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Abstract 
This paper first proposes a cell count method defined on a network, called the 

network cell count method, as an extension of the ordinary cell count method 
defined on a plane. Second, the paper develops a user-friendly tool for the network 
cell count method in conjunction with a general toolbox for spatial analysis on a 
network, called SANET. Third, the paper shows an actual application of the 
network cell count method to the distribution of retail stores in Shibuya, Tokyo. 
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1. Introduction 
This paper has two objectives. The first objective of this paper is to propose a new 

cell count method, called the network cell count method, as an extension of the ordinary 
cell count method (or the quadrat method). The second objective is to develop a 
user-friendly tool for the network cell count method, and incorporate it into a toolbox 
called SANET, a general GIS software package for spatial analysis on a network.  

 
The cell count method is one of the most classic methods for point pattern analysis 

(Bailey and Gatrell, 1995; Cressie, 1993; Upton and Fingleton, 1985). This cell count 
method ordinarily makes the following assumptions. 

 
Assumption i:  Geographical space is represented by a plane. 
Assumption ii: The plane is homogeneous, i.e., the probability of a point being placed 

on a unit area is invariant regardless of the location of the unit area on 
the plane. 

There may be some actual cases in which these assumptions hold or approximately 
hold. For example, (Matui, 1932) examined the ‘scattered village’ (houses are scattered) 
on the Tonami plain, which appears to be a fairly homogeneous plane. However, when 
we examine the distribution of features in an urbanized area, the above assumptions are 
hard to accept. For example, consider the distribution of beauty parlors in Shibuya, one 
of the sub-centers in Tokyo, which is shown in Figure 1. As is seen in this figure, the 
beauty parlors are located along streets, and the distribution of beauty parlors seems to 
be strongly constrained by the street network. This suggests us to replace Assumption i 
with the following assumption.  

 
Assumption i’: Geographical space is represented by a network. 

 
As a consequence of this assumption, we assume a heterogeneous space in the sense 

that the space is not isotropic. As a matter of fact, direction is restricted along a path of a 
network. However, we assume a homogeneous space in the following sense (i.e. a 
network version of Assumption ii).  

 
Assumption ii’: The network is homogeneous in the sense that the probability of a point 

being placed on a unit line segment is invariant regardless of the 
location of the unit line segment on the network. 
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Obviously this assumption is unrealistic to deal with the distribution of features in an 
urbanized area, but this assumption is easily relaxed in a network space through the 
‘uniform network transformation’. This transformation is the topic of the next section. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Beauty parlors in Shibuya, Tokyo 
 

2. Uniform network transformation 
A heterogeneous network, N , is represented by a density function defined on links 

of the network. To be explicit, let iD  be the density of the ith link of the network, and 

iL  be the length of the ith link. Then the heterogeneous network means that iD  varies 
from link to link; the homogeneous network (Assumption ii’) is written as 

 
cDi = for ni ,,1…= . 

 
Note that the location of a point, p, on the ith link can be identified by the path length, 

t, from an end point of the ith link to the point p along the ith link.  
 
Let us now consider a new network, *N , by replacing the ith link with the new ith 

link and we correspond a point p at t on the ith link to the point p’ at s on the new ith 
link in such a way that the path length, s, from an end point of the new ith link to the 
point p’ along the new ith link is given by  

 

.
0

dxDs
t

i∫=  
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Note that the integration is done with respect to x along the ith link. This 

transformation implies that the ith link of length iL  is replaced with the new ith link of 
length iiLD . 

 
The new network obtained from the above transformation has a nice property. 

Noticing that the total quantity on the ith link is given by  
 

ii

L

i LDdxD
i

=∫
0

, 

 
and that the length of the new ith link is iiLD , we obtain the density of the new ith link 
is .1)/( =iiii LDLD  This equation hold for all links. This means that the transformed 
network N* is homogeneous as in Assumption ii’. We refer to the above transformation 
as the uniform network transformation (Okabe, 2002).  

 
We can easily deal with a heterogeneous network by transforming it into a 

homogeneous network through the uniform network transformation.  
 
