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Accuracy of Count Data Estimated by the Point-in-Polygon Method

Abstract

This paper analyzed the accuracy of count data estimated by the point-in-polygon
method. A point-in-polygon interpolation model was proposed which was based on a
stochastic distribution of points and the target zone, in order to represent a variety of
situations. The accuracy of estimates was numerically investigated in relation to the size
of the target zone and the distribution of points, and the optimal location of representative
points was discussed. The major findings obtained in this paper were as follows: 1)
though the relative accuracy of estimates generally increases monotonously with the size
of the target zone, the monotoneity is often disturbed by the periodicity in the spatial
configuration of source zones and the point distribution; 2) the point-in-polygon and the
areal weighting interpolation methods have the same accuracy of estimates when points
are concentrated in less than 12-15% area around the representative point in source zones,
3) the point-in-polygon method is not so robust against the locational gap between points
and the representative point; 4) the optimal location of representative pointsis given by
the spatial median of points.



1. INTRODUCTION

Socioeconomic data based on the point location are often provided in an aggregated
form. Census data, for instance, are aggregated across census tracts to open to the public,
though they are originally collected as point data. Other data are aggregated on a variety of
zonal systems such as regular lattices, municipal districts, school districts, and postal
zones. It often happens that a zonal system is incompatible with the region in which an
anaysisisto be performed. In such a case it is necessary to estimate the count datain the
study region. Thistype of data estimation is called areal interpolation, or to be exact, data
transfer from source zonesto atarget zone. Since areal interpolation is frequently required
in geographical analysis, a variety of mathematical methods have been proposed in
geography and other related fields (Wright 1936; Markoff and Shapiro 1973; Tobler
1979; Goodchild and Lam 1980; Lam 1983; Rhind 1991).

Areal interpolation methods can be classified into two groups: intelligent methods
which use supplementary data, say, remotely sensed data, and simple methods which do
not use such data. An advantage of intelligent methods is accuracy of estimates. Using
suitable supplementary data, they usually provide more accurate estimates of spatial data
than simple methods (Flowerdew 1988; Langford et al. 1991; Fisher and Langford
1995). We should note, however, that intelligent methods are not always applicable.
Remotely sensed data are often unavailable or expensive, and the computational cost is
problematic if agreat quantity of data has to be processed. Thus simple methods such as
the point-in-polygon method (Burrough and McDonnell 1998), areal weighting
interpolation method (Markoff and Shapiro 1973), and pycnophylactic interpolation
method (Tobler 1979), are still widely used in geography and GIS (Okabe and Sadahiro
1997; Sadahiro 1999b).

Among simple methods, the point-in-polygon method is distinguished for its
processing speed (Flowerdew and Green 1991; Okabe and Sadahiro 1997). This method
transfers the count data of a source zone to atarget zone if the representative point of a
source zone is included in the target zone (see section 2 for detailed description). The
point-in-polygon method is based on the point-location algorithm (Preparata and Shamos
1985), which runs very fast (linear time). Consequently, the point-in-polygon method is
suitable for massive spatial data and in fact it is used for processing 1.65 million census
tracts data by the Japanese Bureau of Statistics (Sinfonica 1994). The importance of
processing speed cannot be underestimated in geographical analysis, because in recent
years a number of huge spatial databases have become available to geographers. On the
other hand, the point-in-polygon method is said to yield less accurate estimates than other
methods. The method implicitly assumesthat all the points are located on representative
points, and gives the true count in a target zone if the assumption holds. However, this



assumption is apparently too strong. Points are usually dispersed in spatial zones, which
causes inaccuracy in estimation of count data. Estimation error is relatively small and
often negligible if atarget zone is even larger than source zones. Otherwise, estimation
error iscrucia to the quality of spatial analysis and thus care should be taken in handling
the estimated data.

There are two alternatives to improve estimation accuracy when supplementary data
are not available: to use source data consisting of smaller zones, or to adopt another
simple interpolation method, say, the areal weighting interpolation method. This choice
requires us to understand the nature of estimation accuracy, that is, how accurately areal
interpolation methods estimate count data. Concerning the point-in-polygon method,
unfortunately, there are few systematic studies analyzing the accuracy of estimates.
Though it is known that accuracy depends on various factors such as the size of source
zones and the location of representative points, their effects have not been quantitatively
evaluated in the literature.

