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Abstract

This paper proposes a theoretical method for qualitative trend curve analysis,

supposing the situation that data quality is poor and the amount of data

is very large. Here the ‘trend curve’ means, for example, a sequence of

monthly temperature over twelve months at a location. The paper first

defines ‘qualitative’ characteristics of a trend curve in terms of isomorphic

relations. Second, these concepts are extended to macroscopic qualitative

similarity. Third, using the macroscopic qualitative similarity, the paper

proposes a method for categorical clustering and a method for measuring

the magnitude of qualitative change in trend curves. Fifth, the proposed

theoretical method is implemented in a GIS environment and an exploratory

tool (a computer program called QuaT) is developed. Sixth, this tool is

applied to the analysis of land cover change in the Persian Gulf Area between

1982 and 1993. Last, the paper discusses the limitations of the proposed

method.
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Figure 1: An illustrative example of trend curves, categorical clustering and
qualitative changes

1 Introduction

The objective of this paper is to propose a theoretical as well as practical

method for analyzing qualitative characteristics of trend curves that often

appear in spatio-temporal analysis, supposing the situation that data qual-

ity is poor and the amount of data is very large (such as remotely sensed

data). Here the ‘trend curve’ means, for example, a sequence of monthly

temperature over twelve months at a location (Figure 1). First, we develop

a method for clustering trend curves with respect to ‘qualitative’ charac-

teristics of the trend curves (the colored circles in Figure 1). Second, we

develop a method for detecting ‘qualitative’ change in trend curves between

two periods in time, say 1980, and 1990. The main concept used in the these

methods is ‘qualitative similarity’ of trend curves, and this concept is fully

discussed and formalized mathematically in this paper. Third, we implement

these theoretical methods in a GIS environment and develop a user-friendly

exploratory tool (a computer program, called QuaT).

We develop the above method as the first-phase analysis in the context

of the two-phase analysis: the first-phase analysis is exploratory and the sec-

ond phase analysis is explanatory. The two-phase analysis is motivated by

the recent progress in modern data acquisition technologies, such as remote

sensing, global positioning systems and mobile GIS. They bring us a huge

amount of data every month or everyday. In such an ‘excess’ data situation,

we are often buried in the data and have a difficulty in fixing a suitable ex-

planatory model or an appropriate hypothesis. To overcome this difficulty,
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we first carry out pre-analysis or data mining (Adriaans and Zantinge, 1996),

in which we attempt to find potential explanatory models using crude data.

The second-phase analysis is the ordinary (or classic) analysis, in which we

develop an explanatory model based upon the result of the first-phase anal-

ysis and test it with well adjusted data.

In the first-phase analysis, data quality is usually very poor, because data

are not adjusted enough, or sometimes the data quality is unknown. In this

wild situation, it is useless to apply ‘sophisticated’ analysis that is sensitive to

quantitative values. Rather, we need ‘simple’ analysis that is robust against

poor quality data. We also need efficient computational methods, because

a huge amount data requires much processing time and the first-phase anal-

ysis often requires fast processing. The method proposed in this paper is

developed for the first-phase analysis to satisfy these requirements.

The related literature is numerous. First, the trend curve analysis is dis-

cussed in depth in the time-series analysis (Anderson, 1994) that is applied

to meteorology (for example, Handcock and Wallis, 1994), hydrology (for

example, Rouhani and Wackernagel, 1990) and so forth. We note, however,

that those methods mostly deal with quantitative nature of time-series phe-

nomena; less attention is paid to qualitative nature. Second, the exploratory

analysis dates back Tukey (1977) in statistics, and it has been developed in

geographical analysis since the late 1980’s. Examples are Openshaw et al.

(1987), Haslett et al. (1987), Walker and Moore (1988) and Anslein et al.

