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Abstract

This paper shows an explanatory tool (a FORTRAN program linked to GIS

software), called VCM (Variable Clumping Method), for detecting a geo-

metrical form of spatial hierarchy in the distribution of points. The paper

�rst formulates a clumping method, called the variable clumping method,

in which a clump is de�ned by a set of connected circles centered at given

points and the state of connected circles is observed with respect to a variable

radius of the circles. Second, the paper develops a computational method

for the variable clumping method. Third, the paper shows the procedure

for running the program VCM. Last, the paper discusses the performance of

VCM.
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1 Introduction

This paper shows an explanatory tool (a FORTRAN program linked to GIS

software), called VCM, for detecting a geometrical form of spatial hierarchy

in the distribution of points.

The idea of exploratory analysis goes back Tukey (1977), but the devel-

opment of this idea in geographical analysis began in the late 1980's. Open-

shaw et al. (1987) developed GAM (Geographical Analysis Machine) to deal

with clustering phenomena in the distribution of points (cancer patients).

Haslett et al. (1987) developed SPIDER (Spatial Interactive Data Explorer)

to provide functions of interactive visual presentation of geographical data.

Walker and Moore (1988) developed SIMPLE (Spatial and Inductive Mod-

elling Package for Land Evaluation) to link geographical programs to general

programs, such as MINITAB and GLIM. Anselin et al. (1993) developed

SPACESTAT for spatial econometrics. The importance of these explorato-

ry tools in geographical analysis is discussed in depth by Goodchild (1987),

Haslett et al. (1990), Haining (1990), Openshaw et al. (1990, 91), and

Fotheringham and Zhan (1996), among others.

Having noticed the importance of exploratory data analysis in the data

rich environment of these days, we develop a user-friendly computer program

for detecting signi�cant spatial patters in the distribution of points. Our tool

is closely related to Openshaw et al. (1987), but it has two di�erent features.

First, our tool deals with a more speci�c cluster patters, i.e., spatial hierarchy;

second, the tool employs a statistical method for detecting signi�cant patters

of spatial hierarchy.

The concept of spatial hierarchy has been discussed widely in geography,

spatial economics, archeology, ecology, and OR since Christallar (1933) and
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Figure 1: An ideal pattern of spatial hierarchy.

Figure 2: A distribution of points (a hypothetical test example).

L�osch (1940). As is seen in the papers published in these �elds, the concept

of spatial hierarchy includes many aspects, such as functional hierarchy, 
ow

hierarchy between nodes, geometrical hierarchy and so forth. In this paper we

focus on geometrical hierarchy in the distribution of points where the points

represent the locations of point-like objects, such as stores, trees, accidents,

and patients. We assume that the points are indi�erent expect for their

locations (spatial hierarchy with di�erent weights is discussed in Okabe and

Sadahiro (1996)). Thus the spatial hierarchy discussed in this paper implies

a purely geometric pattern.

To give a clear image of spatial hierarchy, we depict Figure 1 which shows

ideal spatial hierarchy, where three levels of spatial hierarchy is indicated by

three di�erent sizes of circles. In the real world, however, such clear spatial

hierarchy is rarely observed. Rather we meet ambiguous distributions, such

as in Figure 2. To examine whether or not there exists spatial hierarchy in

this kind of ambiguous distributions, we develop an exploratory tool, called

VCM.

The 
ow chart of the program VCM is shown in Figure 3. The inputs

data are: the distribution of points; the shape of a region over which the

points are distributed; and a set of parameter values (shown in Section 2).

The program VCM runs with PC FORTRAN or Arc/Info AML. The output

is a form of signi�cant spatial hierarchy if it exists.

Figure 3: The 
ow chart of the program VCM.
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Figure 4: clumping states for di�erent clump radii.

2 Variable Clumping Method (VCM)

2.1 Clumping states with respect to a clump radius

To detect spatial hierarchy we employ the clumping method (Roach, 1968).

The clumping method is a class of methods for �nding `clumps' in the dis-

tribution of points, p1; . . . ; pn, over a bounded region S. Usually a clump is

de�ned in terms of circles centered at given points p1; . . . ; pn as in Figure 4.