This paper analyzes the accuracy of count data estimated by the point-in-polygon
method in order to investigate how it is determined by various factors. We hope that the
study helps geographers to choose source data and interpolation methods in their
analysis. In section 2, we briefly describe the point-in-polygon method. We aso outline
the areal weighting interpolation method since it is discussed later in comparison with the
point-in-polygon method. In section 3, we propose a stochastic model representing the
point-in-polygon interpolation. Using the model, we numerically examine the accuracy of
estimates in section 4 in the case where source zones are a square lattice. In section 5, the
optimal location of representative points is discussed. We finally summarize the
conclusionsin Section 6.

2. POINT-IN-POLYGON AND AREAL WEIGHTING INTERPOLATION
METHODS

Suppose a zonal system S, aregion Zp of area Ag consisting of K zones Zy, Z, ...,
Zx (Figure 1a). The region Zp may represent a ward whereas zone Z; is its lower level
gpatial unit, say, a census tract. We call the zones Z4, Z», ..., Zx source zones and
denotetheareaof Z asA (i=1, ..., K). Spatial objects which can be regarded as points,
say, individual people or households, are distributed in Zy (Figure 1b). We refer to these
spatial objects as points, and denote the location of point j asy;. The number of points is
counted in each source zone, and the data are allocated to the representative points. The
number of points and the location of the representative point in zone Z; are denoted by nj
and p;j, respectively (Figure 1c). The locational data of points are then eliminated to
preserve the confidentiality of the subjects.



FIG. 1. A zona system and count data. @) Source zones, b) distributed points, )
representative points and the number of points.

We next consider atarget zone T of area B in which we want to know the number
of points. Since the location of individual points is not known, we have to estimate the
count using an areal interpolation method. In the point-in-polygon method, the estimate of
count is given by summing up the n;s whose representative points are included in the
target zone T (Figure 2a). In the areal weighting interpolation method, the count in each
source zone is divided according to area and the estimate is given by summing up the
assigned values (Figure 2b).

FIG. 2. Areal interpolation methods. @) The point-in-polygon method, b) the areal
weighting interpolation method. The gray-shaded areaindicates the target zone. The
numbers in parentheses indicate the count data n;s.

The two methods are mathematically represented as follows. Let us denote the
location of T using a binary function defined by

it xOT
C(x) = : 1
() ED otherwise @)
The true number of pointsin T isthen given by
M = zc(yj). )
J

The number of pointsin zone Z; iswritten as
n :ZUi(yj)’ (©)
I
where U;(x) is defined by
M if xdz
- %) otherwise’
The point-in-polygon method estimates the number of pointsin TnZ; asn if and only if

T contains p;. Otherwise it assigns zero to Tn Z;. Consequently, the estimate of M given
by the point-in-polygon method is written as

M = IZC(pi)ni
= ZC(pi)ZUi(yj).

On the other hand, the areal weighting interpolation method estimates the count in T to be

U;(x) (4)

©)



M':z—iA n. (6)

3. POINT-IN-POLYGON INTERPOLATION MODEL

Before developing a model, we briefly discuss existing approaches to estimation
accuracy of areal interpolations. The accuracy of areal interpolations has been studied in
various ways, and the approaches taken in the literature can be classified into two
categories. empirical-based studies and Monte Carlo simulations. The former usually
considers a particular geographic situation, that is, actual zonal systems and a point
distribution, in order to evaluate the reliability of estimates and compare the accuracy
between interpolation methods (Flowerdew 1988; Flowerdew and Green 1991; Langford
et al. 1991; Goodchild et al. 1993). Though this approach is advantageous in the reality,
it is an open question whether the obtained results are generally applicable (Fisher and
Langford 1995). The Monte Carlo method, on the other hand, enables us to consider a
wide variety of situations and thus to obtain general results. Fisher and Langford (1995)
and Cockings et al. (1997) adopted this approach to discuss several interpolation methods
in terms of estimation accuracy, and successfully obtained full distributions of estimation
errors. Monte Carlo simulations, however, are computationally expensive, because areal
interpolations involve the polygon overlay operation which requires rather complicated
algorithms in GIS. The computational cost is problematic especialy when a number of
gpatial relationships between source and target zones are to be realized.

