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Accuracy of Count Data Estimated by the Point-in-Polygon Method

Abstract

This paper analyzed the accuracy of count data estimated by the point-in-polygon

method. A point-in-polygon interpolation model was proposed which was based on a

stochastic distribution of points and the target zone, in order to represent a variety of

situations. The accuracy of estimates was numerically investigated in relation to the size

of the target zone and the distribution of points, and the optimal location of representative

points was discussed. The major findings obtained in this paper were as follows: 1)

though the relative accuracy of estimates generally increases monotonously with the size

of the target zone, the monotoneity is often disturbed by the periodicity in the spatial

configuration of source zones and the point distribution; 2) the point-in-polygon and the

areal weighting interpolation methods have the same accuracy of estimates when points

are concentrated in less than 12-15% area around the representative point in source zones;

3) the point-in-polygon method is not so robust against the locational gap between points

and the representative point; 4) the optimal location of representative points is given by

the spatial median of points.
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1. INTRODUCTION

Socioeconomic data based on the point location are often provided in an aggregated

form. Census data, for instance, are aggregated across census tracts to open to the public,

though they are originally collected as point data. Other data are aggregated on a variety of

zonal systems such as regular lattices, municipal districts, school districts, and postal

zones. It often happens that a zonal system is incompatible with the region in which an

analysis is to be performed. In such a case it is necessary to estimate the count data in the

study region. This type of data estimation is called areal interpolation, or to be exact, data

transfer from source zones to a target zone. Since areal interpolation is frequently required

in geographical analysis, a variety of mathematical methods have been proposed in

geography and other related fields (Wright 1936; Markoff and Shapiro 1973; Tobler

1979; Goodchild and Lam 1980; Lam 1983; Rhind 1991).

Areal interpolation methods can be classified into two groups: intelligent methods

which use supplementary data, say, remotely sensed data, and simple methods which do

not use such data. An advantage of intelligent methods is accuracy of estimates. Using

suitable supplementary data, they usually provide more accurate estimates of spatial data

than simple methods (Flowerdew 1988; Langford et al. 1991; Fisher and Langford

1995). We should note, however, that intelligent methods are not always applicable.

Remotely sensed data are often unavailable or expensive, and the computational cost is

problematic if a great quantity of data has to be processed. Thus simple methods such as

the point-in-polygon method (Burrough and McDonnell 1998), areal weighting

interpolation method (Markoff and Shapiro 1973), and pycnophylactic interpolation

method (Tobler 1979), are still widely used in geography and GIS (Okabe and Sadahiro

1997; Sadahiro 1999b).

Among simple methods, the point-in-polygon method is distinguished for its

processing speed (Flowerdew and Green 1991; Okabe and Sadahiro 1997). This method

transfers the count data of a source zone to a target zone if the representative point of a

source zone is included in the target zone (see section 2 for detailed description). The

point-in-polygon method is based on the point-location algorithm (Preparata and Shamos

1985), which runs very fast (linear time). Consequently, the point-in-polygon method is

suitable for massive spatial data and in fact it is used for processing 1.65 million census

tracts data by the Japanese Bureau of Statistics (Sinfonica 1994). The importance of

processing speed cannot be underestimated in geographical analysis, because in recent

years a number of huge spatial databases have become available to geographers. On the

other hand, the point-in-polygon method is said to yield less accurate estimates than other

methods. The method implicitly assumes that all the points are located on representative

points, and gives the true count in a target zone if the assumption holds. However, this
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assumption is apparently too strong. Points are usually dispersed in spatial zones, which

causes inaccuracy in estimation of count data. Estimation error is relatively small and

often negligible if a target zone is even larger than source zones. Otherwise, estimation

error is crucial to the quality of spatial analysis and thus care should be taken in handling

the estimated data.

There are two alternatives to improve estimation accuracy when supplementary data

are not available: to use source data consisting of smaller zones, or to adopt another

simple interpolation method, say, the areal weighting interpolation method. This choice

requires us to understand the nature of estimation accuracy, that is, how accurately areal

interpolation methods estimate count data. Concerning the point-in-polygon method,

unfortunately, there are few systematic studies analyzing the accuracy of estimates.

