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Abstract 

 

This paper proposes a general method for analyzing the distribution of points on a 

‘heterogeneous’ network. First, the paper formulates a method that transforms a heterogeneous 

network (i.e. a network in which a probability of a point being placed in a unit line segment on 

the network varies according to the location of the unit line segment) into a homogeneous 

network (i.e. a network in which a probability of a point being placed in a unit line segment on 

the network is the same regardless of the location of the unit line segment). Second, the paper 

proves that this transformed network can be geometrically realized on a two-dimensional space 

(plane). These results have very useful implications. First, a heterogeneous network can be 

easily treated through transforming it into a homogeneous network. This contrasts to the fact 

that there is no method for transforming a heterogeneous plane into a homogeneous plane. 

Second, any methods assuming a homogeneous network can be applied to the analysis on a 

heterogeneous network through the uniform network transformation. Hence, it is not necessary 

to develop special methods for a heterogeneous network.  
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1. Introduction 

We notice in the related literature (for example, King, 1969; Getis and Boots, 1976; Lewis, 

1977; Bailey and Gatrell, 1995) that almost all quantitative methods for spatial analysis assume 

that: 

i)  space, S , is represented by two-dimensional space, i.e. a plane (Figure 1a),  

ii) distance in S  is measured with Euclidean distance (the arrowed line in Figure 1a), 

iii) space S  is homogeneous, i.e. the characteristics of a unit area in S  are the same 

regardless of the location of the unit area in S  (the squares indicated by the broken lines 

in Figure 1a); in terms of stochastic point processes, the probability of a point being placed 

in a unit area in S  is the same regardless of the location of the unit area in S . 

 

 

 

 

 

 

 

 

                (a)                                         (b) 

Figure 1: Convenience stores in Shibuya, Tokyo (a) on a plane with Euclidean distance and (b) 

on a street-network with the shortest-path distance. 

 

When we analyze spatial phenomena in terms of the distribution of points, these assumptions 

are not always acceptable. In particular, when we analyze spatial phenomena in a small urban 

area, these assumptions are hard to accept (Berry, 2002).  For instance, consider the marketing 

analysis of convenience stores in a downtown area (Figure 1b). Consumers go to stores on foot 



2002/10/03 

 2 

or by car through streets (the arrowed line in Figure 1b), and convenience stores (the points in 

Figure 1b) are located along streets. Consequently, it is more natural to assume that:  

i’) space S  is represented by a network, 

ii’) distance in S  is measured with the shortest-path distance. 

 

Yet, almost all quantitative methods for spatial analysis assume i) and ii). There are two reasons 

for adopting these assumptions. First, mathematical treatment on a plane is simpler and more 

tractable than that on a network. Second, most researchers seem to expect that a network space 

with the shortest-path distance can be approximated by a plane with Euclidean distance. This 

expectation, however, is doubtful. An instructive example is shown in Figure 2a. Having seen 

this distribution, probably nobody believes that the points are uniformly and randomly 

distributed. But, this is true. Actually, as is seen in Figure 2b, the points (which are the same as 

those in Figure 2a) are generated according to the uniformly random point process (the binomial 

point process) on a network. In addition, an empirical study by Yamada and Thill (2002) show 

that the conclusion obtained from the K-function method assuming a plane with Euclidean 

distance is significantly different from that obtained from the K-function method assuming a 

network with the shortest-path distance.  

 

 

 

 

 

 

 

 

Figure 2: A distribution of points (a) on a plane and (b) on a network (the points are generated 

by the binomial point process on a network). 
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To overcome the limitations resulting from Assumptions i) and ii), several methods have been 

developed under Assumptions i’) and ii’). For example, Okabe et al. (1995) formulate the 

nearest distance method on a network; Okabe and Yamada (2001) and Yamada and Thill (2002) 

formulate the K-function and cross K-functions methods on a network; Miller (1994, 1996), 

Okabe and Kitamura (1996), Morita et al. (2001) and Okabe and Okunuki (2001) formulate the 

Huff model on a network.  

 

In addition to Assumptions i) and ii), the last assumption, Assumption iii), is also problematic in 

practice. Needless to say, the actual geographical plane is heterogeneous. For example, consider 

the point process of convenience stores in a downtown. This process may be well examined by 

considering heterogeneity produced by uneven consumer (population) density. Thus Assumption 

iii) is hardly acceptable when we examine the actual distribution of convenience stores in a 

downtown. To overcome this limitation, a few theoretical methods are proposed in the related 

literature, such as heterogeneous point processes (Diggle, 1983). However, these methods are 

still hard to deal with actual geographical phenomena.  