Considering the discussion above, we follow the approach taken by Sadahiro
(1999b), that is, evaluation of estimation accuracy on the basis of a stochastic model
representing a class of situations. This assures us not only the generality in analysis but
also far less computational cost than Monte Carlo simulations.

In the model, a set of source zones with representative points are given whereas
points and the target zone are stochastically located on the source zones. To be explicit,
we consider a situation that N points are independently and identically distributed in the
region Zy according to a probability density function f(x), and the target zone T is
dropped in such away that it intersects Zy. For convenience of computation, we assume
that Zp has such a shape that can cover a plane by itslattice, and that Zg is surrounded by
its copies having the same zonal system and point distribution as those of Zg (Figure 3).
This assumption is called the periodic continuation which is often used in spatial statistics
(Ripley 1981; Stoyan and Stoyan 1995; Sadahiro 1999b). If T does not completely liein
Zo, We replace the portion of T outside Zg by its corresponding figure (Figure 4). The
location of T follows the probabilistic distribution such that all possible shapes and



positions of T appear randomly.

FIG. 3. Periodic continuation assumption.
FIG. 4. Transformation of T.

One might think that the periodic continuation assumption is too strong and
unrealistic. The assumption, however, is not essential for the analysis since it is
introduced mainly in order to avoid computational difficulties arising from boundary
effects. Actually the assumption is not necessary if the region Zg is larger enough than the
target zone T. There are also severa ways to solve boundary problems, and they usually
give amost the same results (Sadahiro 1999a).

In the above setting the accuracy of count data is discussed. The source zonal
system with representative points, the number of points, and the shape and size of the
target zone are given whereas the location of points and the target zoneis probabilistically
determined. Thisimpliesthat we are considering a class of situations that share the given
conditions.

From equations (2) and (5) we have the estimation error of M:

e=M-M
_ : ()
- ZC(y,‘) - Iz C(pi)ZUi(y]‘)
To evaluate the error, we use the mean square error (MSE) of € defined by
MSE[S] = H¢?]. (8)
After severa steps of calculation (see Appendix 1 for details) we obtain
MSE[S] = N(N-D)f _ [ f(x)f(t)P{x 0t OT]et

+2N§£§

-2N(N -1) f(x)d f(x)Pr[p, Ox OT]d
5 Lo 100 0PI XD

2Ny [ (%) Pr[p, O x OT]dx

+N(N-DY > Prlp, O p, OT] [ f(x)dx . f(x)dx

In the above equation the probability Pr[x[Jt0T] is not explicitly given. It can be
computed as follows. Let m(T; |) be the measure of the set of all figures congruent to T
containing two points separated by adistance | (Santal¢ 1976). Then Pr[xdtT] is given

by



Pr[x Ot OT] = Z m('l'2|+n%—ul) (10)
uli(t)

where Q(t) is a set of points corresponding to t in the surrounding copies of Zg (Figure
5). The measure m(T; I) is represented by an explicit form if T has a simple shape
(Santal6 1976; Sadahiro 1999a, 1999b). For instance, if Tisacircle of radiusr,

m(T:1) = 5471 arccosD—D tNar? =17 (1<2r),
Q O (I> 2r)
For complicated shapes of T, we can use an equation
BZ
m(T:1) = - 6:(1). (12)

where gr(l) is the probability density function of the distance between two points
randomly distributed in T. Since the function g(l) is numerically computable, equation
(9) can be evaluated for any T.

(11)

FIG. 5. A point set Q(t). The gray-shaded area indicates the region Zy.

4. NUMERICAL EXAMINATIONS

Having obtained a computable representation of MSE, we are now ready to analyze
numerically the accuracy of estimates using the point-in-polygon interpolation model. We
wish to investigate how various factors, especially the size of the target zone and the
distribution of points, affect the accuracy of estimated count data.