Though it is known that accuracy depends on various factors such as the size of source

zones and the location of representative points, their effects have not been quantitatively

evaluated in the literature.

This paper analyzes the accuracy of count data estimated by the point-in-polygon

method in order to investigate how it is determined by various factors. We hope that the

study helps geographers to choose source data and interpolation methods in their

analysis. In section 2, we briefly describe the point-in-polygon method. We also outline

the areal weighting interpolation method since it is discussed later in comparison with the

point-in-polygon method. In section 3, we propose a stochastic model representing the

point-in-polygon interpolation. Using the model, we numerically examine the accuracy of

estimates in section 4 in the case where source zones are a square lattice. In section 5, the

optimal location of representative points is discussed. We finally summarize the

conclusions in Section 6.

2. POINT-IN-POLYGON AND AREAL WEIGHTING INTERPOLATION

METHODS

Suppose a zonal system S, a region Z0 of area A0 consisting of K zones Z1, Z2, ...,

ZK (Figure 1a). The region Z0 may represent a ward whereas zone Zi  is its lower level

spatial unit, say, a census tract. We call the zones Z1, Z2, ..., ZK source zones and

denote the area of Zi  as Ai  (i=1, ..., K). Spatial objects which can be regarded as points,

say, individual people or households, are distributed in Z0 (Figure 1b). We refer to these

spatial objects as points, and denote the location of point j as yj. The number of points is

counted in each source zone, and the data are allocated to the representative points. The

number of points and the location of the representative point in zone Zi are denoted by ni

and pi , respectively (Figure 1c). The locational data of points are then eliminated to

preserve the confidentiality of the subjects.
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FIG. 1. A zonal system and count data. a) Source zones, b) distributed points, c)

representative points and the number of points.

We next consider a target zone T of area B in which we want to know the number

of points. Since the location of individual points is not known, we have to estimate the

count using an areal interpolation method. In the point-in-polygon method, the estimate of

count is given by summing up the nis whose representative points are included in the

target zone T (Figure 2a). In the areal weighting interpolation method, the count in each

source zone is divided according to area and the estimate is given by summing up the

assigned values (Figure 2b).

FIG. 2. Areal interpolation methods. a) The point-in-polygon method, b) the areal

weighting interpolation method. The gray-shaded area indicates the target zone. The

numbers in parentheses indicate the count data nis .

The two methods are mathematically represented as follows. Let us denote the

location of T using a binary function defined by

C
if T

otherwise
x

x
( ) =

∈



1

0
. (1)

The true number of points in T is then given by

M C j
j

= ( )∑ y . (2)

The number of points in zone Zi  is written as

n Ui i j
j

= ( )∑ y , (3)

where Ui(x) is defined by

U
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

1

0
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The point-in-polygon method estimates the number of points in T∩Zj as ni  if and only if

T contains pi . Otherwise it assigns zero to T∩Zj. Consequently, the estimate of M given

by the point-in-polygon method is written as

M̂ C n

C U

i i
i

i i j
ji

= ( )

= ( ) ( )
∑

∑∑

p

p y
. (5)

On the other hand, the areal weighting interpolation method estimates the count in T to be
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3. POINT-IN-POLYGON INTERPOLATION MODEL

Before developing a model, we briefly discuss existing approaches to estimation

accuracy of areal interpolations. The accuracy of areal interpolations has been studied in

various ways, and the approaches taken in the literature can be classified into two

categories: empirical-based studies and Monte Carlo simulations. The former usually

considers a particular geographic situation, that is, actual zonal systems and a point

distribution, in order to evaluate the reliability of estimates and compare the accuracy

between interpolation methods (Flowerdew 1988; Flowerdew and Green 1991; Langford

et al. 1991; Goodchild et al. 1993). Though this approach is advantageous in the reality,

it is an open question whether the obtained results are generally applicable (Fisher and

Langford 1995). The Monte Carlo method, on the other hand, enables us to consider a

wide variety of situations and thus to obtain general results. Fisher and Langford (1995)

and Cockings et al. (1997) adopted this approach to discuss several interpolation methods

in terms of estimation accuracy, and successfully obtained full distributions of estimation

errors. Monte Carlo simulations, however, are computationally expensive, because areal

interpolations involve the polygon overlay operation which requires rather complicated

algorithms in GIS. The computational cost is problematic especially when a number of

spatial relationships between source and target zones are to be realized.

