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Abstract:  In this paper, focusing on the forms of the utility functions, we explain the three 

basic models of benefit estimation for transport projects: the Mohring model, the Wardrop 

model, and the Logit model.  The main contributions of this paper are a clarification of the 

relationship between the three models and a demonstration of their merits and demerits.  We 

find that the Mohring model incorporates the Wardrop and Logit models as special cases and 

that the Logit model degenerates to the Wardrop model in a limiting case.  Although one can 

rely on the Mohring model whatever method is used to estimate transport demand, the 

Wardrop and Logit models are practically useful in the context of new transport routes.  

Theoretical results are derived and illustrated by an example. 
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1 Introduction 

In transport economics, the approach to estimating the benefits of transport projects has 

been a central topic.  However, transport engineers have traditionally forecast transport 

demand in practice, which is necessary to estimate these benefits.  Since estimation of the 

benefits of transport projects is inextricably linked to forecasting transport demand, both 

should be dealt with in the context of a consistent microeconomics paradigm.  This issue has 

not been adequately addressed by the existing literature.1  Hence, the effects on benefit 

estimation of the assumptions made about modeling transport demand are unclear.  The 

purpose of this paper is to clarify the relationship between the assumptions made about 

transport-demand modeling and the method used to estimate benefits, by highlighting the 

forms of the utility functions.  To do this, we develop a benefit-estimation model for transport 

projects, which is fully consistent with both microeconomics and transport-demand 

modeling.  The model is also useful for estimating benefits in complex multi-modal transport 

networks in practice. 

This paper analyzes three basic models, which are (at least implicitly) assumed in 

transport-demand modeling.  We focus on a situation in which Routes 1 and 2 connect Zones 

A and B.  The three models are termed the Mohring model, the Wardrop model, and the Logit 

model.  The Mohring model is based on Mohring (1976), in which Route 1 may be a 

substitute or a complement for Route 2.  The Wardrop model is based on Wardrop (1952).  

His argument is consistent with the view that transport demand is ‘derived’ demand 

 
1 See, for example, Harrison (1974), Mohring (1976), Williams (1976, 1977), Jones (1977), Jara-Diaz and 

Friesz (1982), Kanemoto and Mera (1985), Jara-Diaz (1986), Williams et al. (1991, 2001a, 2001b), Button 

(1993), Oppenheim (1995), and Kanemoto (1996). 

 



generated by persons wanting to travel (or move goods) between Zones A and B.  In the 

Wardrop model, a consumer uses the route with the lowest generalized price (which 

incorporates both monetary and time costs) and Routes 1 and 2 are perfect substitutes.  The 

Logit model is an application of discrete-choice models to transport-demand forecasting and 

benefit estimation, and has been widely used recently.  In the Logit model, the routes chosen 

by consumers are assumed to result from their probabilistic behavior.  The probabilistic term 

has a Gumbel distribution.  The main purpose of the present paper is to identify explicitly the 

relationships between the three models.  That is, we show that the Wardrop and Logit models 

are special cases of the Mohring model, and that the Logit model degenerates to the Wardrop 

model in a limiting case.  This finding implies that one can use the benefit-estimation method 

corresponding to the Mohring model to estimate the benefits of transport projects, whatever 

method is used to model transport demand.  However, our finding does not imply that the 

benefit-estimation methods based on the Wardrop and Logit models are useless.  We identify 

their merits and demerits, and demonstrate that the methods based on these models are 

effective when applied to new transport routes. 

The paper is structured as follows.  In Section 2, we formulate the three basic models 

and explain their merits and demerits.  In Section 3, the results of Section 2 are illustrated by 

an example.  Section 4 concludes the paper. 

 

2 The Model 

Throughout this paper, the utility function is assumed to be quasi-linear in the composite 

consumer good, , the price of which is normalized at unity.  Given the quasi-linear utility 

function, there are no income effects, and consequently, the consumer’s surplus equals the 

z
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equivalent variation and the compensating variation.2  If the utility function did not satisfy 

quasi-linearity, these three measures of the surplus would differ.  However, ignoring these 

differences is justified in benefit estimation in practice, because, as Willig (1976) has 

demonstrated, the differences between the consumer’s surplus, equivalent variation, and 

compensating variation are rather small. 

Consider the simple two-zone model shown in Figure 1.  Zones A and B are connected 

by two routes, Routes 1 and 2.  Routes 1 and 2 may be the same type of transport mode or 

different types of transport mode.  For example, Routes 1 and 2 may both be road-transport 

routes.  Alternatively, Route 1 might be a road-transport route and Route 2 might be a rail 

route.  Transport demand in Routes 1 and 2 is given by 1x  and 2x , respectively.  Although 

we focus on a simple two-zone model to demonstrate the essence of the argument, our 

analysis can be easily extended to more complicated networks, by applying Kidokoro (2003). 

We focus on three types of model, which describe the relationship between Routes 1 and 

2 in different ways.  In the Mohring model, which is due to Mohring (1976), the relationship 

between Routes 1 and 2 is unrestricted.  In the Wardrop model, which is due to Wardrop 

(1952), Routes 1 and 2 are perfect substitutes.  The Logit model corresponds to the one in 

which transport demand in Routes 1 and 2 is estimated by using the standard Logit model. 

 

2-1 The Mohring Model 

We begin with the Mohring model, which is due to Mohring (1976).  In the Mohring 

model, no specific relationship between Routes 1 and 2 is assumed.  That is, Routes 1 and 2 

may be substitutes or complements.  Consequently, the utility function of a representative 

consumer has the form: 

                                                 
2 See, for example, Varian (1992). 
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1 2( , )U z u x x= + .       (1) 

The budget constraint is: 

1 1 2 2y z p x p x= + +        (2) 

where  is consumer income and y 1p  and 2p  are the generalized prices of transport services 

in Routes 1 and 2, which incorporate time costs.  Substituting (2) into (1) to eliminate z  

yields: 

1 1 2 2 1 2( , )U y p x p x u x x= − − + .     (3) 

Maximizing (3) with respect to 1x  and 2x , we obtain: 

1 2
1 1 2

1 1

( , )( , ) u x xp u x x
x

∂
= ≡

∂
,      (4) 

1 2
2 1 2

2 2

( , )( , ) u x xp u x x
x

∂
= ≡

∂
.      (5) 

Henceforth, partial derivatives with respect to the i th argument are denoted by the subscript 

.  From (4) and (5), the following transport demand functions are derived: i

1 1 1 2( , )x x p p= ,        (6) 

2 2 1 2( , )x x p p= .        (7) 

The generalized prices of transport services in Routes 1 and 2, 1p  and 2p , satisfy: 

1 1 1 1 1( , )p t TC x I= + ,       (8) 

2 2 2 2 2( , )p t TC x I= + ,       (9) 

where  and  represent monetary costs of 1t 2t 1x  and 2x , such as fuel costs and tolls for cars, 

and fares for rail, 1I  and 2I  denote investments in transport infrastructure in each route that 

are measured in monetary terms, and  and  are monetized time costs 

in each route.  Both routes are subject to congestion and time costs are increasing in transport 

1 1 1( , )TC x I 2 2 2( , )TC x I
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demand and decreasing in transport investments; i.e., , 1 1 1
1 ( , ) 0TC x I > 1 1 1

2 ( , ) 0TC x I < , 

, .  The investments in transport infrastructure, 2 2 2
1 ( , ) 0TC x I > 2 2 2

2 ( , ) 0TC x I < 1I  and 2I , 

are assumed to be exogenously determined by the government.  As we explain in more detail 

later, the monetary costs,  and , are also assumed to be exogenous. 1t 2t

Substituting (8) and (9) into (6) and (7), we obtain the general-equilibrium demand 

functions, 1 1 1 2 2( , , , )x t I t I  and 2 1 1 2 2( , , , )x t I t I , the arguments of which are the four 

exogenous variables, , , 1t 2t 1I , and 2I .  These general-equilibrium demand functions are 

loci of attained equilibria.  Consequently, they incorporate all the general-equilibrium 

changes between Routes 1 and 2, as is explained subsequently. 