As seen in the previous section, the model is applicable for evaluating estimation
accuracy in avariety of situations. However, due to limitations of space, we focus on a
few typical cases where source zones are a square lattice. Though a more realistic zonal
system such as census tracts is also available, we choose a square lattice because of the
following reasons. First, congruity of source zones permits us to ignore the effect of
diversity among source zones on estimation accuracy, and consequently enables us to
concentrate on other specific factors. Second, computational cost is reduced if source
zones are regularly arranged. This brings high tractability to the numerical examination.
Third, asguare lattice is a good approximation of a zonal system whose zones are similar
in shape and size. Existing studies such as Okabe and Sadahiro (1997) and Sadahiro
(1999b) suggest that a slight difference in shape of source zones does not greatly
influence the accuracy of estimates.

As mentioned above, we focus on how the size of the target zone and the
distribution of points affect the accuracy of estimated count data. To this end, we suppose
asquare lattice whose every cell has its representative point on the centroid of the cell and



has the same form of f(x) (Figure 6). We then consider the limit where the region Zg
expands infinitely, keeping the size of cells and the density of points at A and u=N/Ay,
respectively.

FIG. 6. Representative points and f(x) on a square lattice.

To make the MSE comparable among different sizes of T, we divide it by B2 for
standardization. Hence we have

E ,;\Bz Jifre AATOOH AT (O} (T x -t|)dxdt5
Jim Mﬁ[s]z'mgr L[ AT - K)o 2

A2 ’ ( 13)

2o 2. (TP =P

% nABZLDJ{A)f( ) (T;Ip—x|)dx§4

where U and p indicate aunit cell and a representative point, respectively.

Equation (13) indicates that the mean square error of estimates is represented by a

linear combination of p and p2. Hence we rewrite the equation as

Z|0| rpm%z[s] = Qzuz +QU, (14)
and employ Q1 and Q, instead of the M SE to evaluate the accuracy of estimates, in order
to discuss the effect of u separately from other factors. Note that both Q; and Q, are
independent of p since they are determined by U, T, p, and f(x).

Given a certain value of U, the MSE is determined by Q1 and Q». If points are
sparsely distributed so that p has a small value, both Q1 and Q» are influential on
estimation accuracy. However, if points are densely distributed in Zg, we may neglect Q
in evaluating the MSE since it is mainly governed by Q-, the leading coefficient in
equation (14).

In the following we discuss the point-in-polygon method in comparison with the
areal weighting interpolation method because it is also widely used in geography. The
standardized M SE of thisinterpolation method is given by

I:I:II:II:I%I:II:I
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(for details, see Sadahiro 1999b). Similar to the point-in-polygon method, the accuracy of
the areal weighting interpolation is measured by Q; and Q».

4.1 Sze of the target zone

We first analyze the relationship between the size of the target zone and the accuracy
of estimates. Intuitively, it is expected that the relative accuracy increases as T becomes
large (Langford et al. 1991). We test this hypothesis on a square lattice using the
interpolation models.

For the target zone T, we adopt circles whose radii range from 0.1 t0 5.0. The area
of square cellsis set to 1. Three forms of f(x) are investigated: a uniform distribution
(Figure 7d), a quadrangular pyramid distribution (Figure 7b), and a quadrangular prism
distribution (Figure 7¢). The latter two are adopted as approximations of points located on
the representative point, the point distribution which the point-in-polygon method
implicitly assumes.

FIG. 7. Forms of f(x) inacell. a) auniform distribution, b) a quadrangular pyramid
distribution, c) a quadrangular prism distribution.

The results are shown in Figures 8 and 9. As we have expected, the relative
accuracy of estimates improves as T becomes larger. This tendency is found in both
interpolation methods for any form of f(x). We should note, however, that Q, changes
periodically with the size of T, whereas Q; decreases monotonously with as increase of
T. Thisis mainly because of the periodicity lying in both f(x) and the lattice. Thisimplies
that the MSE may change drastically with adight enlargement or reduction of T if points
areregularly distributed like a population distribution in new towns.