 

3. Cell count method 

Let us consider a network, L , consisting of line segments that are connected. We 

decompose the network L  into a set of sub-networks (called cells) satisfying that the 

length of each sub-network is the same, c, and each sub-network is connected. In 

practice, however, this decomposition is impossible except for very special cases, 

because the total length divided by c is not integer in general.  

 

Noticing this fact, we consider two types of cells: proper cells, { }n
PC LLL ,,1 …= , and 

improper cells, { }*1 ,, nnn
IC LLL ++= … . The former cells are used for cell counting, but 

the latter cells are peripheral cells not used for cell counting. We suppose that these cells 

satisfy the following conditions. 

 

(i) iL  is connected in the sense that for any pair of points on iL , there exists a path 

between these points that is included in iL  ( *,,1 nni += … ). 
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(ii) Proper cells nLL ,,1 … have the same size, i.e. 

 

cLi =||  for ni ,,1…= ,  

 

where | iL |denotes the length of iL . 

 

(iii) The size of the improper cells *1 ,, nnn LL ++ …  is smaller than that of the proper cells, 

i.e. 

 

cLi <||  for *,,1 nnni ++= … . 

 

(iv) The union of the proper cells and the improper cells cover the whole network L , 

i.e. 

 

][][ *
11 i

nn
nii

n
i

ICPC LLLLL +
+== ∪=∪= ∪∪ . 

 

(v) Cells do not intersect each other except at boundary points, i.e.  

 

0|| =∩ ji LL  for *,,1,, nnjiji +=≠ … . 

 

We make five remarks on this decomposition. First, this decomposition is not unique. 

There are many ways of decomposition satisfying the above conditions. Second, the 

shape of cells is not the same, because a given network L  is not regular. This contrasts 

to the planar case where the shape is the same (usually squares) for all cells. Third, it is 

very difficult to control the shape of cells, but the shape should be as ‘compact’ as 

possible. Forth, the length of the improper cells should be as small as possible. Last, 

improper cells should not appear inside a network. In the planar case, improper cells 

appear only on the periphery, but in the network case, improper cells may appear inside 

a network. We call such cells hole cells. It is not easy to avoid hole cells in decomposing 

a network, and we shall discuss this problem in Section 5. 

  

The idea of the network cell count method is the same as that of the planar cell count 
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method. Suppose that we observe m  points distributed on the network ][ 1 i
n
i

PC LL == ∪ , 

and we want to test the null hypothesis that the m  points are randomly distributed on 

the network ][ 1 i
n
i

PC LL == ∪  according to the uniform distribution,  

 

PC
PC Lx

L
xf ∈= ,

||
1)( . 

 

We can test this hypothesis using the goodness-of-fit test. To be explicit, let jN  be 

observed number of cells that contains exactly j  points, except for kN . kN  is the 

observed number of cells that contain k  or more points. Let jP  be the probability that 

j  points are placed in a cell under the above null hypothesis, which is given by the 

binominal distribution or the Poisson distribution for a large number of points. Thus we 

can test the null hypothesis with the test statistic  
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4. SANET 

We develop a user-friendly tool for achieving the network cell count method defined 
above and include it in a general toolbox for spatial analysis on a network, called 
SANET (Okabe, Okunuki and Funamoto, 2002). SANET consists of two components. 
The first component is a software package for computing methods for spatial analysis 
on a network. We can interface this package with a viewer of GIS through input and 
output files. The computation in this software package is independent of a viewer of 
GIS, and so we can use any viewer. The second component is an interface with a viewer 
of GIS, and this interface depends on a viewer of GIS. We use ArcView8.x., and we 
have developed the interface that commute data between the network computation 
software package and ArcView8.x.  

 
SANET is under development but the first version was released in November, 2002. 