 

Fortunately, we have noticed that the above limitations can be overcome if a plane with the 

Euclidean distance (Assumptions i) and ii) ) is replaced with a network with the shortest-path 

distance (Assumptions i’) and ii’)). The objective of this paper is to show an easy method for 

dealing with the distribution of points on a ‘heterogeneous network’. Roughly speaking, this 

method treats a ‘heterogeneous network’ by transforming it into a ‘homogeneous network’. 

Once this transformation is done, we can apply any methods for spatial analysis on a 

homogeneous network to spatial analysis on a heterogeneous network. We do not have to 

develop special methods for a heterogeneous network. 

 

 

2. The transformation from a heterogeneous network into a homogeneous network 
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The key concepts are, as often referred to in the above, a ‘homogeneous network’ and  a 

‘heterogeneous network’ . To define them explicitly, let us consider a network, N , consisting 

of a set, L , of line segments (which may be curved) and a set, P , of nodes, satisfying that the 

line segments in L  are connected (or crossed) only at the nodes in P , and that the end points 

of the line segments in L  are the nodes in P .  

 

For a network N , we define a homogeneous network as a network in which the characteristics 

of a unit line segment in N  are the same regardless of the location of the unit line segment in 

N ; in terms of stochastic point processes, the probability of a point being placed in a unit line 

segment in N  is the same regardless of the location of the unit line segment in N . A 

heterogeneous network is defined as a network that is not a homogenous network. Stated more 

explicitly, a heterogeneous network is defined as a network in which the characteristics of a unit 

line segment in N vary according to the location of the unit line segment in N ; in terms of 

stochastic point processes, the probability of a point being placed in a unit line segment in N  

varies according to the location of the unit line segment in N . The homogeneity or 

heterogeneity is represented by a density function defined on N . The homogeneous network 

has the uniform density function, and the heterogeneous network has a non-uniform density 

function.  

 

In actual analysis, we have to estimate a density function that represents a heterogeneous 

network. Let us consider how to obtain this density function. Suppose that we want to analyze 

the distribution of convenience stores in relation to the distribution of households. Owing to 

recent progress in GIS, we can easily obtain a digital map where stores and houses are 

represented by polygons, and streets are represented by line segments (Bailey and Gatrell, 1995). 

First, we obtain a representative point of a house by the center of the polygon representing the 

house (the white points in Figure 3). Second, we assign the representative point on the nearest 

point on a network (the black points in Figure 3). We assume this point as the gate of a house 
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facing a street. Third, we count the number of assigned points for each link. Last, we obtain the 

house (household) density from the number of assigned points on a link divided by the length of 

the link. This procedure is carried out with the software developed by Okabe et al. (2002). Note 

that in the above method, the density of households may differ from link to link, but it is 

constant within each link. Alternatively, we may use a variable density within a link. This 

density function can be estimated by a non-parametric density estimation method using the 

points on a link obtained in the above procedure (Silverman, 1986). 

 

 

 

 

 

 

 

Figure 3: Assignment of houses to the nearest points on a network. 

 

To define a density function for a heterogeneous network mathematically, let iL ),,1( ni K=  

be a link in L , and t  be the length from an end node of iL  to a point on iL  along iL . 

Then the density of an attribute (say, household density) is represented by the function  

 

,,,1,0),( nitttf ii K=≤≤  

 

where it  is the length of iL . Note that the density may be constant over iL  as in the above 

example (but different from link to link), or it may vary continuously over iL . We assume that 

for all i ,  

 

,0)(
0

>≥∫ adttfit

i  
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where a  is a positive constant. A clue to a method that transforms a heterogeneous network 

into a homogeneous network is given by a transformation that is often used for generating 

random variables in statistics (Freund, 1971). To state the transformation explicitly, let x  be an 

arbitrary random variable whose probability density has the value of )(xf . We transform the 

variable x  into y  as  

 

∫ ∞−
==

x
xFdxxfy ).()(  

 

This transformation is called the probability integral transformation (Figure 4). Let )(yg  be 

the density function of the random variable y . Since the equation  

 

)()( xf
dx

xdF
dx
dy ==  

 

holds, we have  

 

,10,1)( <<= yyg  

 

which is the uniform probability density function with the interval 10 << y . This derivation 

shows that any non-uniform probability density function is transformed into the uniform 

probability density function through the probability integral transformation ).(xFy =  This fact 

implies that random variables, nxx ,,1 K , that follow the non-uniform probability density 

function )(xf  (the black points on the horizontal axis in Figure 4) are equivalent to 

transformed random variables, )(,),( 11 nn xFyxFy == K , that follow the uniform 

probability density function )(yg  (the black points on the vertical axis in Figure 4). Conversely, 

random variables, nyy ,,1 K ,  that follow the uniform probability density function )(yg  are 

equivalent to transformed random variables, )(,),( 1
1

1
1 nn yFxyFx −− == K , that follow the 
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non-uniform probability density function )(xf , where )(1 yFx −=  is the inverse function of 

)(xFy = . Using this property, we can obtain random variables, nxx ,,1 K , that follow a 

non-uniform probability density function )(xf  by generating random variables nyy ,,1 K  

that follow the uniform probability density function )(yg  and transforming these random 

variables through )(,),( 1
1

1
1 nn yFxyFx −− == K .  