The total cost functions for suppliers of transport services in each Route are denoted by 

 and , which are assumed to be increasing in transport demand; i.e.,  an 

.

1 1( )C x 2 2( )C x 1 0C ′ >

2 0C ′ > 3  Since suppliers of transport services receive the prices paid by consumers for the 

transport services in each route,  and , their profits can be written as: 1t 2t

1 1 1 1 1( )t x C xπ = − ,       (10) 

2 2 2 2 2( )t x C xπ = − .       (11) 

If airlines or railway companies supply transport services, 1π  and 2π  are the economic 

profits of these companies.  In the case of private car transport, one can think of consumers 

deriving profits by supplying car transport services to themselves.  For example, suppose that 

the social monetary cost of car transport, incorporating social fuel costs and 

road-maintenance costs, is 300 yen.  Suppose also that the private price paid by consumers, 

                                                 
3 For simplicity, we do not take into account the effects of investment in transport infrastructure on the cost 

functions of suppliers. 
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i.e., fuel prices including taxes, is 500 yen, and that time costs are 800 yen.  Hence, the 

consumer pays 500+800=1300 yen for car transport, which is the generalized price of car 

transport.  However, the generalized social cost of car transport is 300+800=1100 yen.  This 

implies a surplus of 1300-1100=200 yen.  Thus, car transport yields the consumer 200 yen in 

profits.4

In this paper,  and , which are the monetary prices of 1t 2t 1x  and 2x , are assumed to be 

exogenous.  This assumption is reasonable if these prices are regulated by the government.  

In practice, the monetary prices of transport services are often controlled by government.  For 

example, governments typically impose fuel taxes and highway tolls for road transport, 

which represent a considerable proportion of the total costs of road transport in many 

countries.  In addition, air fares and rail fares are often regulated by government.  However, 

the assumption that  and  are exogenous is made merely for simplicity.  Alternative 

assumptions could be made.  For instance, our analysis applies if a monopoly supplies 

transport services and sets price to maximize profits.  That is, whether the monetary prices of 

transport services are exogenous or endogenous does not affect our analysis. 

1t 2t

The total benefit, TB , is the sum of the consumer’s utility and the profits of the 

suppliers of transport services, which from (3), (10), and (11), is: 

1 2

1 1 2 2 1 2 1 1 1 1 2 2 2 2( , ) ( ) ( )
TB U

y p x p x u x x t x C x t x C x
π π= + +

= − − + + − + −
.  (12) 

Suppose the government increases investment in transport infrastructure in Route 1 

from 1WOI  to 1WI .5   Henceforth, the superscripts WO  and  denote without and with W

                                                 
4 Even if we explicitly take into account the existence of government, our argument is unaffected as long as the 

government surplus from the collected tax is eventually returned to consumers. 

5 Transport investment in Route 2 can be analyzed in the same way. 
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transport investment, respectively.  In this case, the change in total benefits, , is: TB∆

( ) ( )
1 21 2

1 1 2 2

1 1 1 1 1 2 2 2 2 2

WO WOW W

W WO W WO

p px x

p x p x

TB x dp t C dx x dp t C dx′ ′∆ = + − + + −∫ ∫ ∫ ∫ ,   (13) 

The derivation of (13) is given in Appendix 1.  The first and second terms of the right-hand 

side of (13) represent the changes in the consumer and producer surpluses in Route 1, 

respectively.  The third and fourth terms represent the corresponding changes in Route 2. 

Let us interpret equation (13).  We begin by focusing on changes in Route 1.  The first 

term on the right-hand side of (13) is the change in the consumer’s surplus in Route 1, 

measured by the general-equilibrium demand curve.6  The standard Marshallian demand 

curve is drawn holding incomes and prices in other markets constant.  In our model, in which 

the utility function is assumed to be quasi-linear, the Marshallian demand curve does not 

depend on income, but does depend on prices in other markets.  Investment in transport 

infrastructure in Route 1, 1I , changes the time costs in Route 1, and hence changes the 

generalized price in Route 1.  From (6) and (7), the change in the generalized price in Route 1 

not only changes transport demand in Route 1, it also affects transport demand in Route 2.  In 

turn, from (9), the change in transport demand in Route 2 changes the generalized price in 

Route 2.  The result is that investment in transport infrastructure in Route 1 changes the 

transport demand and generalized prices in all routes.  This means that the changes in Route 

1’s generalized price and transport demand induced by investment in transport infrastructure 

in Route 1 are not represented by a movement along the Marshallian demand curve for Route 

1 with the generalized price in Route 2 fixed, but by a shift of the Marshallian demand 

curve.Figure 2-1 shows that, for Route 1, the equilibria without and with transport 

investment,  and ( ,1 1( , )WOx pWO 1 1 )W Wx p

                                                

, respectively, are on different Marshallian demand 

 

 8
6 See Boadway and Bruce (1984) for details of the general-equilibrium demand curve. 
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1 1( , )W W

curves.  The general-equilibrium demand curve in Route 1 is a locus of attained equilibria, 

which passes through  and 1 1( , )WO WOx p x p

1

, and incorporates the associated change in 

Route 2.  In the 1x p

2 1 2( , ( , ))

−  plane in Figure 2-1, the general-equilibrium demand curve in Route 

1 is shown as 1 1 2,x p p p t 2I , given I  and .  The change in the consumer’s surplus 

in Route 1 must be measured along the general-equilibrium demand curve.  Consequently, 

this change is given by Area A. 

2t

( ) ( ) ( , ) ( , )SMC I C x TC x I x I x′≡ +

                                                

In the standard four-step estimation procedure used in practice, 7 the forecast to be made 

is actual transport demand with and without a project, not hypothetical transport demand in 

which the transport conditions in other routes, such as the degree of congestion, remain 

unchanged.  This implies that the conventional four-step estimation procedure is not 

represented by the derivation of the Marshallian demand curve with incomes and the 

generalized prices in other routes held constant, but is represented by the derivation of the 

general-equilibrium demand curve, which tracks actual transport demand with and without a 

project. 