Considering the discussion above, we follow the approach taken by Sadahiro

(1999b), that is, evaluation of estimation accuracy on the basis of a stochastic model

representing a class of situations. This assures us not only the generality in analysis but

also far less computational cost than Monte Carlo simulations.

In the model, a set of source zones with representative points are given whereas

points and the target zone are stochastically located on the source zones. To be explicit,

we consider a situation that N points are independently and identically distributed in the

region Z0 according to a probability density function f(x), and the target zone T is

dropped in such a way that it intersects Z0. For convenience of computation, we assume

that Z0 has such a shape that can cover a plane by its lattice, and that Z0 is surrounded by

its copies having the same zonal system and point distribution as those of Z0 (Figure 3).

This assumption is called the periodic continuation which is often used in spatial statistics

(Ripley 1981; Stoyan and Stoyan 1995; Sadahiro 1999b). If T does not completely lie in

Z0, we replace the portion of T outside Z0 by its corresponding figure (Figure 4). The

location of T follows the probabilistic distribution such that all possible shapes and
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positions of T appear randomly.

FIG. 3. Periodic continuation assumption.

FIG. 4. Transformation of T.

One might think that the periodic continuation assumption is too strong and

unrealistic. The assumption, however, is not essential for the analysis since it is

introduced mainly in order to avoid computational difficulties arising from boundary

effects. Actually the assumption is not necessary if the region Z0 is larger enough than the

target zone T. There are also several ways to solve boundary problems, and they usually

give almost the same results (Sadahiro 1999a).

In the above setting the accuracy of count data is discussed. The source zonal

system with representative points, the number of points, and the shape and size of the

target zone are given whereas the location of points and the target zone is probabilistically

determined. This implies that we are considering a class of situations that share the given

conditions.

From equations (2) and (5) we have the estimation error of M:

ε = −

= ( ) − ( ) ( )∑ ∑∑
M M

C C Uj
j

i i j
ji

ˆ

y p y . (7)

To evaluate the error, we use the mean square error (MSE) of ε defined by

MSE S[ ] = [ ]E ε 2 . (8)

After several steps of calculation (see Appendix 1 for details) we obtain
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In the above equation the probability Pr[x∪ t∈ T] is not explicitly given. It can be

computed as follows. Let m(T; l) be the measure of the set of all figures congruent to T

containing two points separated by a distance l (Santaló 1976). Then Pr[x∪ t∈ T] is given

by



7

Pr
;

x t
x u

u t

∪ ∈[ ] =
−( )

∈ ( )
∑T

m T

A2 0πΩ

, (10)

where Ω(t) is a set of points corresponding to t in the surrounding copies of Z0 (Figure

5). The measure m(T; l) is represented by an explicit form if T has a simple shape

(Santaló 1976; Sadahiro 1999a, 1999b). For instance, if T is a circle of radius r,

m T l
r

l

r
l r l l r

l r
;

arccos ,
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 − − ≤( )
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4
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0 2
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For complicated shapes of T, we can use an equation

m T l
B

l
g lT;( ) = ( )

2

, (12)

where gT(l) is the probability density function of the distance between two points

randomly distributed in T. Since the function gT(l) is numerically computable, equation

(9) can be evaluated for any T.

FIG. 5. A point set Ω(t). The gray-shaded area indicates the region Z0.

4. NUMERICAL EXAMINATIONS

Having obtained a computable representation of MSE, we are now ready to analyze

numerically the accuracy of estimates using the point-in-polygon interpolation model. We

wish to investigate how various factors, especially the size of the target zone and the

distribution of points, affect the accuracy of estimated count data.

As seen in the previous section, the model is applicable for evaluating estimation

accuracy in a variety of situations. However, due to limitations of space, we focus on a

few typical cases where source zones are a square lattice. Though a more realistic zonal

system such as census tracts is also available, we choose a square lattice because of the

following reasons. First, congruity of source zones permits us to ignore the effect of

diversity among source zones on estimation accuracy, and consequently enables us to

concentrate on other specific factors. Second, computational cost is reduced if source

zones are regularly arranged. This brings high tractability to the numerical examination.