 

 

 

 

 

 

 

Figure 4: The probability integral transformation. 

 

We can utilize the idea of the probability integral transformation for transforming a 

heterogeneous network into a homogeneous network. To be explicit, for each link iL , we 

define the transformation  

 

.,,1),()(
0

nitFdttfs i

t

i K=== ∫  

 

We consider a line *
iL  (that will correspond to iL ), and let s  be the length from an end node 

of *
iL  to a point on *

iL  along *
iL  (Figure 5). We correspond iL  to *

iL  in such a manner 

that a point at t  on iL  corresponds to the point )(tFs =  on *
iL . As a result, the origin 

node of iL )0( =t  corresponds to the origin node of *
iL  )0)0(( == Fs , and the other end 

node of iL  )( itt =  corresponds to the other end node of *
iL  ))(( ii tFs = .  

 

 

x

y

f(x

y=F(x



2002/10/03 

 8 

 

 

 

 

 

Figure 5: Transforming iL  into *
iL . 

 

Let *L  be the set of the resulting links **
1 ,, nLL K ,  and *P  be the set of nodes generated by 

the end nodes of the links in *L  (Figure 6b). Then the network *N  consisting of the link set 

*L  and the node set *P  is the uniform network in the sense that the density of a unit line 

segment on the network is constant regardless of the location of the unit line segment on *L  

(Figure 6b). We call the transformation from the network N  into the network *N  the 

uniform network transformation.  

 

 

 

 

 

 

     (a)                     (b)                      (c) 

Figure 6: Part of  (a) N ,  (b) *N and  (c) GN  (the numbers indicate the length of the 

links). 

 

We make two important remarks. First, the geometrical forms of the links in *L  are arbitrary. 

Any form is acceptable as far as they are constructed through the above procedure. Second, the 

location of a point on a link *
iL  is uniquely determined with the parameter s  regardless of the 

form of *
iL . In this sense, the form is not essential in the network *N . 

Li

t s=Fi(t) 

Li
* 

L1=
L1

*=

L2=

L3=

L2
*=

L1
*=1

L1
G=1

L2
G=

L3
G=2
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Summing up, we can transform any heterogeneous network into a homogeneous network 

through the uniform network transformation.  

 

3. Geometrical Realizability of the transformed network  

Having found the above nice transformation, we question whether or not the transformed 

network *N  can be geometrically realized on a plane. The original network N  is given on a 

plane (Figure 6a), but the length of each link in the transformed network *N  changes (Figure 

6b), and hence it is questionable that the transformed network *N  is geometrically realized on 

a two-dimensional space (plane). For example, in Figure 6b, the transformed links might cross 

the other links. In this section, we examine this question. Note that such a problem never occurs 

in the probability integral transformation, because the correspondence is between only two lines 

(the x-axis and y-axis as in Figure 4).  

 

Let us first define what a ‘geometrically realized planar network’ of *N  is. Let GN  be a 

network consisting of a set, GL , of links and a set of nodes, GP . For N , *N  and GN  

(Figure 6), we consider the following conditions: 

i) there exists on-to-one correspondence between links in *L (or L ) and those in GL ,  

ii) there exits one-to-one correspondence between nodes in *P (or P ) and those in GP , 

iii) the graph of the network GN is isomorphic to the planar geometric graph of the network 

N , 

iv) the length of a link G
iL  in GL  is proportional to the length of the corresponding link *

iL  

in *L  (the proportion rate is the same for all links ni ,,1 K= ). 

When the network GN satisfies all these conditions, we say that the network is a geometrically 

realized planar network of the transformed network *N . Fortunately, we can find a 

geometrically realized planar network GN of the transformed network *N through the 

following procedure.  
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First, we assume that the configuration of nodes in GP  is the same as that of nodes in P  of a 

given network N  (hence (i) is satisfied) (the configuration of the nodes in Figure 6a is the 

same as that in Figure 6c).  