(1993), among others. These methods (or tools), however, do not deal with

trend curves. Third, trend curves often appear in the analysis of remotely

sensed data, because they are periodically provided. A typical analysis of

such data is the analysis of seasonal land cover change, for example, DeFries

and Townshend (1994) and Millington et al. (1994). In these studies, the
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major effort is address to how to adjust data with ground truth data. We

consider that this type of analyses is carried out in the second-phase. As

mentioned in the above, we are concerned with the trend curve analysis in

the first phase and such an analysis is few in the related literature except for

Eastman and Fulk (1993) and Samson (1993).

2 Qualitative similarity between trend curves

Consider a continuous curve, f(t), defined on [0, T ], which is assumed to be

second order differentiable and d2f(t)/dt2 6= 0 (these assumptions are made

just for theoretical consideration; they will be relaxed in Section 5). We

classify the characteristic of f(t) in a sufficiently small neighborhood of t

according to whether f(t) is non-singular or singular at t, i.e. df(t)/dt 6= 0

or df(t)/dt = 0. When the former holds, we say that the local characteristic

of f(t) around t is a slope; when the latter holds, the local characteristic of

f(t) around t is a flat (Figure 2). Note that the local characteristic means the

characteristic of f(t) in a sufficiently small neighborhood around t, denoted

by Nε(t).

We further classify the flats according to d2f(t)/dt2 < 0 or d2f(t)/dt2 >

0. When the former holds, we say that the local characteristic of f(t) around

t is a peak; when the latter holds, the local characteristic of f(t) around t is a

bottom (Figure 2). In special cases at boundaries t = 0 and t = T , we define

a peak by limt→0+ df(t)/dt ≤ 0 and a bottom by limt→0+ df(t)/dt > 0 ; simi-

larly, a peak by limt→T− df(t)/dt ≥ 0 and a bottom by limt→T− df(t)/dt < 0.

For notational convenience we use C(f(t)) = S, F, P,B if the local character-

istic of f(t) around t is a slope, flat, peak and bottom, respectively (Figure

2).
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Figure 2: Two trend curves that are weakly isomorphic.

It should be noted that these local characteristics are qualitative in the

sense that a slope, a flat, a peak and a bottom remain a slope, a flat, a

peak and a bottom, respectively under a broad class of monotonically in-

creasing transformations. Stated precisely, if C(f(t)) = X in Nε(t), then

C(f(g(t))) = X in Nε(g(t)) and C(g(f(t))) = X in Nε(t) (X = S, F, P,B)

for any monotonically increasing function g.

Now let us consider two trend curves, f1(t) and f2(t) (the suffix i may

indicate different locations or the same location but different points in time),

and let (ti1, . . . , tini), (ti1 < . . . < tini) be the sequence of points in [0, T ]

at which either C(fi(tij)) = P or B holds, j = 1, . . . , ni, (ti1 = 0, tini =

T ), i = 1, 2 (Figure 2). Then we can describe a global characteristic of fi(t)

over [0, T ] by the sequence C(fi) = (C(fi(ti1)), . . . , C(fi(tini))), i = 1, 2. For

example, in Figure 2, C(f1) = (B, P,B, P,B, P,B).

For the two trend curves f1(t) and f2(t), we consider

Condition 1: C(f1) = C(f2).

Condition 1 means that if the jth flat in f1(t) is a peak (bottom), then

the jth flat in f2(t) is also a peak (bottom) for all j = 1, . . . , n1(= n2). For

example, in Figure 2, C(f1(t11)) = C(f2(t21)) = B; C(f1(t12)) = C(f2(t22)) =

P and so forth. When Condition 1 holds, we say that the two trend curves

f1(t) and f2(t) are weakly isomorphic, and denote this relation by f1(t) ∼
f2(t). Since C(f1) = (B, P,B, P,B, P,B) = C(f2) holds in Figure 2, these

two trend curves are weakly isomorphic.