The second term on the right-hand side of (13) is the change in the producer’s surplus in 

Route 1, which equals the change in profits in Route 1.  We explain this using Figure 2-2.8  In 

Figure 2-2,  is the social marginal cost in Route 1, which is given by 

.  Since , the area 

below the social marginal cost in Route 1 represents total costs in Route 1, including time 

costs.  Including the time costs for Route 1, the consumer pays 

1 1( )SMC I

1 1 1 1 1SMC dx C TC x= +∫1 1 1 1 1 1 1 1 1 1 1
1TC+

 
7 See for example, Oppenheim (1995) and Ortuzar and Willumsen (2001). 

8 Although we depict the case in which the generalized price exceeds the social marginal cost in Figure 2-2 for 

ease of illustration, we can analyze other cases in the same way. 



{ }1 1 1 1 1 1( )WO WO WO WOp x t TC I x= +  in total.  Thus, Area B, which is the consumer’s total 

payment minus total costs, shows the producer’s surplus in Route 1 without transport 

investment.  Given that 

1 1 1 1 1 1 1 1 1( )WO WO WO WO WOp x SMC dx t x C x π− = − =∫ ,    (14) 

Area B also equals the profits in Route 1 without transport investment.  Analogously, Area C 

represents the producer’s surplus in Route 1 with transport investment, which equals the 

profits in Route 1 with transport investment.  The result is that the change in the producer’s 

surplus in Route 1, which equals the change in profits in Route 1, is derived as Area C minus 

Area B. 

Consider next changes in Route 2.  The third term on the right-hand side of (13) 

represents the change in the consumer’s surplus in Route 2.  As with Route 1, we can 

compute this change by using the general-equilibrium demand curve.  As Figure 2-3 shows, 

the general-equilibrium demand curve in Route 2 coincides with the generalized cost curve in 

Route 2, which is given by (9).  The reason is that equilibria must be on the line representing 

equation (9), regardless of the shifts of the Marshallian demand curve in Route 2 induced by 

investment in transport infrastructure in Route 1.9  Thus, we can estimate the change in the 

consumer’s surplus in Route 2 along the line that represents (9) as Area D. 

The fourth term on the right-hand side of (13) represents the change in the producer’s 

surplus in Route 2.  Since the relationship given by (14) also holds for Route 2, the change in 

the producer’s surplus in Route 2, which is equivalent to the change in profits in Route 2, 

                                                 
9 This result depends on the assumption that the monetary prices in Route 2 are regulated by the government and 

are unaffected by investment in transport infrastructure in Route 1.  If this is not the case, the 

general-equilibrium demand curve will be a locus of attained equilibria on a shifting generalized price curve in 

Route 2. 
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equals the change in the consumer’s total payment in Route 2, minus the change in total costs 

in Route 2.  Figure 2-4 shows that the decrease in the consumer’s total payment is the sum of 

Areas E and F, and that the decrease in the total costs is the sum of Areas F and G.  Thus, the 

change in the producer’s surplus in Route 2 is Area G minus Area E.  This is because 

. Area E Area F ( Area F Area G) Area G Area E− − − − − = −

The changes in Route 2 can be understood more easily by rearranging (13) as: 

 11

)

2

( ) (
1 1 2

1 1 2

1 1 1 1 1 2 2 2

WO W W

W WO WO

p x x

p x x

TB x dp t C dx p SMC dx′∆ = + − + −∫ ∫ ∫ ,   (15) 

where  is the social marginal cost in Route 2, which is the sum of 

the marginal monetary cost in Route 2, 

2 2 2 2
1SMC C TC TC x′≡ + +

2C ′ , and the marginal time cost in Route 2, 

.  (See Appendix 1 for the derivation of (15).)  Figures 2-3 and 2-4 show that 

Area D equals Area E, and that the change in Route 2, which is the sum of the change in the 

consumer’s surplus, Area D, and the change in the producer’s surplus, Area G minus Area E, 

is simply Area G.  Area G corresponds to the third term on the right-hand side of (15), which 

represents the change in the deadweight loss in Route 2, which is due to the difference 

between the social marginal cost and the generalized price.  In general, changes in the total 

social surplus in routes other than the route in which investments are made reduce to changes 

in the deadweight loss.  This result represents an application of benefit estimation in an 

economy with distortions, as developed by Boadway and Bruce (1984). 

2 2
1TC TC x+ 2

The benefit-estimation method implied by the Mohring model is the most general and is 

applicable to all transport projects, and non-transport projects.  In practice, the 

benefit-estimation method implied by the Mohring model is often implemented as the 



so-called ‘Rule-of-half’ method.10  In the Rule-of-half method, changes in the consumer’s 

surplus in Routes 1 and 2 are given by 1 1 1 11 ( )(
2

WO W WO W )p p x x− +  and 

2 2 2 21 ( )(
2

WO W WO Wp p x x− + )

                                                

, respectively.  The Rule-of-half method can accurately calculate 

benefits if changes in producer’s surpluses in both routes are incorporated, except that errors 

arise because of the linear approximations applied by the Rule-of-half method.  If the errors 

resulting from these linear approximations are insignificant, the Rule-of-half method based 

on the Mohring model computes benefits accurately, as long as the estimation of transport 

demand with and without a project is accurate.  This result implies the following: even when 

transport demand is estimated by the conventional four-step method, which has no 

microeconomic basis, the Rule-of-half method is applicable, as long as we consider that the 

conventional four-step model is a reduced form of the Mohring model and as long as 

transport demand is estimated correctly. 

However, the Mohring model has a practical disadvantage.  When forecasting transport 

demand in practice, it is usually not possible to obtain the general-equilibrium demand 

function over its full range.  In most cases, only transport demand with and without a 

transport project can be estimated, in which case, the Mohring model fails to estimate the 

benefits of new transport routes.  Transport demand in a non-existent route is zero, and it is 

difficult in practice to estimate the generalized price in this case.  However, benefit 

estimation using the Mohring model requires information on the generalized price without a 

project, i.e., the generalized price in a non-existent route.  Thus, in this case, the Mohring 

model lacks practical validity.  Although this disadvantage has already been noted in the 

literature, by for example Harberger (1972), to our knowledge, no attempt has so far been 

 

 12
10 See, for example, Williams (1976). 



made to resolve this problem within the framework of the Mohring model. 

The merits and the demerits of the Mohring model are summarized as follows. 

Merits: The Mohring model is the most general and is intrinsically applicable to all transport 

projects. 

Demerits: To estimate the benefits of new transport routes by using the Mohring model, we 

need to know the generalized price of non-existent new transport routes, which is 

impractical. 

 

2-2 The Wardrop Model 

Transport demand is often considered a derived demand, because consumers use 

transport services not as an end in itself, but as a means of traveling to particular destinations.  

In this section, we build a model in which transport demand is explicitly assumed a derived 

demand. 