FIG. 8. Estimation accuracy of the point-in-polygon method and the size of the target zone



FIG. 9. Estimation accuracy of the areal weighting interpolation method and the size of the
target zone T. The value of Q, is constant at zero for the uniform distribution of f(x).

4.2 Distribution of points - the degree of concentration

We next investigate the relationship between the distribution of points and the
accuracy of estimates. The point-in-polygon method implicitly assumes that points are
located exactly on representative points as mentioned earlier. The areal weighting
interpolation method, on the other hand, assumes that points are uniformly distributed in
zones. We expect that an interpolation method yields accurate estimates if a point
distribution is close to its underlying assumption. To confirm this we analyze how the
concentration of points affects the accuracy of the point-in-polygon method.

For the target zone T we try three sets of circles whose radii range from 0.62-1.12,
1.62-2.12, and 3.62-4.12 since the M SE changes periodically with the size of T as seen
in the previous subsection. We calculate the averages of Q; and Q, for each set of T. The
cell sizeisagain set to 1. The form of f(x) changes from the uniform distribution to highly
concentrated distribution as shown in Figure 10. The width of a quadrangular prism
representing f(x) is denoted by w.

FIG. 10. Form of f(x) in acell.

The results are shown in Figures 11a, 11b, and 11c. We notice that the figures are
very similar though the vertical scale is different. This indicates that the relationship
between the concentration of points and estimation accuracy is independent of the size of
the target zone. Concerning the point-in-polygon method, Q1 and Q, decreases as points
concentrate around the representative point. This supports the hypothesis mentioned
earlier. In contrast to this, the areal weighting interpolation method is not fully consistent
with the hypothesis: as w decreases, Q, increases but Q; decreases. Thisimplies that if
the point density p islow enough (say, u=1) estimation accuracy improves as the point
distribution becomes dissimilar to the underlying distribution of the areal weighting
interpolation method. Though such alow density of pointsis not frequently observed in
practice, it should be noted that estimation error does not always decrease when a point
distribution becomes close to the underlying assumption of the interpolation method.

We now consider the degree of concentration of points where the two interpolation
methods give the same accuracy. Interestingly, the two methods are equivalent in
estimation accuracy when w=0.35-0.38 for both Q1 and Q, for any size of T. From this
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we can say that the point-in-polygon method is more suitable than the areal weighting
interpolation method when points are concentrated in less than 12-15% area around the
representative point. If points are supposed to be more dispersed, the areal weighting
interpolation method would be appropriate.

FIG. 11. Estimation accuracy and the concentration of points. Radius of T isa) 0.62-
1.12, b) 1.62-2.12, c) 3.62-4.12.

4.3 Distribution of points - relative location to the representative point

As assumed in this section, the representative point is often located on the centroid
of a source zone, especialy in digital spatial data. The location of points, however, does
not usually agree with representative points. points are sometimes dispersed in a zone,
clustered apart from a representative point, or even located along the edge of a zone. Such
alocational gap between points and the representative point is a source of estimation error
in the point-in-polygon interpolation. Therefore, we finally analyze how the location of
pointsin cells affects estimation accuracy.

To this end, we employ three quadrangular prism distributions as f(x) whose
widths are 0.1, 0.3, and 0.5. Points move gradually from the centroid of cells to the
corner as shown in Figure 12. The distance between the center of prism and the
representative point located on the centroid of acell is denoted by d. For the target zone T
we try the same set of circles as those used in the previous subsection, and calculate the
averages of Q1 and Q,. The area of cellsisset to 1.

FIG. 12. Location of pointsin acell.

As seen in Figure 13, the obtained results do not much differ according to the size
of the target zone. In general, estimation error increases consistently with d. It is
interesting that this tendency is observed not only with the point-in-polygon method but
with the areal weighting interpolation method (Q1). The effect of locational gap is more
serious in the point-in-polygon method, especially when points are highly concentrated.
The point-in-polygon appears not so robust against the locational gap between points and
the representative point.

When points are located distantly from the representative point, it often happens that
the areal weighting interpolation method gives better estimates even if points are tightly
clustered. The critical value of d where the two methods are equivalent in estimation
accuracy depends on w, the degree of concentration of points. Figure 13 depicts that
concentration of points increases the critical value of d.
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FIG. 13. Estimation accuracy and the location of points. Radius of T isa) 0.62-1.12, b)
1.62-2.12, c) 3.62-4.12.