The theoretical notion of the weak isomorphism has practical implica-

tions. In the real world we often have data whose acquisition time is in-
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accurately recorded. For instance, a watch equipped in a data acquisition

device may be inaccurate, or researchers forget to record the exact acquisi-

tion date. In such a situation, even if we observe the same phenomenon, we

obtain different trend curves f1(t) and f2(s) (t and s are used for indicat-

ing different time measures). Although they are different, it is quite likely

that the sequence of events is preserved over different time measures t and s.

Mathematically this implies that the time measure t of f1(t1j) and the time

measure s of f2(s2j) have the relation t1j = g(s2j) where g is a monoton-

ically increasing function. The weakly isomorphic trend curves imply that

the sequence of local characteristics is the same for the two different time

measures.

We next introduce a little stronger relation than the weakly isomorphic

relation. We order the attribute values of fi(tij), j = 1, . . . , ni from the

largest to the smallest, and let R(fi(tij)) be the rank of fi(tij) (i.e. the value

of fi(tij) is the R(fi(tij))th largest value among the values of fi(tij), j =

1, . . . , ni). Then we may describe a global characteristic of fi(t) over [0, T ]

by the sequence R(fi) = (R(fi(ti1)), . . . , R(fi(tini))), i = 1, 2. For example,

in Figure 3, R(f1) = (6, 2, 3, 1, 5, 4, 7). In terms of this sequence, we state

Condition 2: R(f1) = R(f2).

Note that Condition 2 includes Condition 1. Condition 2 implies that

if the jth flat in f1(t) is the kth highest flat in f1(t), then the jth flat in

f2(t) is also the kth highest flat in f2(t), and vice versa. For example, in

Figure 3, R(f1(t11)) = R(f2(t21)) = 6, R(f1(t12)) = R(f2(t22)) = 2, and so

forth. When the two trend curves f1(t) and f2(t) satisfy Condition 2, we

say that f1(t) and f2(t) are strongly isomorphic, and denote this relation by

f1(t) ≈ f2(t). The two trend curves in Figure 2 are not strongly isomorphic,
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Figure 3: Two trend curves that are strongly isomorphic.

but those in Figure 3 are strongly isomorphic (R(f1) = (6, 2, 3, 1, 5, 4, 7)

= R(f2)). Obviously, the strongly isomorphic relation implies the weakly

isomorphic relation but not converse.

The theoretical notion of the strongly isomorphic relation does not remain

a theoretical notion. In reality, it is likely that sensitivity of a sensor is

different from device to device, or it may deteriorate over time. As a result,

the observed attribute value u = f1(t) at t is not always comparable with

the attribute value v = f2(t) at t; the measures of u and v are likely to

be different or researchers observe attribute values in different manners. In

such a situation, even if we observe the same phenomenon, the observed

trend curves u = f1(t) and v = f2(t) are not identical. It is, however,

often plausible to assume that the ranks of attribute values at peaks and

bottoms are preserved for two different measures u and v. Mathematically

this implies that the measures u and v have the relation v = g(u) where g is

a monotonically increasing function.

This assumption, however, might not be acceptable when data acquisition

devices are very unstable. In such a wild case, it is safe to assume the

weakly isomorphic relation. In this sense, the weakly isomorphic relation is

a fundamental relation when we analyze poor quality data.

Both weakly and strongly isomorphic relations show qualitative similar-

ity between two trend curves. In the following discussion, when distinction

between the weakly isomorphic relation and the strongly isomorphic relation

is not necessary or analysis applies to both relations, we just refer to those

relations as isomorphic relations, or qualitative similarity, and denote it by

'.

6



Figure 4: Two trend curves that are not microscopically isomorphic but
macroscopically isomorphic.

3 Macroscopic qualitative similarity between

trend curves

When we defined the isomorphic relations, we assumed that a peak was a

peak no matter how small it was, but this assumption is arguable. For ex-

ample, consider two trend curves in Figure 4. These two curves are not

isomorphic, because the curve in panel (a) has 4 peaks, whereas the curve in

panel (b) has 3 peaks. We feel, however, that these two curves are ‘macro-

scopically’ isomorphic, because the number of ‘distinct’ peaks are the same

for the both curves.