The radius of the circles is called a clump radius. A clump is then de�ned as

a set of points whose circles are connected. The number of connected circles

in a clump is called the size of the clump. In the example of Figure 4(b)

there are �ve clumps of size 2, one clump of size 3, and two clumps of size 4

(note that we do not call a clump of size 1 a (proper) clump). We describe

the state of clumping or clumping state of n points in S in terms of a set,

C(r), of the observed numbers, n̂i(r), of clumps of size i = 2; 3; . . . ; n for a

clump radius r, i.e., C(r) = fn̂i; i = 2; . . . ; ng. For example, the clumping

state shown in Figure 4(b) is described by C(45) = fn̂2(45) = 4; n̂3(45) =

1; n̂4(45) = 2; n̂i(45) = 0; i = 5; 6; . . .g. Note that the largest possible clump

size occurs when all points form one clump, i = n.

In the ordinary clumping method the clump radius r is �xed (we shall

call it a �xed clumping method to distinguish from the following method). A

clumping state, however, varies according to a clump radius r. For exam-

ple, as is seen in Figure 4, we observe one clump in panel (a): C(15) =

fn̂2(15) = 1; n̂i(11) = 0; i = 4; . . . ; 30g, but seven clumps in panel (b):

C(45) = fn̂2(45) = 4; n̂3(45) = 1; n̂4(45) = 2; n̂i(45) = 0; i = 5; . . . ; 30g.

If we observe a clumping state for one clump radius r, we see only a lo-
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Figure 5: Clumps formed by three di�erent clump radii applied to the ideal
pattern of spatial hierarchy shown in Figure 1.

cal pattern. To see a global pattern, we should observe clumping states by

varying a clumping radius r. For instance, in the case of the ideal spatial

hierarchy shown in Figure 1, we can detect three levels of clumps by applying

three di�erent clump radii, r = 15; 28; 40, as shown in Figure 5. This fact

suggests that a global pattern of the distribution of points can be revealed

by a clumping method in which a clumping state C(r) is observed over a

continuum of a clump radius r (from a small clump radius to a large clump

radius). We call this clumping method the variable clumping method (abbre-

viated to VCM), which should be distinguished from the ordinary clumping

method, i.e. the �xed clumping method.

2.2 A computational method for observing clumping

states

A clumping state C(r) with respect to r (0 < r <1) can be easily obtained

through a Voronoi diagram. To be explicit, let P = fp1; . . . ; png be a set of

points distributed over S, and d(p; pi) be the Euclidean distance between an

arbitrary point p in S and pi. We de�ne a set, V (pi), of points from which

the nearest point in P is pi, i.e.,

V (pi) = fp j d(p; pi) � d(p; pj) j 6= i; j = 1; . . . ; ng: (1)

We call the set V(P ) = fV (p1); . . . ; V (pn)g the Voronoi diagram generated

by P , and V (pi) the Voronoi polygon associated with pi (a general review

of this diagram is provided by Okabe, Boots, Sugihara and Chiu (1999)).

Figure 6 shows a Voronoi diagram (note that this is not an ordinary one
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Figure 6: A bounded Voronoi.

Figure 7: The Delaunay triangulation obtained from Figure 6.

because it is bounded by a rectangle, i.e., fV (p1) \ S; . . . ; V (pn) \ Sg; such

a Voronoi diagram is called a bounded Voronoi diagram).

For i; j = 1; . . . ; n (i 6= j), if V (pi) and V (pj) share the common bound-

ary, we join pi and pj with a line segment (see, for example, the broken

line segment in Figure 6). The line segments generated in this manner for

i; j = 1; . . . ; n(i 6= j) form a tessellation as shown in Figure 7. We call this

tessellation the Delaunay triangulation spanning P , and denoted it by D(P )

(note that since the Voronoi diagram in Figure 6 is a bounded Voronoi dia-

gram, the resulting Delanuany triangulation does not form the convex hull

of P ).

We now order the edges of D(P ) from the shortest to the longest, and

obtain a set, M , of edges through the following procedure.

Step 0. Initialize M = ; and k = 1.

Step 1. Choose the kth shortest edge in D(P ) and examine if this edge and

the edges in M form a loop. If not, include the kth shortest edge in M and

go to Step 2; otherwise, discard the kth shortest edge and go to Step 2.