The first version provides the following seven tools: 
 

Tool 1: Construction of dataset for SANET. 
Tool 2: Access point assignment. 
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Tool 3: Table calculation. 
Tool 4: Generation of the network Voronoi diagram (Okabe, Boots, Sugihara and Chiu, 

2000). 
Tool5: Generation of random points on a network (for Monte Carlo simulations).  
Tool 6: Cross K-function method (Okabe and Yamada, 2002).  
Tool 7: K-function method (Okabe and Yamada, 2002; Yamada and Thill, 2002). 
 

SANET is open to non-profit users without charge and it can be downloaded from the 
SANET site:  http://okabe.t.u-tokyo.ac.jp/okabelab/atsu/sanet/sanet-index.html 
 
This paper adds the cell count method to SANET as the eighth tool. The cell count 
method uses Tool 1 for converting the network data format in the network computation 
software package to data format of ArcView8.x. It also uses Tool 2 for assigning the 
representative points of polygon-like features, such as beauty parlors, to the nearest 
points on a network (which may be regarded as entrances of the facilities). By this 
assignment, we can use the cell count method that assumes that points are distributed 
over the network. 

 
 

5. Computational method for the cell count method 
The computational method is fairly complex and technical and so we only outline the 

algorithm in this section. 
 
In the first step, we choose a node of a network around the center of the network. We 

call the node the root node. In the second step, we construct the “extended” 
shortest-path tree rooted at the root node. The “extended” shortest-path tree is obtained 
from the ordinary shortest-path tree in the following manner.  

 
The ordinary shortest-path tree does not cover the whole network. We call the links 

that are not included in the ordinary shortest-path tree collision links. On each collision 
link, we can find such a point, ic , that the shortest-path distance from the point to the 
root node through one end node of the collision link is the same as the shortest-path 
distance from the point ic  to the root node through the other end node of the collision 
node. We call the point ic  a collision point. We cut the network at all collision points 
and add nodes on both cut ends. We call the resulting tree the extended shortest-path 
tree. Once we obtain the shortest-path tree, we can easily obtain the shortest-path from 
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any point on the network to the root node.  
 
In the third step, we construct a tree rooted at the root node whose total length is a 

given distance. We next construct a tree rooted at each end node of the tree whose total 
length is a given distance. If we cannot construct such a tree, we leave it. We continue 
this procedure until when we cannot construct trees. Then we obtain a set of trees that 
are included in the network and the length of each tree is the same. We may use the 
resulting trees as cells.  

 
However, these cells are likely to produce the holes cells in the network. The last step is 
to put out these hole cells to the periphery of the network. This part is too lengthy to 
explain, and so it is omit here.   

 
 

6. An Application 
Having established the network cell count method and its software package, let us 

show an actual example. The study region is part of Shibuya, one of the sub-centers in 
Tokyo, and the street network is shown by colored lines in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Retail stores assigned to the street network in Shibuya, Tokyo 

(cells are indicated by different colors) 

 
First we decompose the street network into cells. In Figure 2, the cells are indicated 
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by different colors. The yellow lines are improper cells.  
 
Second, we assign retail stores to the nearest points on the network (which may be 

regarded as the entrances of the stores). The points in Figure 2 show the assigned retail 
stores on the street network.  

 
Third, the tool counts the number of retail stores in each cell and shows the numbers 

of cells having i points as in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The number of cells having i points 
 

 

Last we apply the goodness-of-fit test to the data shown in Figure 4. The test rejects 
the null hypothesis, implying that the retail stores are non-randomly distributed in 
Shibuya. 

 
 

7. Concluding remarks 
In this paper we have proposed the network cell count method as an extension of the 

ordinary cell count method defined on a plane and developed a tool for the network cell 
count method. 

Compared with the ordinary cell count method, the proposed network cell count 
method has a few advantages. First, the network space is more natural to deal with the 
distribution of features in an urbanized area than a homogeneous plane. Second, it is 
easy to treat heterogeneity with the uniform network transformation. For example, it is 
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easy to treat the distribution of stores in relation to the distribution of population.  
 
One might consider that the results obtained from the ordinary cell count method are 

not so different from those obtained from the network cell count method. We compared 
these results in a few actual examples and found that this difference was significant. We 
will further examine this comparison using many cases and we will report the results in 
another occasion.  
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