Third, a square lattice is a good approximation of a zonal system whose zones are similar

in shape and size. Existing studies such as Okabe and Sadahiro (1997) and Sadahiro

(1999b) suggest that a slight difference in shape of source zones does not greatly

influence the accuracy of estimates.

As mentioned above, we focus on how the size of the target zone and the

distribution of points affect the accuracy of estimated count data. To this end, we suppose

a square lattice whose every cell has its representative point on the centroid of the cell and
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has the same form of f(x) (Figure 6). We then consider the limit where the region Z0

expands infinitely, keeping the size of cells and the density of points at A and µ=N/A0,

respectively.

FIG. 6. Representative points and f(x) on a square lattice.

To make the MSE comparable among different sizes of T, we divide it by B2 for

standardization. Hence we have

lim lim
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;
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where U and p indicate a unit cell and a representative point, respectively.

Equation (13) indicates that the mean square error of estimates is represented by a

linear combination of µ and µ2. Hence we rewrite the equation as

lim
Z

MSE S

B
Q Q

0
2 2

2
1→∞

[ ] = +µ µ , (14)

and employ Q1 and Q2 instead of the MSE to evaluate the accuracy of estimates, in order

to discuss the effect of µ separately from other factors. Note that both Q1 and Q2 are

independent of µ since they are determined by U, T, p, and f(x).

Given a certain value of µ, the MSE is determined by Q1 and Q2. If points are

sparsely distributed so that µ has a small value, both Q1 and Q2 are influential on

estimation accuracy. However, if points are densely distributed in Z0, we may neglect Q1

in evaluating the MSE since it is mainly governed by Q2, the leading coefficient in

equation (14).

In the following we discuss the point-in-polygon method in comparison with the

areal weighting interpolation method because it is also widely used in geography. The

standardized MSE of this interpolation method is given by
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(for details, see Sadahiro 1999b). Similar to the point-in-polygon method, the accuracy of

the areal weighting interpolation is measured by Q1 and Q2.

4.1 Size of the target zone

We first analyze the relationship between the size of the target zone and the accuracy

of estimates. Intuitively, it is expected that the relative accuracy increases as T becomes

large (Langford et al. 1991). We test this hypothesis on a square lattice using the

interpolation models.

 For the target zone T, we adopt circles whose radii range from 0.1 to 5.0. The area

of square cells is set to 1. Three forms of f(x) are investigated: a uniform distribution

(Figure 7a), a quadrangular pyramid distribution (Figure 7b), and a quadrangular prism

distribution (Figure 7c). The latter two are adopted as approximations of points located on

the representative point, the point distribution which the point-in-polygon method

implicitly assumes.

FIG. 7. Forms of f(x) in a cell. a) a uniform distribution, b) a quadrangular pyramid

distribution, c) a quadrangular prism distribution.

The results are shown in Figures 8 and 9. As we have expected, the relative

accuracy of estimates improves as T becomes larger. This tendency is found in both

interpolation methods for any form of f(x). We should note, however, that Q2 changes

periodically with the size of T, whereas Q1 decreases monotonously with as increase of

T. This is mainly because of the periodicity lying in both f(x) and the lattice. This implies

that the MSE may change drastically with a slight enlargement or reduction of T if points

are regularly distributed like a population distribution in new towns.

FIG. 8. Estimation accuracy of the point-in-polygon method and the size of the target zone
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T .

FIG. 9. Estimation accuracy of the areal weighting interpolation method and the size of the

target zone T. The value of Q2 is constant at zero for the uniform distribution of f(x).

4.2 Distribution of points - the degree of concentration

We next investigate the relationship between the distribution of points and the

accuracy of estimates. The point-in-polygon method implicitly assumes that points are

located exactly on representative points as mentioned earlier. The areal weighting

interpolation method, on the other hand, assumes that points are uniformly distributed in

zones. We expect that an interpolation method yields accurate estimates if a point

distribution is close to its underlying assumption. To confirm this we analyze how the

concentration of points affects the accuracy of the point-in-polygon method.

