)

][
2α(m̄S − 1) + m̄S(2 + c)

]
< 0,

kc ≡ −4ζ1(σ − 1)(σm̄S − 1)
[
1 + α(σ − 1)2

]
< 0,

kF ≡ −m̄S < 0, and

kσ ≡ −ζ1(ζ2 + ζ3 + ζ4) < 0,

with

ζ1 ≡
[
2 − 2α(σ − 1) + σm̄S(σ − 1)(2 + c + 2α)

]−2

> 0

ζ2 ≡ 2(2 + c)
[
2(m̄Sσ2 − 1) + cm̄S(σ − 1)2

]
> 0,

ζ3 ≡ 4α
[
2(σ − 1) + 2σ2(m̄S − 1) + c(σ − 1)

{
m̄S(σ − 1) + σ(m̄S − 1)

}]
> 0, and

ζ4 ≡ 4α(σ − 1)(σm̄S − 1)
[
2σ + c(σ − 1)

]
ln

m̄S
[
2σ + c(σ − 1)

]
2(σm̄S − 1)

> 0.

Here, the inequalities hold because σ > 1 and m̄S ≥ 1.

Proof of Lemma 2.
What we have to show is that dv1/dλ ≤ 0 and dv2/dλ ≥ 0 if and only if dv̂/dλ ≤ 0. The
‘only if’ part is self-evident. To prove the ‘if’ part, I show that dv1/dλ = −dv2/dλ. For
that purpose, it is convenient to treat vi(λ) represented by (11) as functions of t1, t2 and
λ. First, the short-run equilibrium condition (23) implies that dtS1 /dλ = −dtS2 /dλ. Second,
v1 and v2 are symmetric with respect to t1 and t2 in the sense that ∂v1/∂t1 = ∂v2/∂t2 and
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∂v1/∂t2 = ∂v2/∂t1. Third and finally, v1 and v2 are also symmetric with respect to λ1 and
λ2, that is, ∂v1/∂λ = ∂v2/∂(1 − λ) = −∂v2/∂λ. Consequently, we have

dv1

dλ
=

dt1
dλ

∂v1

∂t1
+

dt2
dλ

∂v1

∂t2
+

∂v1

∂λ
= −

(
dt2
dλ

∂v2

∂t2
+

dt1
dλ

∂v2

∂t1
+

∂v2

∂λ

)
= −dv2

dλ
.

Then, it is straightforward to see that dv1/dλ has the same sign as dv̂/dλ. QED

Proof of Lemma 3.
Suppose that zk

1 ≤ zk
2 . The equations (21) imply that

∂πk

∂zk
1

− ∂πk

∂zk
2

= p

[
t′1

{
1 − zk

1

σZ1(t′1, t
′
2 : λ)

}
− t′2

{
1 − zk

2

σZ2(t′1, t
′
2 : λ)

}]
+ c.

On the one hand, the term in the first braces is greater than that in the second. This is
because the two inequalities z0

1 > z0
2 and zk

1 ≤ zk
2 imply that

zk
1

zk
2

<
z0
1

z0
2

, (41)

which is a necessary and sufficient condition for zk
1/σZ1(t′1, t

′
2 : λ) < zk

2/σZ2(t′1, t
′
2 : λ). To

prove that t′1 > t′2, on the other hand, notice that (41) implies that

Z1(t′1, t
′
2 : λ)

Z2(t′1, t
′
2 : λ)

=
(m − 1)z0

1 + zk
1

(m − 1)z0
2 + zk

2

<
mz0

1

mz0
2

=
Z1(t01, t

0
2 : λ)

Z2(t01, t
0
2 : λ)

. (42)

Now, suppose that t′1 ≤ t′2. If t01 > t02, it turns out that

Z1(t′1, t
′
2 : λ)

Z2(t′1, t
′
2 : λ)

=
λ

[
(σ − 1)λ(t′2)

σ + (1 − λ)(1 + σt′2)
]

(1 − λ)
[
(σ − 1)(1 − λ)(t′1)σ + λ(1 + σt′1)

]

≥
λ

[
(σ − 1)λ(t02)

σ + (1 − λ)(1 + σt02)
]

(1 − λ)
[
(σ − 1)(1 − λ)(t01)σ + λ(1 + σt01)

] =
Z1(t01, t

0
2 : λ)

Z2(t01, t
0
2 : λ)

,

which contradicts (42). Hence, t′1 > t′2. QED

Proof of Proposition 4.
i) If σ ≤ 2, we have

σt̄A1

[(
t̄A2

)σ − 1
]

+ σ
(
t̄A2

)σ
[(

t̄A1
)2 −

(
t̄A1

)σ
]

> 0 > −
[(

t̄A1
)σ(

t̄A2
)σ + 1

]
,

because t̄A2 > 1 and
(
t̄A1

)2 −
(
t̄A1

)σ ≥ 0. The inequality implies that v̂(1) > 1.
ii) As c expands unboundedly with the other parameters being kept constant, t̄A1 approaches
positive infinity whereas t̄A2 remains the same. Then, v̂(1) approaches σ/

[
(σ − 1)

(
t̄A1

)σ−2
]
,

which goes to 0 if σ > 2. By continuity, therefore, v̂(1) < 1 for sufficiently large c. QED

25



2 3 4 5 6

1.2

1.4

1.6

2 3 4 5 6

1.06

1.08

(a) The Case with c = 1 and F = 0.01

(b) The Case with c = 0.1 and F = 0.01

Fig. 1. Effect of σ on tS-

tS-

tS-

σ

σ



10 20
-1

1

2

3

4

5

10 20

-1.5

-1

-0.5

2 4

-15

-10

-5

(b) The Case with σ = 2

(a) The Case with σ = 1.5

(c) The Case with σ = 3

Fig. 2. Effect of c on dˆ / dλ when F = 0.01v

c

c

c

dˆ / dλv

dˆ / dλv

dˆ / dλv



10 20 30

2

3

4

10 20

1.2

1.4

1 2

0.5

1

5 10

1

c*

c*

c

c

c

c

ˆ v (1)

ˆ v (1)

ˆ v (1)

ˆ v (1)

(a) The Case with σ = 1.8

(d) The Case with σ = 7

(c) The Case with σ = 3

(b) The Case with σ = 2.2

Fig. 3. Effect of c on v (1) when F = 0.1ˆ 



0.2 0.4 0.6 0.8

2

3

4

0.2 0.4 0.6

1.1

1.2

0.2 0.4 0.6 0.8

0.3

0.4

(a) The Case with σ = 1.8

(b) The Case with σ = 2.3

(c) The Case with σ = 3

F

F

FF*

ˆ v (1)

ˆ v (1)

ˆ v (1)

Fig. 4. Effect of F on v (1) when c = 5ˆ 



σ = 7 σ = 5

σ = 3

F

Fig. 5. The Loci of v (1) = 1ˆ 

0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.65

0.8
c


	asymmetric10_23
	takahashi_WP
	takahashi
	Figures