5. OPTIMAL LOCATION OF REPRESENTATIVE POINTS

In the previous section we analyzed the effect of the locational gap between points
and the representative point. It was found that the point-in-polygon method is sensitive to
the locational gap, and that the estimation error increases with the distance. Thisimplies
that if providers of spatial data such as national mapping agencies put the representative
point on an appropriate position it would improve estimation accuracy of the point-in-
polygon interpolation performed by users of the data. So where should the representative
point be located in a zone? This section briefly discusses this subject.

We consider the optimal location of the representative point individually for each
zone, and thus we focus on the representative point of zone Zy. From the viewpoint of
areal interpolation, it is desirable that the representative point islocated so asto minimize
estimation error originating in Zy. This problem isformulated as follows.

Let My be the number of pointsin the intersection of Zy and T. It is mathematically
represented as

M= Cly, Juy,)- (16)
J
The estimate of M given by the poj nt-in-polygon interpolation is
M =C(p) S Uily,). (17)
J

The mean sgquare error of My is calculated in a similar way as that of M (for details, see
Appendix 2):
MSE,[S] = Imz IDZ (t)Pr[x O t OT]dxdt

U O

2NEr o, 1)

—2N(N —1)J’mzk f(x de’XDZk f(x)Pr{p, O x OT]dx

(18)
=2N[  f(x) F>r[pk 0 x DT]dx
x0z;
The optimal location of py is obtained by solving
minMSE,[S]. (19
Pk

Substitution of equation (18) yields
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ngin MSE,[S] = max [ f(x)Pr{p, O x OT]dx. (20)

Assuming that the region Zgy is even larger than T, we obtain
f(x)m(T;|pk - x|)dx. (21)

ngax x0Z

The above problem isakind of continuous location problems studied in operations
research (Plastria 1995). If f(x) and m(T; |) are given in analytical and ssimple forms, the
problem may be solvable by a computational procedure (Love 1972; Drezner and
Wesolowsky 1980; Aly and Marucheck 1982; Love et al., 1988). Otherwise we have to
try numerous locations in Z to find the optimal location of py.

Equation (21) implies that the optimal location of py depends not only on f(x) and
Z, but also on the target zone T. In practice, however, the target zone is unknown when
the location of py is determined. We hence consider the circle which is the most typical
shape of the target zone.

Let T beacircle of radiusr whose diameter 2r islarger than the maximum length of

Zyx. The measure m(T; |) isthen given by

m(T;l) = 4m? arccos%g— m4ar? =17, (22)
Applying aTaylor series expansion around 1=0 to equation (22), we obtain
d 1d°
T:1)=m(T:0) + —m(T;0)l +=— m(T;0)I?
= 217°r? — 417l

The above equation is a good approximation of m(T; |) especially for small | (Figure 14).
Substitution of equation (23) into equation (21) yields
min( f(X)p, — x|dx. (24)
Pk IXUL

This indicates that the location of p is the spatial median of f(x) in Zx (Brown 1983;
Small 1990; Stoyan and Stoyan 1994). Aswe will illustrate later, the spatial median does
not always agree with the centroid of f(x) on which the representative point is often
located.

FIG. 14. The measure m(T; I) of acircle of radius 3.

The above discussion holds for the shapes that allow the linear approximation
shown in equation (23). Convex shapes similar to the circle, say, the square, regular
triangle, regular hexagon, and rectangles meet this requirement (see Figures 15 and 16).
Considering that the target zone usually has a ssmple convex shape, we may say that the
gpatial median is the optimal location of representative points in relation to estimation
accuracy of the point-in-polygon interpolation.

13



FIG. 15. The measure m(T; |) of aregular triangle and regular hexagon.
FIG. 16. The measure m(T; I) of rectangles having a variety of horizonta to vertical
ratios.

We finally show some examples of the optimal location of representative points.
We compute both the spatial median and the centroid of f(x) in square zones varying the
distribution of points f(x). Every zone is divided into 10 * 10 cells each of which has a
constant value of f(x) as shown in Figure 17.