To represent ‘macroscopic’ isomorphism, we first define the height of a

peak explicitly. Suppose that C(f(tj)) = P . From the definition of a peak, it

is obvious that C(f(tj−1)) = B and C(f(tj+1)) = B hold (Figure 5(a), that

is, a peak is always in between two adjacent bottoms. In relation to these

bottoms, we define the height, h(tj), of the peak at tj by

h(tj) = f(tj) − max{f(tj−1), f(tj+1)} (1)

(Figure 5(a); Okabe, 1982; Okabe and Masuda, 1984). Then we may define a

distinct peak as the peak whose height is greater than a threshold height, h∗,

and we refer to such a peak as an h∗-distinct peak. When we pay attention to

a macroscopic nature of the trend curve fi(t), we ignore peaks whose height

is less than h∗, or we pay attention to only h∗-distinct peaks. Mathematically

this implies that: if h(tj) ≤ h∗, the curve f(t) in tj−1 ≤ t ≤ tj+1 is replaced

with a monotone curve joining f(tj−1) and f(tj+1) (Figure 5(b)). The re-

sulting curve is denoted by f(t|h∗) and we say that f(t|h∗) is the h∗-distinct
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Figure 5: An h∗-distinct trend curve of f(t) ((a) f(t), (b) f(t|h∗)).

trend curve of f(t).

In terms of f(t|h∗), the statement that two trend curves f1(t) and f2(t)

are macroscopically (qualitatively) similar is precisely written as f1(t|h∗) '
f2(t|h∗); that is, two h∗-distinct trend curves are isomorphic. Note that

f(t) = f(t|0). Also note that deleting h∗-distinct peaks from an original

trend curve is similar to filtering in the Fourier analysis. As will be shown in

Section 5, however, our method is much simpler and faster than the Fourier

method.

The macroscopic similarity changes according to the value of h∗. To

illustrate this change, we depict two trend curves, f1(t|h∗) and f2(t|h∗) in

Figure 6. We notice that f1(t|0) ∼ f2(t|0). As h∗ increases, the isomorphic

relation changes. For 0 ≤ h∗ < 0.2, f1(t|h∗) ∼ f2(t|h∗) holds, but at h∗ = 0.2,

the isomorphic relation changes to f1(t|h∗) 6∼ f2(t|h∗), and this relation holds

for 0.2 ≤ h∗ < 0.7. For 0.7 ≤ h∗ < 1.3, f1(t|h∗) ∼ f2(t|h∗). For 1.3 ≤ h∗ <

1.4, f1(t|h∗) 6∼ f2(t|h∗). At h∗ = 1.4, two trend curves are isomorphic (one

h∗-distinct peak).

When we can fix a specific level h∗ of macroscopic similarity, we analyze

trend curves in terms of fi(t|h∗). Sometimes, however, we want to see overall

qualitative similarity from a low level (the lowest is h∗ = 0, i.e. microscopic

similarity) to a high level. To measure this overall qualitative similarity, we

may use the length of h∗ in which two trend curves are isomorphic. For ex-

ample, in Figure 6 (the lines on the right-hand-side), the heavy line segments

shows the range in which the isomorphic relation f1(t|h∗) ' f2(t|h∗) holds.

If the heavy line segment is long, we may consider that two trend curves

are qualitatively similar. We hence define the magnitude, M(fi, fk), of the
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Figure 6: h∗-distinct trend curves with respect to h∗.

overall qualitative similarity between fi(t|h∗) and fk(t|h∗) by

M(fi, fk) =
1

h∗
max

∫ h∗
max

0
δ(fi(t|x), fk(t|x))dx, (2)

where

δ(fi(t|x), fk(t|x)) =

{
1 if fi(t|x) ' fk(t|x),
0 if fi(t|x) 6' fk(t|x),

(3)

and h∗
max is the maximum value of h∗. M(fi, fk) takes a value between 0

and 1; M(fi, fk) = 0 implies that the isomorphic relation does not hold at

all for any value h∗ in [0, h∗
max]; M(fi, fk) = 1 implies that the isomorphic

relation holds for all values in [0, h∗
max] (the two trend curves are qualitaitvely

similar from the lowest level (h∗ = 0) to the highest level (h∗ = h∗
max)). In

the example of Figure 6, M(f1, f2) = 0.57.