For the target zone T we try three sets of circles whose radii range from 0.62-1.12,

1.62-2.12, and 3.62-4.12 since the MSE changes periodically with the size of T as seen

in the previous subsection. We calculate the averages of Q1 and Q2 for each set of T. The

cell size is again set to 1. The form of f(x) changes from the uniform distribution to highly

concentrated distribution as shown in Figure 10. The width of a quadrangular prism

representing f(x) is denoted by w.

FIG. 10. Form of f(x) in a cell.

The results are shown in Figures 11a, 11b, and 11c. We notice that the figures are

very similar though the vertical scale is different. This indicates that the relationship

between the concentration of points and estimation accuracy is independent of the size of

the target zone. Concerning the point-in-polygon method, Q1 and Q2 decreases as points

concentrate around the representative point. This supports the hypothesis mentioned

earlier. In contrast to this, the areal weighting interpolation method is not fully consistent

with the hypothesis: as w decreases, Q2 increases but Q1 decreases. This implies that if

the point density µ is low enough (say, µ=1) estimation accuracy improves as the point

distribution becomes dissimilar to the underlying distribution of the areal weighting

interpolation method. Though such a low density of points is not frequently observed in

practice, it should be noted that estimation error does not always decrease when a point

distribution becomes close to the underlying assumption of the interpolation method.

We now consider the degree of concentration of points where the two interpolation

methods give the same accuracy. Interestingly, the two methods are equivalent in

estimation accuracy when w=0.35-0.38 for both Q1 and Q2 for any size of T. From this
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we can say that the point-in-polygon method is more suitable than the areal weighting

interpolation method when points are concentrated in less than 12-15% area around the

representative point. If points are supposed to be more dispersed, the areal weighting

interpolation method would be appropriate.

FIG. 11. Estimation accuracy and the concentration of points. Radius of T is a) 0.62-

1.12, b) 1.62-2.12, c) 3.62-4.12.

4.3 Distribution of points - relative location to the representative point

As assumed in this section, the representative point is often located on the centroid

of a source zone, especially in digital spatial data. The location of points, however, does

not usually agree with representative points: points are sometimes dispersed in a zone,

clustered apart from a representative point, or even located along the edge of a zone. Such

a locational gap between points and the representative point is a source of estimation error

in the point-in-polygon interpolation. Therefore, we finally analyze how the location of

points in cells affects estimation accuracy.

To this end, we employ three quadrangular prism distributions as f(x) whose

widths are 0.1, 0.3, and 0.5. Points move gradually from the centroid of cells to the

corner as shown in Figure 12. The distance between the center of prism and the

representative point located on the centroid of a cell is denoted by d. For the target zone T

we try the same set of circles as those used in the previous subsection, and calculate the

averages of Q1 and Q2. The area of cells is set to 1.

FIG. 12. Location of points in a cell.

As seen in Figure 13, the obtained results do not much differ according to the size

of the target zone. In general, estimation error increases consistently with d. It is

interesting that this tendency is observed not only with the point-in-polygon method but

with the areal weighting interpolation method (Q1). The effect of locational gap is more

serious in the point-in-polygon method, especially when points are highly concentrated.

The point-in-polygon appears not so robust against the locational gap between points and

the representative point.

When points are located distantly from the representative point, it often happens that

the areal weighting interpolation method gives better estimates even if points are tightly

clustered. The critical value of d where the two methods are equivalent in estimation

accuracy depends on w, the degree of concentration of points. Figure 13 depicts that

concentration of points increases the critical value of d.
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FIG. 13. Estimation accuracy and the location of points. Radius of T is a) 0.62-1.12, b)

1.62-2.12, c) 3.62-4.12.

5. OPTIMAL LOCATION OF REPRESENTATIVE POINTS

In the previous section we analyzed the effect of the locational gap between points

and the representative point. It was found that the point-in-polygon method is sensitive to

the locational gap, and that the estimation error increases with the distance. This implies

that if providers of spatial data such as national mapping agencies put the representative

point on an appropriate position it would improve estimation accuracy of the point-in-

polygon interpolation performed by users of the data. So where should the representative

point be located in a zone? This section briefly discusses this subject.