Step 2. If the kth shortest edge is the longest edge, stop and return M ;

otherwise, replace k with k + 1 and go to Step 1.

The edges in M form a tree, which is well-known as a minimum spanning

tree. An example is shown in Figure 8 (obtained from Figure 7), where edges

Figure 8: The minimum spanning tree obtained from Figure 7.
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Figure 9: Clumping states C(r) with respect to r obtained from the minimum
spanning tree in Figure 8.

are ordered from the shortest to the longest. Let M(r) be a set of edges inM

that are shorter than or equal to r=2. Then we can completely describe the

clumping state C(r) with respect to r in terms ofM(r) for 0 < r < rmax where

the rmax is the half of the longest edge in D(P ). An example is illustrated in

Figure 9.

2.3 Signi�cant clumps

When we apply VCM to the distribution of points, we can always obtain `in-

signi�cant' clumps. Consider, for instance, the case in which we adopt a very

long clump radius. Then we always have one clump consisting of all points.

Obviously this clump has little implication. Besides this extreme case, it is

likely to exist some `insigni�cant' clumps in the distribution of points, be-

cause clumps may appear even in the distribution of random points. We are

not interested in these insigni�cant clumps; we are interested in `signi�cant'

clumps. The signi�cant clumps may appear when points has the tendency

of forming clumps at a certain clumping radius r. If the points has this

tendency, we expect that the number of clumps of size i for r is signi�cant-

ly lager than the number of clumps that would appear in the distribution

of random points. Thus, if the observed number n̂i(r) is greater than the

number of clumps that would appear in the distribution of random points,

we may say that these clumps are signi�cant clumps. VCM attempts to �nd

such signi�cant clumps explicitly in the following manner.

Suppose that n points are distributed randomly over a bounded region

S. As a result, we obtain the number, ni(r), of clumps of size i for r.
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This number is probabilistic and has a probability function, f(ni(r)). If this

function is known, we can obtain a critical number, n�

i (r), such that the

probability of ni(r) being greater than n�i (r) is less than a given signi�cance

level �, say � = 0:05. If the observed number n̂i(r) of clumps of size i is

greater than n�

i (r), we may say with signi�cance level � that those clumps

are signi�cant clumps of size i for r.

To adopt the above statistical test in practice, we have to obtain the func-

tion of f(ni(r)) explicitly. In the theory of clumping, the expected value of

ni(r) is approximately obtained (Roach, 1967), although this approximation

is not always satisfactory. In the above statistical test, however, the expected

value does not help. VCM needs the probability function f(ni(r)). In the

related literature few analytical methods are found. We suspect that the

analytical method is intractable because we should treat a bounded irregular

region. In VCM, hence, Monte Carlo simulation is adopted. VCM places n

points randomly over S for 10000 times, and obtain 10000 minimum span-

ning trees M(r). From these trees, VCM obtains the frequency distribution

f(ni(r)) of ni(r), from which VCM obtains the critical numbers n�

i (r). Note

that in practice, we use r = rj = roj; j = 1; . . .nr(ronr = rmax). An example

is shown in Table 1. This table says, for instance, that when r = 112:1, if

the observed number n̂2 is more than 3, we may say that such clumps are

signi�cant clumps; if the observed number n̂i i = 3; 4; 5 is more than 1, we

may say that such clumps are signi�cant clumps.
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Table 1: Critical numbers n�i (rj) of clumps with respect to a clump size

i = 1; . . . ; 10 and a clump raidus rj ; j = 1; . . . ; 16 in a 1000m by 1000m

square.

rj i = 2 3 4 5 6 7 8 9 10
0.00 0 0 0 0 0 0 0 0 0
28.02 0 0 0 0 0 0 0 0 0
56.05 2 1 0 0 0 0 0 0 0
84.07 3 1 1 0 0 0 0 0 0
112.10 3 1 1 1 0 0 0 0 0
140.12 3 2 1 1 1 0 0 0 0
168.15 3 2 1 1 1 1 1 0 0
196.17 2 1 1 1 1 1 1 1 0
224.20 2 1 1 1 1 1 1 1 1
252.22 1 1 1 1 1 1 1 1 1
280.24 1 1 0 0 1 1 1 1 1
308.27 1 0 0 0 0 1 1 1 1
336.29 1 0 0 0 0 0 1 1 1
364.32 0 0 0 0 0 0 1 1 1
392.34 0 0 0 0 0 0 0 1 1

� 420.37 0 0 0 0 0 0 0 0 1

We should remark one important property. If we observe signi�cant

clumps for ri and rj (ri < rj), then the clumps for ri are included in clumps

for rj. In this sense, the clumps for ri and those for rj form successively

inclusive spatial hierarchy.