If we treat transport demand as derived demand, a special case of the Mohring model is 

applicable: In such a case, the utility function is specified as 

 13

)

2

1 2(U z u x x= + + ,       (16) 

which shows that Routes 1 and 2 are perfect substitutes and that only total transport demand 

between Zones A and B, 1x x+ , is relevant in the partial utility function, u .  Since this 

model formalizes the argument of Wardrop (1952), it is termed the Wardrop model.  The 

Wardrop model is reasonable when there are no significant quality differences between 

Routes 1 and 2, except those measured by the price.  Since Routes 1 and 2 are perfect 

substitutes in the Wardrop model, both routes are used if 1 2p p= , whereas only Route 2 is 

used if 1 2p p> , and only Route 1 is used if 1 2p p< . 

Defining p  as { }1 2min ,p p p≡ , it follows that the generalized price between Zones A 



and B is p .  Thus, the budget constraint is: 

1 2(y z p x x= + + )

)

.        (17) 

Substituting (17) into (16) yields: 

1 2 1 2( ) (U y p x x u x x= − + + + .      (18) 

Maximizing (18) with respect to 1x  and 2x , we obtain: 

1 2( )p u x x′= + .        (19) 

As in the Mohring model, the generalized prices in Routes A and B satisfy: 

1 1 1 1 1( , )p t TC x I= + ,       (20) 

2 2 2 2 2( , )p t TC x I= + .       (21) 

If 1 2p p p= = , transport demand in Routes 1 and 2, 1x and 2x , respectively, are 

determined from (19), (20), and (21).  If 1 2p p p= < , 2 0x =  and 1x  is derived from (19) 

and (20).  If 2 1p p p= < ,  and 1 0x = 2x  is derived from (19) and (21). 

The arguments used in the Mohring model also apply to the suppliers of transport 

services.  Thus, from (10), (11), and (18), the total benefit, TB , can be written as: 

1 2

1 2 1 2 1 1 1 1 2 2 2 2( ) ( ) ( ) (
TB U

y p x x u x x t x C x t x C x
π π= + +

= − + + + + − + − )
  (22) 

In the Wardrop model, the change in total benefits when investment in transport 

infrastructure in Route 1, 1I , increases from 1WOI  to 1WI  is, from (19) and (22): 

( ) ( )
1 2

1 2

1 2 1 1 1 2 2( )
WO W W

W WO WO

p x x

p x x

TB x x dp t C dx t C dx′∆ = + + − + −∫ ∫ ∫ 2′    (23) 

(Since the derivation of (23) is essentially the same as that of (13), it is omitted.)  The first 

term on the right-hand side of (23) is the change in the consumer’s surplus between Zones A 

and B.  The second and third terms on the right-hand side of (23) are the changes in the 
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producer’s surpluses in Routes 1 and 2, respectively. 

It is apparent from the utility function in the Wardrop model, which is given by (16), that 

the Wardrop model is a special case of the Mohring model.  Thus, we can rearrange (23) as 

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2,

WO WOW W

W WO W WO

WO W W

W WO WO

p px x

p x p x

p x x

p x x

TB x dp t C dx x dp t C dx

x dp t C dx p SMC dx

′ ′∆ = + − + + −

′= + − + −

∫ ∫ ∫ ∫

∫ ∫ ∫
  (24) 

which has the same form as (13) and (15), except that the generalized prices in Routes 1 and 

2 are { }1 2min ,p p p≡ , not 1p  and 2p .  That is, in the Wardrop model, we can use the 

generalized price between Zones A and B in calculating the consumer’s surplus, which is 

impractical in the Mohring model.  This is useful in practice, because it overcomes the 

limitation of the Mohring model, which arises in the context of estimating the benefits of new 

transport routes.  Suppose that Route 1 is the existing route and Route 2 is the new route for 

which transport investment is planned.  In the absence of transport investment, the 

generalized price in Route 2 can be considered infinite, in which case, the generalized price 

in Route 1 prevails as the price between Zones A and B, since 1 2p p p= < = ∞ .  Thus, we 

can use the generalized price in Route 1 to compute the change in the consumer’s surplus in 

Route 2.  With transport investment, since Routes 1 and 2 are perfect substitutes, 1 2p p p= =  

if both routes are used.  (If only the newly introduced Route 2 is used, then 2 1p p p= < .)  

The result is that in the Wardrop model, we can estimate the change in the consumer’s surplus 

by using only the generalized prices actually observed.  This is particularly useful for benefit 

estimation in practice. 

Although the Wardrop model is practically useful, the assumption of perfect 

substitutability between routes is strong, as has been pointed out by Arnott and Yan (2000).  
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For example, one can travel between Tokyo and Osaka in Japan by bullet train or by air.  

According to the Wardrop model, all consumers would travel by air following a slight drop in 

airfares ceteris paribus, unless there were capacity constraints in air travel.  This is 

unrealistic.  This unrealistic prediction might not eventuate were we to incorporate consumer 

heterogeneity.  However, with homogeneous consumers, the assumption of perfect 

substitutability between routes might generate predictions that are not consistent with 

observed outcomes. 

The merits and the demerits of the Wardrop model can be summarized as follows. 

Merits: The Wardrop model facilitates benefit estimation in practice, particularly in relation 

to the introduction of new transport routes. 

Demerits: The strong assumption of perfect substitutability between routes suggests that the 

Wardrop model might not explain observed outcomes. 

 

2-3 The Logit Model 
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1

The Logit model applies discrete-choice modeling to forecasting transport demand and 

benefit estimation.  Suppose that a consumer demands one trip between Zones A and B.  We 

assume that the utilities in Routes 1 and 2, respectively are  and , which are 1V 2V

1 1V v ε= +  and 2 2V v 2ε= + , where  and  are deterministic utility terms and 1v 2v 1ε  and 

2ε  are residual terms, which are assumed to have a probability distribution.  For instance, 1ε  

and 2ε  may correspond to unobservable components of utility that represent the variety of 

choices made by observationally identical consumers.  Route 1 is selected if , while 

Route 2 is selected if .  Whether  or 

1V V> 2

2 21V V< 1 2V V> 1V V<  depends on the probabilistic 

terms, 1ε  and 2ε .  The probability with which Route 1 is selected, , is: 1P

1 2 1 2 2 11 Prob( ) Prob( )P V V v v ε ε= > = − > − .    (25) 



Under the assumption that the probabilistic terms, 1ε  and 2ε , are independently subject to 

the Gumbel distribution function, ( ) exp expF εε
µ

⎧ ⎫⎛ ⎞
= − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
(in which 0µ > ), we obtain: 

1

1

exp( / )1
exp( / ) exp( / )

vP
v v

µ
2µ µ

=
+

.     (26) 

(The probability with which Route 2 is selected, , is 2P 2 1 1P P= − .)  Transport demand in 

Routes 1 and 2, 1x  and 2x  is: 

1
1

1

exp( / )1
exp( / ) exp( / )

vx X P X
v v

µ
2µ µ

= × =
+

,    (27) 

2
2

1

exp( / )2
exp( / ) exp( / )

vx X P X
v v

µ
2µ µ

= × =
+

,    (28) 

where X  denotes the total number of consumers. 