4 Categorical classification and qualitative

change

We can utilize the isomorphic relation to classify trend curves categorically.

Let fis(t|h∗) be an h∗-distinct trend curve at a location i = 1, . . . , n in a time

period s = 1, . . . , p. We can classify the trend curves over space (i = 1, . . . , n)

into k classes, K = {K1, . . . , Kk} by the isomorphic relation '. That is,

fi(t|h∗) ' f ′
i(t|h∗) holds if and only if fi(t|h∗) and f ′

i(t|h∗) belong to the

same class Kj. In particular, when the isomorphic relation is the weakly

isomorphic relation (∼), trend curves are characterized by the number of

peaks, and so Kj is the class of trend curves which has j peaks.

We make two remarks on K. First, classes in K are categorical in the sense

that trend curves are classified by the qualitative similarity (the isomorphic

9



Figure 7: Qualitative change occurs in a trend curve.

relations). Second, we can control the number k of classes through h∗. As

the value of h∗ increases, the number of classes decreases.

Now we are ready to define ‘qualitative change’ in the trend curve fis(t|h∗)

at a location i(= 1, . . . , n) in a time period s(= 1, . . . , p). When fis(t|h∗) 6'
fis+1(t|h∗) holds, we say that qualitative change occurs in the trend curve at

a location i in a time period s (Figure 7).

Sometimes we wish to measure the magnitude of this qualitative change.

When fis(t|h∗) 6∼ fis+1(t|h∗) holds, recalling that the class Kj is the class

of trend curves which has j h∗-distinct peaks, the magnitude of the qualita-

tive change, D1(fis, fis+1), may be measured by the difference between the

numbers of peaks, i.e.

D1(fis, fis+1) = j − j′ for fis(t|h∗) ∈ Kj, fis+1(t|h∗) ∈ Kj′ . (4)

In the example of Figure 7, D1 = +1. Note that this measure is applicable

only to the weakly isomorphic relation. Recalling the overall qualitative

similarity defined by equation (2), we can define an alternative measure by

D2(fis, fis+1) = 1 − M(fis, fis+1). (5)

In the example of Figure 7, D2 = 0.7. This measure is more general than

D1 because it can be defined not only for the weakly isomorphic relation

but also for the strongly isomorphic relation. Using these measures, we can

detect where qualitative changes occur in a region. An actual example is

shown in Section 5.
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5 Implementation: program QuaT

Having shown the theory of how to detect qualitative changes in trend curves

over space and time, we now wish to implement this theory in a GIS envi-

ronment and develop an exploratory tool, called QuaT.

In the above theory, we assume that the function f(t) is continuous,

second order differentiable and df(t)/dt 6= 0. In practice, however, we usually

observe the value of f(t) at a finite number of points, t̂1, . . . , t̂m (filled circles

in Figure 8; note that t̂i used here should be distinguished from ti or tij (the

location of a peak or a bottom) in the above section). Since this function is

discrete, the above theoretical analysis is not directly applicable. It should

be noted, however, a few modifications make the above theoretical analysis

applicable. First, we can construct a continuous curve from f(t̂1), . . . , f(t̂m)

by joining f(t̂j) and f(t̂j+1) by a straight line segment (Figure 8). This

modification implies a linear interpolation. Second, we define a slope, a peak

and a bottom by:

C(f(t̂j)) = S if and only if f(t̂j−1) < f(t̂j) < f(t̂j+1)

or f(t̂j) > f(t̂j+1) > f(t̂j+1); (6)

C(f(t̂j)) = P if and only if f(t̂j−1) < f(t̂j) and f(t̂j) > f(t̂j+1); (7)

C(f(t̂j)) = B if and only if f(t̂j−1) > f(t̂j) and f(t̂j) < f(t̂j+1). (8)

In special cases at boundaries t = t̂1 and t = t̂m,

C(f(t̂1)) = P if and only if f(t̂1) > f(t̂2)

or f(t̂m−1) < f(t̂m); (9)

C(f(t̂1)) = B if and only if f(t̂1) < f(t̂2)

or f(t̂m−1) > f(t̂m). (10)
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Figure 8: A piece-linear trend curve.