As mentioned earlier, the spatial median does not always agree with the centroid.
The spatial median is more strongly drawn by points, and it tends to be nearer the
maximum of f(x). Since the locational gap between points and the representative point is
crucia in the point-in-polygon interpolation, estimation accuracy appears to be fairly
improved if data providers locate the representative point on the spatial median rather than
the centroid of f(x).

FIG. 17. The optimal location of the representative point (spatial median) in asquare
zone. The white squares and black circles represent the spatial median and the centroid of
f(x), respectively. The value of f(x) is zero in the white cells. The lightest gray cells
indicate f(x)=1.0, and the values of f(x) in the other gray cells are shown individualy.

6. CONCLUSION

In this paper we have analyzed the accuracy of count data estimated by the point-in-
polygon method. We first proposed a point-in-polygon interpolation model which is
based on a stochastic distribution of points and the target zone. This allows us to replace
diverse situations by their representative model. We then applied the model to the case of
asquare lattice and numerically investigated the accuracy of estimates. The major results
are summarized as follows:

1) Therelative accuracy of estimates generally increases with the size of the target
zone. However, the periodicity in the spatial configuration of source zones and
f(x) disturbs monotoneity of the relationship, thus an enlargement of the target
zone may reduce estimation accuracy.

2) The point-in-polygon method gives good estimates when points are concentrated
around the representative point. The areal weighting interpolation method, on the
other hand, fits uniform distributions of points. These methods are equivalent in
terms of estimation accuracy when points are concentrated in less than 12-15%
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area around the representative point.

3) The point-in-polygon method is not so robust against the locational gap between
points and the representative point. Hence it often yields worse estimates than
the areal weighting interpolation method even if points are strongly concentrated.

The third result implies that the location of representative pointsis crucia for the
point-in-polygon interpolation. Thus we discussed the optimal location of representative
points and found that in most cases it is given by the spatial median of points. Thiswarns
us as data producers that the centroid of points often used as the representative point is
not the optimal location in relation to the point-in-polygon interpol ation.

In the empirical study we considered only the square lattice due to limitations of
space. We should emphasize, however, that the proposed method is applicable to any
zonal system as mentioned earlier. Zonal systems which are less artificial than regular
lattices, say, census tracts and municipal districts, should be analyzed in future
researches.

The point-in-polygon interpolation model we proposed considers data transfer from
multiple source zones to a single target zone. Data transfer between zonal systems still
remains to be analyzed where estimation occurs in multiple target zones. This is an
important subject in geography which is related to the modifiable areal unit problem
(Openshaw 1984; Flowerdew and Green 1991; Fisher and Langford 1995; Okabe and
Sadahiro 1997). We will examine an extension of our study to this case in order to
analyze the accuracy of estimation between zonal systems.
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APPENDIX 1

The mean sgquare error of € which is denoted by MSE[] is calculated as follows.
MSE[S] = E[¢’]

- “1 (A1)

= E[M?] —2E[|v||v|] + E[MZ]

Thefirst term of equation (A 2) becomes

] -5 o
= E§ Z c( yj)c(yj . (A 2)

Substituting
glcly,)c(y, )] = P(y, oT)n (v, OT)]
[ Pr[ y, 0dx) n (x OT) n (y,, Dct) n (ce OT)|axet

—LDZ IDZ (t)Pr[x Ot OT]dxdt
(A3
and
fobil-ri m]
—I (x)Pr[x OT]dx, (A4
i E
we have

E[M2] = N(N - ] f(x)f(t)Pr[thDT]dxdt+N§A%§ (A 5)

The second term of equation (A 1) isrewritten as
E[MNI] = Egéz cly )E;z ZU( )
=ED) lezc(pi)ui(yj)c(yj.)é . (A®)
=2y 5 elu.(v,)|gclp)ely,)] + 5y E[u,(y,)o(p)c(y))

Substitution of
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E[u (v, )|Elclp)cly, )] = [, TCIax], Pr(p. OT)n (v, Do) n (cx OT)]ax