Suppose that the deterministic utilities,  and , are estimated econometrically as 1v 2v

1 1v pα β≡ −  and 2 2v pα β≡ − 0 (α ≥ , 0β > ).  Following Small and Rosen (1981), the 

change in the consumer’s surplus when there is an increase in transport investment in Route 1 

is given by: 

2 2

1 1

ln exp( / ) ln exp( / )iW iWO

i i

XU v vµ µ µ
λ = =

⎧ ⎫
∆ = −⎨ ⎬

⎩ ⎭
∑ ∑    (29) 

where λ  is the marginal utility of income.  The marginal utility of income, λ , is derived 

from Roy’s Identity: 

1

1 1

1c

v
v p
y x

λ

∂
∂ ∂= = −
∂

       (30) 

where 1cx  is ‘conditional’ transport demand in Route 1, given that a consumer demands 

transport services.  For instance, consider daily transport demand for a commuter service.  If 
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a consumer makes one daily round-trip, 1 1cx = . 

The Logit model has microeconomic foundations because it can be derived from the 

utility-maximizing behavior of the representative consumer.  We investigate this further by 

applying the approach of Anderson et al. (1992).  Consider the following utility-maximizing 

problem of the representative consumer (M): 

(M) 

{ }1 2

1 2
1 2 1 2

, ,

1 1 2 2

1 2

max  ( ) ln ln

. .    
        

z x x

x xU z x x x x
X X

s t y z p x p x
x x X

α µ
β β

⎛ ⎞
= + + − +⎜ ⎟

⎝ ⎠
= + +

+ =

. 

Solving the utility-maximizing problem, we obtain the demand functions in Routes 1 and 2: 

1

1
1

exp

exp exp

p

x X 2p p

α β
µ

α β α β
µ µ

⎛ ⎞−
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛− −+⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

,     (31) 

2

2
1

exp

exp exp

p

x X 2p p

α β
µ

α β α β
µ µ

⎛ ⎞−
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛− −+⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

.     (32) 

Recall that 1 1v pα β≡ −  and 2v 2pα β≡ − .  The result is that (31) and (32) correspond to the 

demand functions in the Logit model, given by (27) and (28), respectively.  Substituting (31) 

and (32) into the utility function in (M), we obtain the following expenditure function: 

2
1 2

1

( , , ) ln exp( / )i

i

Xe v v u u vµ µ
β =

= − ∑ ,     (33) 

where u  is the utility level.  Since, from (30), 

1

1 1

1 1c

v
v p
y x

βλ β

∂
∂ −∂= = − = − =
∂

,      (34) 

the change in the consumer’s surplus when transport investment increases in Route 1 is 
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1 2 1 2

2 2

1 1

2 2

1 1

( , , ) ( , , )

ln exp( / ) ln exp( / )

ln exp( / ) ln exp( / )

WO WO W W

iW iWO

i i

iW iWO

i i

U e v v u e v v u

X v v

X v v

µ µ µ
β

µ µ µ
λ

= =

= =

∆ = −

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
⎧ ⎫

= −⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑

,    (35) 

which corresponds to (29). 

It is clear from the utility-maximization problem (M) that the Logit model is a special 

case of the Mohring model.  Hence, the benefit-estimation methods derived in (13) and (15) 

are valid even in the Logit model.  In the case of the Logit model, an alternative form for the 

change in the consumer’s surplus when transport investment increases in Route 1 is derived 

as: 

1

1

1

1

1

1

1 2

1 2

1 2
1

1

1 2 2
1

1 1 2 2 1

1 2
2

1
2 2 1

1 1

1 1 2 2

( , , )

exp( / ) exp( / )

exp( / ) exp( / )

,

WO

W

WO

W

WO

W

WO WO

W W

p

p

p

p

p

i ip

i i

p p

p p

e v v uU dp
p

e v e v p dp
v p v p p

v v
X p dp

pv v

x dp x dp

β βµ µ
µ µ µ
β µ µ

= =

∂
∆ =

∂

⎛ ⎞∂ ∂ ∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞− −⎜ ⎟∂⎜ ⎟= − +
∂⎜ ⎟

⎜ ⎟
⎝ ⎠

= +

∫

∫

∫
∑ ∑

∫ ∫

  (36) 

where 
1

1

1 1

WO

W

p

p

x dp∫  corresponds to the first term on the right-hand side of (13), which is the 

change in the consumer’s surplus in Route 1, and 
2

2

2 2

WO

W

p

p

x dp∫  corresponds to the third term on 

the right-hand side of (13), which is the change in the consumer’s surplus in Route 2.11  
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11 Equation (36) could also be derived directly from the properties of the expenditure function.  See, for example, 

Varian (1992). 



Consequently, equations (35) and (36) show that the well-known method of calculating the 

consumer’s surplus using log-sum terms (or inclusive values), as shown in (35) and 

originally formulated by Williams (1977) and Small and Rosen (1981), is the method that 

gives the sum of the changes in consumers’ surpluses in all routes.  The change in total 

benefits according to the Logit model, which takes into account both consumer’s and 

producer’s surpluses, can be written as follows: 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 2

1 2

2 2
1 1 1 2 2

1 1

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2

ln exp( / ) ln exp( / )

.

W W

WO WO

WO WOW W

W WO W WO

WO W W

W WO WO

x x
iW iWO

i i x x

p px x

p x p x

p x x

p x x

XTB v v t C dx t C dx

x dp t C dx x dp t C dx

x dp t C dx p SMC dx

µ µ µ
λ = =

⎧ ⎫ ′ ′∆ = − + − + −⎨ ⎬
⎩ ⎭

′ ′= + − + + −

′= + − + −

∑ ∑ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

2

 

(37) 

Equation (37) confirms that the Logit model is a special case of the Mohring model. 

The Gumbel distribution used in the Logit model implies that in the converted 

utility-maximization problem (M), the utility function of the representative consumer has a 

particular form, which is useful for estimating benefits when a new transport route is 

introduced.  For example, suppose that Route 2 is being introduced by a transport project.  

Without the transport project, the required travel time in Route 2 can be considered infinite, 

in which case, , because the generalized price in Route 2 is also infinite; i.e., 

.  When , it follows that 

2WOv = −∞

2p = ∞ 2WOv = −∞ 2exp( / ) 0WOv µ = , which means that the 

generalized price in Route 2 without the transport project has no influence on the estimation 

of the consumer’s surplus in (35).  That is, the issue of how to estimate the generalized price 

of a non-existent route is of no importance when using a Logit model that specifies the form 

of the utility function. 
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The parameter µ  in the Gumbel distribution, ( ) exp expF εε
µ

⎧ ⎫⎛ ⎞
= − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
, is typically 

termed a scale parameter.  Since the variance of the Gumbel distribution is 
2( )

6
µπ , the 

greater is µ , the wider the distribution.  As Small (1992) notes, 1µ =  is usually assumed.  

As µ  approaches zero, the variance of the Gumbel distribution also approaches zero, and the 

effects of the probabilistic terms, 1ε  and 2ε , diminish.  In the limit, the Logit model reduces 

to a special case of the Wardrop model.  This is apparent from the utility-maximization 

problem (M) when 0µ → . 