By these modifications, we can apply the analysis of a continuous trend curve

f(t), 0 ≤ t ≤ T to the analysis of a discrete trend curve (f(t̂1), . . . , f(t̂m)).

Given these modifications, we can implement the method by the following

procedure.

Program QuaT

Step 0 (initial setting). Input data are: discrete trend curves fis(t̂j) (j =

1, . . . , m) at locations i = 1, . . . , n in time periods s = 1, . . . , p.

Step 1. Find peaks and bottoms in fis(t̂j|0), j = 1, . . . , m by equations (6)

- (10) (i = 1, . . . , n; s = 1, . . . , p).

Step 2. Compute the height of each peak in fis(t̂j|0), j = 1, . . . , m by

equation (1) (i = 1, . . . , n; s = 1, . . . , p).

Step 3. Construct fis(t̂j|h∗), j = 1, . . . , m (i = 1, . . . , n; s = 1, . . . , p).

Step 4. Classify fis(t̂j|h∗), j = 1, . . . , m (i = 1, . . . , n; s = 1, . . . , p) according

to an appropriate isomorphic relation (∼ or ≈), and display the resulting

classes over space.

Step 5. Compute the magnitude of qualitative change in fis (i = 1, . . . , n)

over time periods s = 1, . . . , p by equation (4) or (5), and display the mag-

nitude over space.

This program runs fast. The order of computational time in Step 1

is O(mnp), and that in Step 2 is also O(mnp). In Step 3, we order the

heights of the peak from the lowest to the highest, and this ordering re-

quires O(m log m) time for one trend curve. Thus the order in Step 3 is
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O(npm log m). Step 4 requires O(kn) time where k is the number of classes.

Step 5 requires O(kn). In theory, the order of the total computational time

is max{O(npm log m), O(kn)}. In practice, we suppose that the attribute

values in a region are given by raster type data (such as remotely sensed

data), the order of the number n of pixels representing a region is higher

than that of m, k and p. Thus, the total computational time is dominated

by n, implying that QuaT runs with the linear time order of the number of

locations.

6 Application of QuaT to the analysis of sea-

sonal land cover (NDVI) change in the Per-

sian Gulf Area between 1982 and 1993

We applied QuaT to the analysis of seasonal land cover change in the Per-

sian Gulf Area (E40◦ − 50◦, N27◦ − 37◦) between 1982 and 1993. The data

source was Pathfinder AVHRR Land Data Set (NOAA-7, -9 and -11) in

1982 and 1993 (Smith et al., 1997). The area consists of 100 by 100 pix-

els; consequently, one pixel represents a 0.1◦ by 0.1◦ region (approximately

8 km by 8 km). We used the NDVI (Normalized Difference Vegetation In-

dex; roughly speaking, NDVI indicates the amount of vegetation) over twelve

months, which gave the trend curves fis(t̂j), j = 1, . . . , 12, i = 1, . . . , 10000,

s = 1982,1993.

The quality of the data was not satisfactory. First, we tried to remove the

effect of the clouds by taking the maximum value of NDVI among the NDVI

values obtained at three time-points in a month. This treatment resulted

in unequal time intervals because the maximum value was achieved at a

different time-point in each month (note that the order of observation times
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Figure 9: The frequency distribution of peak heights.