We consider the optimal location of the representative point individually for each

zone, and thus we focus on the representative point of zone Zk. From the viewpoint of

areal interpolation, it is desirable that the representative point is located so as to minimize

estimation error originating in Zk. This problem is formulated as follows.

Let Mk be the number of points in the intersection of Zk and T. It is mathematically

represented as

M C Uk j k j
j

= ( ) ( )∑ y y . (16)

The estimate of Mk given by the point-in-polygon interpolation is

M̂ C Uk k k j
j

= ( ) ( )∑p y . (17)

The mean square error of Mk is calculated in a similar way as that of M (for details, see

Appendix 2):
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The optimal location of pk is obtained by solving
min

pk

MSE Sk[ ]. (19)

Substitution of equation (18) yields
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min max Pr
p p x

x p x x
k k k

MSE S f Tk kZ
[ ] ⇔ ( ) ∪ ∈[ ]

∈∫ d . (20)

Assuming that the region Z0 is even larger than T, we obtain

max ;
p x

x p x x
k k

f m T kZ
( ) −( )

∈∫ d . (21)

The above problem is a kind of continuous location problems studied in operations

research (Plastria 1995). If f(x) and m(T; l) are given in analytical and simple forms, the

problem may be solvable by a computational procedure (Love 1972; Drezner and

Wesolowsky 1980; Aly and Marucheck 1982; Love et al., 1988). Otherwise we have to

try numerous locations in Zk to find the optimal location of pk.

Equation (21) implies that the optimal location of pk depends not only on f(x) and

Zk but also on the target zone T. In practice, however, the target zone is unknown when

the location of pk is determined. We hence consider the circle which is the most typical

shape of the target zone.

Let T be a circle of radius r whose diameter 2r is larger than the maximum length of

Zk. The measure m(T; l) is then given by

m T l r
l

r
l r l; arccos( ) = 



 − −4

2
42 2 2π π . (22)

Applying a Taylor series expansion around l=0 to equation (22), we obtain

m T l m T
l

m T l
l

m T l

r rl

; ; ; ;( ) ≈ ( ) + ( ) + ( )

= −

0 0
1
2

0

2 4

2
2

2 2

d
d

d
d

2

π π
. (23)

The above equation is a good approximation of m(T; l) especially for small l (Figure 14).

Substitution of equation (23) into equation (21) yields

min
p x

x p x x
k k

f
Z k( ) −

∈∫ d . (24)

This indicates that the location of pk is the spatial median of f(x) in Zk (Brown 1983;

Small 1990; Stoyan and Stoyan 1994). As we will illustrate later, the spatial median does

not always agree with the centroid of f(x) on which the representative point is often

located.

FIG. 14. The measure m(T; l) of a circle of radius 3.

The above discussion holds for the shapes that allow the linear approximation

shown in equation (23). Convex shapes similar to the circle, say, the square, regular

triangle, regular hexagon, and rectangles meet this requirement (see Figures 15 and 16).

Considering that the target zone usually has a simple convex shape, we may say that the

spatial median is the optimal location of representative points in relation to estimation

accuracy of the point-in-polygon interpolation.
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FIG. 15. The measure m(T; l) of a regular triangle and regular hexagon.

FIG. 16. The measure m(T; l) of rectangles having a variety of horizontal to vertical

ratios.

We finally show some examples of the optimal location of representative points.

We compute both the spatial median and the centroid of f(x) in square zones varying the

distribution of points f(x). Every zone is divided into 10 * 10 cells each of which has a

constant value of f(x) as shown in Figure 17.

As mentioned earlier, the spatial median does not always agree with the centroid.

The spatial median is more strongly drawn by points, and it tends to be nearer the

maximum of f(x). Since the locational gap between points and the representative point is

crucial in the point-in-polygon interpolation, estimation accuracy appears to be fairly

improved if data providers locate the representative point on the spatial median rather than

the centroid of f(x).

FIG. 17. The optimal location of the representative point (spatial median) in a square

zone. The white squares and black circles represent the spatial median and the centroid of

f(x), respectively. The value of f(x) is zero in the white cells. The lightest gray cells

indicate f(x)=1.0, and the values of f(x) in the other gray cells are shown individually.