2.4 Procedure for running VCM

Having shown the theory of VCM, we now show a practical procedure for

running VCM.

Step 0 (Initial setting). We assume that the region S is represented by

a polygon, and the polygon is described by a series of the coordinates of

8



the vertices of S. The input data are: the coordinates of these vertices, the

number, n, of points, the interval, ro, of a variable clump radius and the level

of signi�cance �.

Step 1 (Computation of the observed numbers n̂i(rj) of clumps). For

a given distribution of n points, VCM counts the observed number, n̂i(rj), of

clumps of size i with respect to clump size i = 1; . . . ; n and a clump radius,

rj; j = 1; . . . ; nr.

Step 2 (Computation of the critical number n�

i (r) of clumps by

Monte Carlo simulation). VCM generates n random points over S and

counts the number, ni(rj), of clumps with respect to i = 1; . . . ; n and rj; j =

1; . . . ; nr. VCM carries out this trial for 10000 times. From the 10000 trials,

VCM obtains f(ni(rj)), which gives the critical number, n�

i (rj), of clumps

with respect to i = 1; . . . ; n and rj ; j = 1; . . . ; nr. The results are stored in a

table, like Table 1.

Step 3 (Statistical detection). By comparing the observed numbers n̂i(rj)

obtained in Step 1 and the critical numbers n�i (rj) obtained in Step 2, VCM

detects which clumps are signi�cant, and the signi�cant clumps are visually

shown with GIS.

3 Concluding Discussion

To test the usefulness of VCM, we applied VCM to a number of hypothetical

as well as actual examples. The results were almost satisfactory. A typical

result is shown in Figure 10. Human eyes hardly notice spatial hierarchy in

Figure 2, but VCM reveals signi�cant spatial hierarchy as shown in Figures

10(a), (b) and (c).
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Figure 10: Spatial hierarchy detected by VCM.

In testing VCM, however, we noticed some arguable problems. First let us

discuss computational time. The major geometrical computation in VCM is

the construction of a Voronoi diagram. VCM employs the program developed

by Sugihara and Iri (1989), called VORONOI2. The average computational

time of the algorithm adopted in this program is of the order, O(n), of the

number n of points. In the worst case (i.e. points are locally clustered), the

algorithms runs with order O(n2), but since VCM generates uniform random

points, the linear time O(n) is realized. In practice, however, computational

time hinges on 10000 Monte Carlo trials, and so the total computational time

is of order of 10000n.

This fairly high order computational time results from that fact that VCM

treats an arbitrary irregular region S and an arbitrary number n of points.

We can drastically reduce the computational time if the region S is assumed

to be a unit square and the critical numbers n�

i (rj) are obtained by inter-

polation from the critical numbers obtained for n = 10; 20; 50; 100; 200; 500

(an example of n = 10 is shown in Table 1). In this case, we compute the

critical values in advance and hence the computation asked by a user is just

to interpolate. We are now adding this simpli�ed function to VCM, which

will be useful when quick analysis is necessary at the risk of rough analysis.

One might question the boundary e�ect as is often discussed in this kind

of statistical tests. Since VCM generates random points over a given region

S, the boundary e�ect is exactly taken into account. This is an advantage

of VCM.

Spatial hierarchy revealed by VCMmay be arguable. As noted, signi�cant

clumps of r1 is included in signi�cant clumps of r2 if r2 > r1. It should be
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note, however, that the converse is not true. A signi�cant clump of r2 may not

include signi�cant clumps of r1 < r2 (observe clumps near the left boundary

in Figure 10).

Although VCM has some limitations to be improved, we consider from our

experiments that VCM is a practically useful explanatory tool for detecting

spatial hierarchy in the distribution of points.

Last we note that VCM is open to public. At present, however, the

manual of VCM is written in Japanese. We are planning to translate it in

English in near future.
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