 

Second, we stretch the length of each link in *L  proportionally until the length of a link in *L  

is greater than or equal to the length of corresponding link in L  for all links (the property (iv) 

is kept) (the numbers on the links in Figure 6b are all doubled in Figure 6c to satisfy G
ii LL ≤  

for all i ).  

 

Third, we obtain a set of polygons nAA ,,1 K  that satisfies: the polygon iA  contains the link 

iL  in L and the polygons do not overlap each other except at end nodes of links in L . An 

example is shown in Figure 7. Such a set of polygons can be computationally obtained using the 

decomposed line Voronoi diagram generated by the line segments of L (Okabe et al., 2000).  

 

 

 

 

 

 

 

 

Figure 7: An example of nAA ,,1 K  

 

Fourth, for each polygon iA , we draw a polygonal line G
iL 1  consisting of points 

54321 ,,,, iiiii ppppp  whose length is equal to the stretched link of *
iL  ((i) is satisfied) (Figure 

8a). If the line G
iL 1  is included in the polygon iA , let G

iL  be G
iL 1 , and we stop. If not, we go 

L A
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to the next. Note that for ease of explanation, iL  is assumed to be a straight-line segment, but 

the following proof can be applied to the case of a polygonal line with slight modifications.  

 

 

 

 

 

 

 

          (a)                       (b)                      (c) 

Figure 8: The procedure for obtaining a geometrically realized planar network 

 

Fifth, we bend the triangle 432 iii ppp  in such a way that the vertex 3ip is on the link iL  (see 

Figure 8b). The length of the bended line, G
iL 2 , is the same as that of the link *

iL . If this bended 

line is included in the polygon iA , let G
iL  be G

iL 2 , and we stop. If not, we go to the next.  

 

Sixth, we bend the two triangles in the same manner as in Figure 8c. The length of the bended 

line, G
iL 3 , is the same as that of the link *

iL . If this bended line is included in the polygon iA , 

let G
iL  be G

iL 3 , and we stop. If not, we go to the next.  

 

In this manner, we continue a similar procedure until the bended line, G
imL , is included in the 

polygon iA . This procedure always terminates in a finite number, m , of steps. Let G
iL  be 

G
imL .  

 

When the above procedure terminates, we construct a network GN  with the set of links 

},,{ 1
G
nm

G
m

G LLL K=  and the set of nodes PPG = . Now our problem is to examine whether or 

not the network GN  satisfies the conditions (i)-(iv). Since PPG = , the condition (i) is 

L
pi pi pi

pi

pi

Li1

A Li2

Li3
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satisfied. Since there is one-to-one correspondence between L  and *L , and there is 

one-to-one corresponding between *L  and GL , the conditions (i) is satisfied. Since the length 

of a link in GL  is stretched in proportion to the length of the corresponding link in *L ,  the 

condition (iv) is satisfied. Since the graph of the network N  is a planar graph and since the 

link G
imL  fits to the corresponding link iL  by continuous deformation without crossing the 

other links (the polygons nAA ,,1 K  do not overlap each other except at nodes), the condition 

(iii) is satisfied. Therefore the network GN  is a geometrically realized planar network of the 

uniform network *N  that is transformed from a given heterogeneous network N . This proves 

that any uniform network that is transformed from a heterogeneous network through the 

uniform transformation can be geometrically realized on a plane.  

 

4. Conclusions 

The major conclusions of this paper are summarized as follows. 

i) Any heterogeneous network can be transformed into the uniform (homogeneous) network 

through the uniform network transformation. 

ii) The obtained uniform network can be geometrically realized on a plane. 

 

The implications of these conclusions are very useful. First, we can easily deal with a 

heterogeneous network. This is a great advantage of spatial analysis on a network, because there 

exists no transformation from a heterogeneous plane to a homogeneous plane and so spatial 

analysis on a heterogeneous plane is very hard. Second, any methods for spatial analysis on a 

homogeneous network can be applied to spatial analysis on a heterogeneous network. Third, we 

do not have to develop special methods for spatial analysis on a heterogeneous network. We 

only concentrate on developing methods for spatial analysis on a homogeneous network.  

 

As shown in this paper, spatial analysis on a network has great advantages, but no methods are 

perfect, and spatial analysis on a network has also some limitations. In practice, computation on 
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a network is usually more time-consuming than that on a plane. This limitation has been greatly 

diminished by recent progress in computer hardware and processing, but computation on a 

network still takes much time. Second, in spatial analysis on a network, all geographical 

features are supposed to be mapped on a network. However, there are some geographical 

features that cannot be mapped on a network. For example, a large park that is represented by a 

polygon is difficult to map on a network. Thus spatial analysis on a network is effective only 

when geographical features can be meaningfully mapped on a network. 
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