Figure 10: Categorical classification of NDVI trend curves in the Persian
Gulf Area.

over twelve months are preserved). Second, it is quite likely that the data

quality changed between 1982 and 1993. Third, usually remotely sensed data

should be adjusted by the ground truth data, but it was difficult to do so

because such data were difficult to obtain in the Persian Gulf Area. Fourth,

the amount of data was huge. Although we finally used only 1982 and 1993,

but on the way of the analysis, we used three sets of data in every month over

twelve months over 12 years; consequently the total data amounted to 10000

(pixel) × 3 (times in a month) × 12 (months) × 12 (years) = 4.32 × 106.

Considering these factors, we considered that QuaT was appropriate for the

first-phase analysis.

The input data were the NDVI values fis(t̂j), j = 1, . . . , 12 (twelve

months), i = 1, . . . , 10000 (locations), s = 1983,1992 (years) (Step 0). QuaT

computed peaks and bottoms (Step 1), and gave the heights of the peaks

(Step 2). To determine an appropriate value of h∗, QuaT computed the dis-

tribution of peak heights (Step 3). The result is shown in Figure 9. From

this distribution, QuaT chose the value h∗ = 0.08 at which the frequency

drastically changed (we also examined several values and realized that this

value was an appropriate value) (Step 3).

For h∗ = 0.08, QuaT classified the NDVI trend curves in the Persian Gulf

Area. The result is shown in Figure 10 (Step 4). Finally, QuaT computed

qualitative change in the NDVI trend curves between 1982 and 1993 using

two measures (Step 5). Figure 11 shows the magnitude of the qualitative
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Figure 11: Qualitative change in NDVI trend curves between 1982 and 1993
in the Persian Gulf Area measured by D1 given by equation (4).

Figure 12: Qualitative change in land cover (NDVI trend curves) between
1982 and 1993 measured by D2 given by equation (5).

change in terms of D1 given by equation (4), and Figure 12 shows that in

terms of D2 given by equation (5).

7 Concluding discussion

In addition to the above application, we tested the performance of QuaT

in several empirical examples. From these tests, we found the performance

quite satisfactory.

First, QuaT runs very fast as was theoretically examined in Section 4.

Second, QuaT is robust against poor quality data. This robustness results

from the property that QuaT deals with qualitative characteristics.

One might question, however, that the isomorphic relations, in particular

the weakly isomorphic relation assumed in QuaT is too crude. At first glance,

it looks so, but it is not so crude as one might feel. One should recall the

overall similarity D2(fis, fis+1) shown in Figure 6. This similarity considers

the height of peaks from the lowest peak to the highest peak, implying that

the height of the peaks are implicitly taken into account even if we use the

weakly isomorphic relation.

Obviously no methods are almighty and QuaT has some limitations. To

see them, we depict Figure 13 which shows a good contrast between QuaT

and an ordinary quantitative method. Figure 13(a) shows three clusters ob-

tained by applying the K-means method (Hartigan, 1975) to the multivariate
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Figure 13: (a) Clusters obtained by the ordinary clustering method (the
K-means method) and (b) those obtained by QuaT.

data (fi(t̂i1), . . . , f(t̂i12)), i = 1, . . . , 10000. Figure 13(b) shows three clusters

obtained by QuaT with h∗ = 0.08. In both figures, the flat trend curves seem

to indicate sandy soil areas. Figure 13(a) seems to show two kinds of crops

areas (probably wheat and rice). On the other hand, Figure 13(b) seems to

show single-cropping areas and double-cropping areas. This contrast shows

an advantage and a disadvantage of QuaT and the ordinary method. QauT

cannot distinguish one-peak trend curves in Figure 13(a) but the K-means

method can; the K-means method cannot detect double-cropping areas but

QuaT can.

This comparison suggests that QuaT should be applied in the first-phase

analysis. In the second-phase analysis, the K-means method should be ap-

plied to one-peak trend curves obtained by QuaT. Then we can detect quan-

titative as well as qualitative characteristics of trend curves.

In conclusion, QuaT shows good performance in the first-phase analysis.
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