The Logit model is useful for consistent transport-demand forecasting and benefit 

estimation.  However, it is apparent from the utility-maximization problem (M) that the 

results are based on the assumption that total transport demand is fixed.  Thus, we must 

modify our analysis to deal with the effect of transport projects on total transport demand. 

To model changing total transport demand, we need to incorporate the consumer choice 

of ‘do not travel’.  One approach is to incorporate the choice of ‘do not travel’ into the 

original Logit model.  An alternative method is to construct a ‘nested’ model, in which 

consumers choose between ‘do not travel’ and ‘travel’ in the first stage, and in the second 

stage, consumers who selected ‘travel’ in the first stage choose between ‘travel in Route 1’ 

and ‘travel in Route 2’.  As we show subsequently, even when the choice of ‘do not travel’ is 

incorporated to represent a change in total transport demand, our results from the Logit 

model remain valid. 

Initially, consider incorporating the choice of ‘do not travel’ into the original Logit 

model.  Suppose that demand for ‘do not travel’ is 0x  and that the utility derived from this 

choice is given by 0 0V 0ε= + , where deterministic utility is zero and 0ε  is independently 
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subject to the Gumbel distribution.  The corresponding utility-maximization problem of the 

representative consumer (M1) can be written as: 

(M1) 

{ }0 1 2

0 1
1 2 0 1 2

, , ,

1 1 2 2

0 1 2

max  ( ) ln ln ln

. .    
        .

z x x x

2x x xU z x x x x x
X X X

s t y z p x p x
x x x X

α µ
β β

⎛ ⎞
= + + − + +⎜ ⎟

⎝ ⎠
= + +

+ + =

 

As before, the Logit model reduces to a special case of the Wardrop model as 0µ → .  

Solving the utility-maximization problem (M1), we obtain the following demand functions 

for 0x , 1x , and 2x : 

0
1 2

1
exp( / ) exp( / ) 1

x X
v vµ µ

=
+ +

,      (38) 

1
1

1 2

exp( / )
exp( / ) exp( / ) 1

vx X
v v

µ
µ µ

=
+ +

,      (39) 

2
2

1 2

exp( / )
exp( / ) exp( / ) 1

vx X
v v

µ
µ µ

=
+ +

.      (40) 

Substituting (38), (39), and (40) into the utility function in (M1) yields the following 

expenditure function: 

2
1 2

1

( , , ) ln exp( / ) 1i

i

Xe v v u u vµ µ
β =

⎧ ⎫
= − +⎨ ⎬

⎩ ⎭
∑ .     (41) 

From (41), the change in the consumer’s surplus when transport investment increases in 

Route 1 is: 

2 2

1 1

ln exp( / ) 1 ln exp( / ) 1iW iWO

i i

XU v vµ µ
β = =

⎡ ⎤⎧ ⎫ ⎧
∆ = + − +⎨ ⎬ ⎨⎢ ⎥

⎩ ⎭ ⎩⎣ ⎦
∑ ∑ µ ⎫

⎬
⎭

.   (42) 

Given that 01 exp(0) exp( / )v µ= = , equation (42) extends (35) to include the choice of ‘do 

not travel’.  The issue of how to estimate the generalized price of a non-existent route is also 

of no importance in this context, because iWOp = ∞  implies , which shows exp( / ) 0iWOv µ =
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that the generalized price of a non-existent route has no effect on (42). 

By following the procedure used to derive (36) and (37), we can derive the following 

expression for the change in total benefits: 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1

1

2 2
1 1 1 2 2

1 1

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2

ln exp( / ) 1 ln exp( / ) 1
W W

WO WO

WO WOW W

W WO W WO

WO W

W WO

x x
iW iWO

i i x x

p px x

p x p x

p x

p x x

XTB v v t C dx t C dx

x dp t C dx x dp t C dx

x dp t C dx p SMC

µ µ µ
β = =

⎡ ⎤⎧ ⎫ ⎧ ⎫ ′ ′∆ = + − + + − + −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

′ ′= + − + + −

′= + − + −

∑ ∑ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫
2

2

2.
W

WO

x

dx∫

2

(43) 

In the above equation, there is no term for a change in the consumer’s surplus relating to 0x  

because deterministic utility of zero for the choice of ‘do not travel’ implies that the price of 

0x  is invariant at zero, which yields no change in the consumer’s surplus relating to 0x .  

Equation (43) confirms that the benefit-estimation method based on the Mohring model is 

applicable in this case. 

As an alternative approach, we develop the ‘nested’ Logit model to incorporate the 

choice of ‘do not travel’ in the first stage.  This nested Logit model is based on the 

assumption that 0ε , 1ε , and 2ε  have the following multivariate cumulative distribution 

function, 

0 1

0 1
0 1 2

0 1( , , ) exp exp exp expF

µ µ
µ µε εε ε ε

µ µ

⎡ ⎤
⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= − − − − + −⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩⎢ ⎥⎣ ⎦

2

1

ε
µ

⎫
⎬
⎭

,  (44) 

in which 00 µ µ≤ ≤  and 10 µ µ≤ ≤ .  Following Verboven (1996), the utility-maximization 

problem of the representative consumer corresponding to the nested Logit model (M2) can be 

formulated as: 

(M2)
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{ }0 1 2

1 1

1 2

, , ,

0 1 1 2 2 1
0 1 2

1 2 1 2

1 1 2 2

0 1 2

max  ( )

1                ln ln ln

. .    
        .

z x x x
U z x x

x x x x x xx x x
X x x X x x X

s t y z p x p x

2x

x x x X

µ µ µ µ µ

α
β

β

= + +

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎪ ⎪− + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
= + +

+ + =

 

When 0 1µ µ µ= = , the utility-maximization problem (M2) coincides with the 

utility-maximization problem (M1).  Hence, the nested Logit model includes the Logit model 

as a special case.  This is also apparent from the fact that the multivariate cumulative 

distribution function, (44), reduces to 

0 1
0 1 2( , , ) exp exp exp exp exp expF ε εε ε ε

µ µ µ
⎧ ⎫ ⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − − − − − −⎨ ⎬ ⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭ ⎩

2ε ⎫
⎬
⎭

1

,  (45) 

which yields the Logit model when 0µ µ µ= = .  This relationship between the nested Logit 

model and the Logit model implies that the nested Logit model reduces to a special case of 

the Wardrop model when 0 1µ µ µ= =  and 0µ → .  Moreover, the utility-maximization 

problem (M2) implies that the nested Logit model is also a special case of the Mohring 

model. 