6. CONCLUSION

In this paper we have analyzed the accuracy of count data estimated by the point-in-

polygon method. We first proposed a point-in-polygon interpolation model which is

based on a stochastic distribution of points and the target zone. This allows us to replace

diverse situations by their representative model. We then applied the model to the case of

a square lattice and numerically investigated the accuracy of estimates. The major results

are summarized as follows:

1) The relative accuracy of estimates generally increases with the size of the target

zone. However, the periodicity in the spatial configuration of source zones and

f(x) disturbs monotoneity of the relationship, thus an enlargement of the target

zone may reduce estimation accuracy.

2) The point-in-polygon method gives good estimates when points are concentrated

around the representative point. The areal weighting interpolation method, on the

other hand, fits uniform distributions of points. These methods are equivalent in

terms of estimation accuracy when points are concentrated in less than 12-15%
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area around the representative point.

3) The point-in-polygon method is not so robust against the locational gap between

points and the representative point. Hence it often yields worse estimates than

the areal weighting interpolation method even if points are strongly concentrated.

The third result implies that the location of representative points is crucial for the

point-in-polygon interpolation. Thus we discussed the optimal location of representative

points and found that in most cases it is given by the spatial median of points. This warns

us as data producers that the centroid of points often used as the representative point is

not the optimal location in relation to the point-in-polygon interpolation.

In the empirical study we considered only the square lattice due to limitations of

space. We should emphasize, however, that the proposed method is applicable to any

zonal system as mentioned earlier. Zonal systems which are less artificial than regular

lattices, say, census tracts and municipal districts, should be analyzed in future

researches.

The point-in-polygon interpolation model we proposed considers data transfer from

multiple source zones to a single target zone. Data transfer between zonal systems still

remains to be analyzed where estimation occurs in multiple target zones. This is an

important subject in geography which is related to the modifiable areal unit problem

(Openshaw 1984; Flowerdew and Green 1991; Fisher and Langford 1995; Okabe and

Sadahiro 1997). We will examine an extension of our study to this case in order to

analyze the accuracy of estimation between zonal systems.
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APPENDIX 1

The mean square error of ε which is denoted by MSE[S] is calculated as follows.
MSE S

M MM M

[ ] = [ ]
= [ ] − [ ] + [ ]

E

E E E

ε 2

2 22 ˆ ˆ
. (A 1)

The first term of equation (A 2) becomes
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The second term of equation (A 1) is rewritten as
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Substitution of



19

E U E C C f T T

f f T

i j i j Z i jZ

Z iZ

i

i

y p y x x p y x x x

x x x p x x

x x

x x

( )[ ] ( ) ( )[ ] = ( ) ∈( ) ∩ ∈( ) ∩ ∈( )[ ]
= ( ) ( ) ∪ ∈[ ]

∈ ∈

∈ ∈

∫ ∫
∫ ∫

' 'Pr

Pr

d d d d

d d

0

0

(A 7)

and

E U C C T T

T

f T

i j i j j iZ

j iZ

iZ

i

i

i

y p y y x p x x

y x p x x

x p x x

x

x

x

( ) ( ) ( )[ ] = ∈( ) ∩ ∈( ) ∩ ∈( )[ ]
= ∈[ ] ∪ ∈[ ]
= ( ) ∪ ∈[ ]

∈

∈

∈

∫
∫
∫

Pr

Pr Pr

Pr

d d d

d d d

d

(A 8)

yields

E d d

d

MM N N f f T

N f T

Z iZ
i

iZ
i

i

i

ˆ Pr

Pr

[ ] = −( ) ( ) ( ) ∪ ∈[ ]

+ ( ) ∪ ∈[ ]
∈ ∈

∈

∫ ∫∑

∫∑

1
0

x x x p x x

x p x x

x x

x

. (A 9)

The third term of equation (A 1) is given by
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Using equations (A 5), (A 9), and (A 11), we obtain
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APPENDIX 2

The mean square error of Mk is calculated as follows.

MSE S E M E M M E Mk k k k k[ ] = [ ] − [ ] + [ ]2 22 ˆ ˆ (A 13)

The first term of equation (A 13) becomes
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The second term of equation (A 13) is rewritten as
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The third term of equation (A 13) becomes
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Using equations (A 17), (A 19), and (A 20) we obtain
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