:LDZ de’ f(x)Pr[p, O x OT]dx

(A7)
and
E[U,(v,)o(e ), )| = [, P(v; Dox) n (p, OT) n (ax O]

= F>r[yJ Ddx] Pr{p, O dx OT]dx (A 8)
—I f(x) Pr[p; O x OT]dx

yields

E[MM | = N(N DY [ Tax[  f(x)Prp, Ox OT]ax

N ° (A 9)

N [, f(x)Prp, Ox OT]x

The third term of equation (A 1) isgiven by

E[mz]:mjl C(pi)ZUi(yj)gé

:E§ZC (p,)C(p: u.(yj ui.(y‘.)é . (A 10)
-5 3 ool ]33 ol o)

This equation becomes

E[M?] = 2y Y E[C(pi)C(pi,)]J; E[u,(y,)|gu. (v,)]
¥y E[C(pi)C(pi.)]Z E[U,(y, Ui (v,
= N(N —1)Z Z Pr[p, O p, OT] [ F(x)ax [, - f (x)dx
*y E[c(p )]Z E[u,(y,)]
= N(N-1) Z z Pp, O p, DT]J’XmZi f(x)dx‘[xuzil f(x)d

(A 11)

B0
*NEa

Using equations (A 5), (A 9), and (A 11), we obtain
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MSE[S] = N(N-2)f _ [ f(x)f(t)Pr{x 0t OT]axt

NDB %
—2N(N -1) Z.rxmzi X de'XmZO f(x)Pr[p, O x OT]dx "
2Ny [ f(x) Pr[p, O x OT]dx
+N(N-DY > Prlp, O p, OT] [z f (x)dx [ f(x)dx
APPENDIX 2
The mean square error of M is calculated as follows.
MSE,[S] = E[M?] —2E[Mkl\7lk] + E[Mf] (A 13)
Thefirst term of equation (A 13) becomes
fO
g m7] = E% Cly;Uey;)oC
] 0H (A 14)

=2 sz e[y Juily,)ely, Judly )|+ JE E[C(yj)uk(yi)].
E[C(yj)uk(yi)c(yr)Uk(yi')]

=[ . [ Py Dox) n (@xOT) n (v, Oct) n (@ Okt (A 15)

Using

= [z Jie, FOOF(O)Prx Dt DT et
and

E[C(y, Juy,)] = ... Pr[(y, Do) o (cx )]

ol f(x)Pr[x OT]dx , (A 16)

= fouzk f(x)dx
we have
E[M?] = N(N - D5 e, FOVF(E)PIx Ot OTJebeclt

. (A 17)
+N§£|§’XDZ

The second term of equation (A 13) isrewritten as
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E[MKMK] = Egﬁ(pk)z ZC(yJ)Uk(yi)Uk(yJ')

OO

_ZE@kaC(Y,)Uk(yJ) ()

I

EH;IFEI

=L6lp.)y ol )]

]

=2y E[C p)C(y; JUi(y; ]E[Uk Y ]+ > E[C(pk )y, Ju k(yj)]

IE3) !

(A 18)
Substituting equation (A 8), we obtain
E[MM, | = N(N -1) X )dx x)Pr{p, O x OT|dx
M= N O fOPfp ExOTx
N[ A F>r[pk 0 x DT]dx
The third term of equation (A 13) becomes
. Iy ;O
E|M¢| = ECC(p,) Y Uily; )0 O
W] =)y un)a
= 2Em: POy Uy Uiy, )§+ EES pk)zuk(yj)é
- 2E[C P ]Z Eu.(y,)|Eudy )|+ E[C(pk)]z E[U.(v,)
2 . (A 20)
=N(N-1)Pr[p, DT]{I x)dx} +NPrp, OT][  f(x)ox
N(N - 1&@1 dx]2+NEA:HDZ
Using equations (A 17), (A 19), and (A 20) we obtaln
MSE[S] = N(N-1)f [  F(x)(t)Pr[x Ot OT]dxal
~2N(N - 1J’ F(xJaxf_, f(x)Prlp, O x OT]dx
(A 21)
2N f(x)Pr[p, Ox OT]dx

N5 00
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