Solving the utility-maximization problem (M2), we obtain the following demand 

functions for 0x , 1x , and 2x : 

0
1 2

1
( , ) 1

x X
A v v

=
+

,        (46) 

1 1 1 2
1

1 1 2 1 1 2

exp( / ) ( , )
exp( / ) exp( / ) ( , ) 1

v A vx X
v v A v v

µ
µ µ

=
v

+ +
,     (47) 

 24



2 2 1 2
2

1 1 2 1 1 2

exp( / ) ( , )
exp( / ) exp( / ) ( , ) 1

v A vx X
v v A v v

µ
µ µ

=
v

+ +
.     (48) 

where 
1 2

1 2

1

( , ) exp ln exp( / )i i

i

A v v vµ µ
µ =

⎧ ⎫⎛ ⎞
≡ ⎨⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ⎬ .  Substituting (46), (47), and (48) into the 

utility function in (M2), we obtain the following expenditure function: 

{1 2 1 2( , , ) ln ( , ) 1Xe v v u u A v v }µ
β

= − + .     (49) 

From (49), the change in the consumer’s surplus when transport investment increases in 

Route 1 is: 

{ } {1 2 1 2ln ( , ) 1 ln ( , ) 1W W WO WOXU A v v A v v }µ
β

⎡ ⎤∆ = + − +⎣ ⎦ .   (50) 

The generalized price of a non-existent route has no effect on , and therefore 

has no effect on (50), because e

1 2( ,WO WOA v v )

xp( / ) 0iWO iv µ =  when iWOp = ∞ .  Thus, in the nested Logit 

model also, the issue of how to estimate the generalized price of a non-existent route is of no 

importance. 

By again following the procedure used to obtain (36) and (37), we can derive the 

following expression for the change in total benefits in this case: 

{ } { } ( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2 1 1 1 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2

ln ( , ) 1 ln ( , ) 1

.

W W

WO WO

WO WOW W

W WO W WO

WO W W

W WO WO

x x
W W WO WO

x x

p px x

p x p x

p x x

p x x

XTB A v v A v v t C dx t C dx

x dp t C dx x dp t C dx

x dp t C dx p SMC dx

µ
β

′ ′⎡ ⎤∆ = + − + + − + −⎣ ⎦

′ ′= + − + + −

′= + − + −

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

2

 

(51) 

In the above equation, there is again no term for a change in the consumer’s surplus relating 

to 0x .  This is because the price of 0x  is invariant at zero, which implies no change in the 
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consumer’s surplus.  Equation (51) confirms that the benefit-estimation method based on the 

Mohring model is applicable to the nested Logit model. 

Although the Logit and nested Logit models are convenient for consistent 

transport-demand forecasting and benefit estimation, they are special cases of the Mohring 

model in which specific utility functions are assumed.  Consequently, if transport demand is 

forecast by using the Logit (or nested Logit) model, we can accurately estimate benefits by 

using the method based on the Mohring model.  Our ability to estimate benefits easily using 

the Logit (or nested Logit) model when a new transport route is introduced relies on having 

specific forms for the utility functions.  That is, tractable benefit estimation in the context of 

new transport routes is achieved at the expense of making specific assumptions about the 

forms of the utility functions. 

The merits and the demerits of the Logit model can be summarized as follows. 

Merits: The Logit model enables consistent transport-demand forecasting and benefit 

estimation.  The Logit model, as well as the Wardrop model, also facilitates benefit 

estimation when new transport routes are introduced. 

Demerits: The utility function underlying the Logit (and nested Logit) model is specific.  

Hence, the Logit (and nested Logit) model could be criticized for unjustifiably assuming 

such specific forms for the utility functions. 

 

3 An Example 

In this section, we illustrate how to estimate a change in total benefits by using an 

example in which transport demand is forecast by the Logit model.  As we showed in Section 

2, the Logit model is a special case of the Mohring model.  Thus, the change in total benefits 

can be computed by using the benefit-estimation method based on the Mohring model, or the 



one based on the Logit model, in which the change in the consumer’s surplus is the difference 

in the log-sum terms, as shown in (35).12

The example in Table 1 describes the following situation.  Consider a rail project.  This 

project reduces rail-travel time from 40 (minutes) to 20 (minutes), but increases its average 

cost from 500 (yen) to 650 (yen).  Without the project, rail travel breaks even.  With the 

project, the average cost of rail travel increases by 150 (yen).  This increase is financed by a 

rise in the rail fare of 100 (yen) and an increased government subsidy of 50 (yen) per rail user.  

The project increases rail travel and reduces car travel, which slightly relieves car congestion.  

Reduced car congestion decreases car-travel time from 45 (minutes) to 44 (minutes).  The 

cost of car travel, i.e., the gross fuel price, which includes fuel tax, also falls, from 700 (yen) 

to 680 (yen).  The fuel-tax rate is 100%, so the gross fuel price is twice as high as the net fuel 

price.  Implementation of the project causes total transport demand to increase from 

0.278+0.252=0.530 (million trips per day) to 0.313+0.242=0.555 (million trips per day).  

Transport demand is assumed to be forecast by the Logit model, in which the utility of each 

route is given by: 

V=-0.000250 (Time 40 Monetary Price)
=-0.000250 (Generalized Price),

× × +
×

     (52) 

where the time cost is 40 (yen per minute). 

We begin by applying the benefit-estimation method based on the Logit model with 

variable total demand, given by (42).  The scale parameter of the Gumbel distribution is 

assumed to be unity; i.e., 1µ = .  Without the project, the log-sum term, 

                                                 
12 We cannot apply the benefit-estimation method based on the Wardrop model, (23), to the following example, 

because both rail and car are used but their generalized prices are unequal.  If the model were based on the 

Wardrop model, the generalized prices of rail and car that are actually used, would be equal. 
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⎫
⎬ln exp( / ) 1iWO

i

v µ⎧
+⎨

⎩ ⎭
∑ , where i = rail and car in this example, is calculated as: 

{ }ln exp( / ) 1 ln exp( 0.00025 2100) exp( 0.00025 2500) 1 0.755iWO

i

v µ⎧ ⎫
+ = − × + − × + =⎨ ⎬

⎩ ⎭
∑ . 

(53) 

With the project, the log-sum term, ln exp( / ) 1iW

i

v µ⎧ ⎫
+⎨ ⎬

⎩ ⎭
∑ , is: 

{ }ln exp( / ) 1 ln exp( 0.00025 1400) exp( 0.00025 2440) 1 0.810iW

i

v µ⎧ ⎫
+ = − × + − × + =⎨ ⎬

⎩ ⎭
∑ . 

(54) 

By applying (35), from (53) and (54), we obtain the following change in the consumer’s 

surplus: 

1 (0.810 0.755) 222
0.00025

U∆ = − =  (million yen).   (55) 

Next, we calculate the producer’s surplus.  The change in the producer’s surplus in rail 

travel is: 

(600 650) 0.313 (500 500) 0.278 15.7− × − − × = −  (million yen).   (56) 

The change in the producer’s surplus in car travel is: 

(680 340) 0.242 (700 350) 0.252 5.91− × − − × = −  (million yen).   (57) 

Adding (55) to (57) yields a change in the total benefit of 200 (million yen). 

Now, we calculate the change in the total benefit by applying the benefit-estimation 

method based on the Mohring model, disregarding errors due to linear approximations.  First, 

on the basis of (13), we compute the total benefit as the sum of the changes in the consumer’s 

and producer’s surpluses.  The change in the consumer’s surplus in rail travel is: 

0.5 (2100 1400) (0.278 0.313) 207× − × + =  (million yen).   (58) 



The change in the consumer’s surplus in car travel is: 

0.5 (2500 2440) (0.252 0.242) 14.8× − × + =  (million yen).   (59) 

Equations (58) and (59) confirm that the change in the consumer’s surplus calculated by 

using the method based on the Logit model, given by (55), is approximately equal to the sum 

of the changes in the consumer’s surpluses in rail travel and car travel, given by (58) and (59), 

respectively.  Adding (56) and (57) to the sum of (58) and (59), we again obtain a change in 

the total benefit of 200 (million yen). 

Second, on the basis of (15), we calculate the change in the total benefit by adding the 

change in the consumer’s surplus in rail travel, the change in the producer’s surplus in rail 

travel, and the change in the deadweight loss in car travel.  The change in the deadweight loss 

in car travel corresponds to Area G in Figure 2-4.  Although Area G arises because the social 

marginal cost curve differs from the general-equilibrium demand curve, we can compute 

Area G without knowing the social marginal cost curve itself, which is difficult to estimate in 

practice.  Note that the social total cost, including time costs, is given by the area below the 

social marginal cost curve.  Thus, the sum of Areas G and F in Figure 2-4 equals the change 

in the social total cost.  Subtracting Areas G and F from Area F, which, being the area below 

the general-equilibrium demand curve, equals the private total cost, yields Area G.  That is, 

since 

(Area F)  (million yen) and  (60) 0.5 (0.242 0.252) (2440 2500) 24.7× − × + = −

(Area G+ Area F) (million yen), 

(61) 

(44 40 340) 0.242 (45 40 350) 0.252 33.6× + × − × + × = −

the change in the deadweight loss in car travel is: 

24.7 ( 33.6) 8.89− − − =  (million yen).     (62) 

This figure equals the sum of the change in the consumer’s surplus in car travel, given by (59), 
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and the change in the producer’s surplus in car travel, given by (57).  Adding the change in 

the consumer’s surplus in rail travel, given by (58), to the change in the producer’s surplus in 

rail travel, given by (56), yields a change in the total benefit of 200 (million yen), as before. 

 

4 Conclusion 

In this paper, we have explained three basic benefit-estimation models and discussed 

their merits and demerits.  The relationships between the three models are shown in Figure 3.  

The most general model is the Mohring model, which includes the Wardrop model and the 

Logit model as special cases.  The Logit model reduces to the Wardrop model when the scale 

parameter of the Gumbel distribution, µ , is zero.  (Considering the Logit model as a special 

case of the nested Logit model, the area corresponding to the nested Logit model is shown by 

the dotted line in Figure 3.)  These results imply that the properties of the Mohring model 

apply to the Wardrop and Logit models, but not vice versa. 

The analysis of this paper suggests that it is appropriate to use the Mohring model to 

estimate the benefits of transport projects.  However, the Morhing model lacks practical 

validity when applied to new transport routes.  In these cases, we need to use the Wardrop 

model, assuming that all routes are perfectly substitutable, or use the Logit (or nested Logit) 

model. 

In the Wardrop model, in which the generalized prices of all routes are equal, we may 

consider the generalized price between zones.  In the Logit (or nested Logit) model, the 

log-sum terms can be considered the generalized price between zones.  However, it must be 

noted that the specific properties of the Wardrop and Logit (or nested Logit) models enable us 

to define the generalized prices between zones.  In the Mohring model, we cannot define the 

generalized prices between zones for benefit estimation.  These points are misunderstood by 
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many researchers and practitioners, but should be carefully considered.  For example, some 

manuals on benefit estimation in Japan, such as that of the Institute for Transport Policy 

Studies (1999a, 1999b) define the generalized price between zones as the weighted average 

of the generalized prices in each route.  This price is then applied to transport demand 

between zones, although the manuals implicitly rely on the Mohring model.  Such an 

inconsistent approach yields inaccurate benefit calculations, as discussed in Kidokoro 

(2003). 



Appendix 1 

Derivation of (13) 

Totally differentiating (12) with respect to 1I , from (4) and (5), we obtain: 

( ) ( )
( ) ( )

1 1 2 2
1 1 2 2

1 1 1 1 1

1 2 1 2
1 1 2 2

1 21 1 1 1

1 2 1
1 2 1 1 2 2

1 1 1 .

dSW dp dx dp dxx p x p
dI dI dI dI dI

dx dx dx dxu u t C t C
dI dI dI dI
dp dp dx dxx x t C t C
dI dI dI dI

⎞ ⎞⎛ ⎛
= − − − −⎟ ⎟⎜ ⎜

⎝ ⎝⎠ ⎠

′ ′+ + + − + −

⎞ ⎞⎛ ⎛ ′ ′= − − + − + −⎟ ⎟⎜ ⎜
⎝ ⎝⎠ ⎠

2

1

    (A1) 

Integrating (A1) yields (13). 

Q.E.D 

 

Derivation of (14) 

Rearranging the third and the fourth terms of the right-hand side of (13) using (9), we 

obtain (15): 

( ) ( )

( ) ( )

( )

1 21 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

1 1

1 1 1 1 1 2 2 2 2 2

2
1 1 1 1 1 2 2 2 2 2 2 2 2

2

1 1 1 1 1 2 2 2 2
1

( , )

(
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W WO W WO

WO W WO W

W WO W WO

WO W

W WO

p px x

p x p x

p x x x

p x x x

p x

p x

SW x dp t C dx x dp t C dx

dpx dp t C dx x dx p TC x I C dx
dx

x dp t C dx TC x p TC x

′ ′∆ = + − + + −

′ ′= + − + + − −

′+ − + − + −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

　　　

= ( )

( ) ( )

( ) ( )

2

2

1 1 2

1 1 2

1 1 2

1 1 2

2 2 2 2

1 1 1 1 1 2 2 2 2 2 2
1

1 1 1 1 1 2 2 2

, )

( )

W

WO

WO W W

W WO WO

WO W W

W WO WO

x

x

p x x

p x x

p x x

p x x

I C dx

x dp t C dx p C TC TC x dx

x dp t C dx p SMC dx

′−

′ ′+ − + − + +

′+ − + −

∫

∫ ∫ ∫
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= 　

= 　.

(A2) 

Q.E.D 
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Table 

 

Table 1: A Numerical Example 

Without a Project 

Without
Time
(minutes)

Monetary
price (yen)

Rail's Average
Cost (yen)

Fuel Tax
(yen)

Generalized
Price (yen)

Demand
(million trips
per day)

Do not travel 0.470
Rail 40 500 500 N/A 2100 0.278
Car 45 700 N/A 350 2500 0.252
Total demand 1.00

N/A

 

 

With a Project 

With
Time
(minutes)

Monetary
price (yen)

Rail's Average
Cost (yen)

Fuel Tax
(yen)

Generalized
Price (yen)

Demand
(million trips
per day)

Do not travel 0.445
Rail 20 600 650 N/A 1400 0.313
Car 44 680 N/A 340 2440 0.242
Total demand 1.00

N/A
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Figures 
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Figure 1: Visual Representation of the Model 
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Figure 2-2：Producer’s Surplus in Route 1 
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Figure 2-4：Producer’s Surplus in Route 2 
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