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Accuracy of Count Data Transferred through

the Areal Weighting Interpolation Method

Abstract

This paper analyzes the accuracy of count data transferred from a zonal system to

an incompatible zone through the areal weighting interpolation method. To treat a variety

of situations in a theoretical framework, stochastic models representing areal weighting

interpolation are developed. The relationship between the accuracy of estimates and the

size of source zones is analytically investigated by use of a proposed model. The results

strongly suggested that smaller zones give better estimates on a wide range of zonal

systems. The effect of the shape of source zones and the target zone on estimation

accuracy is also numerically examined, and it was found to be significant as well as the

effect of the size of source zones.
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1. Introduction

Social, economic, and demographic data used in GIS are usually provided in an

aggregated form based on a zonal system (Rhind 1991). In Japan, for instance,

socioeconomic data are aggregated across census tracts and municipal districts. It often

happens, however, that an analysis on the data is to be performed in a zone incompatible

with the source zones. Let us consider, for instance, a process of store site selection.

Given several alternative sites, a market analyst draws hypothetical market areas around

the sites in which population count data are necessary for evaluating the alternatives.

Unfortunately, market areas are typically represented as circles and incompatible with the

census tracts in which demographic data are recorded. Thus the analyst has to estimate

the population within the areas from the data aggregated across census tracts. This type of

data estimation, that is, data transfer from the source zones to the target zone, is called

areal interpolation (Lam 1983, Goodchild et al. 1993), and there have been proposed a lot

of areal interpolation methods in the literature (Wright 1936, Markoff and Shapiro 1973,

Tobler 1979, Goodchild and Lam 1980, Lam 1983, Flowerdew 1988, Flowerdew and

Green 1991, Goodchild et al. 1993, Fisher and Langford 1995, Burrough and

McDonnell 1998).

Data estimation through areal interpolation is inevitably inaccurate to some extent,

which is undesirable in subsequent spatial analysis. There are at least two methods to

improve the accuracy of estimates. One is to choose an areal interpolation method

yielding more accurate estimates. Intelligent methods which use supplementary data are

generally better than simple methods such as the point-in-polygon method (Okabe and

Sadahiro 1997) and the areal weighting interpolation method (Fisher and Langford

1995). It seems desirable to choose intelligent methods if suitable supplementary data,

say, remotely sensed data, are available. However, such data are not always available,

and the computing cost is problematic especially when the number of zones is very large.

Consequently, simple methods are still widely used in GIS.

Another method to improve estimation accuracy is to employ source data whose

zones are sufficiently small. If source zones are even smaller than a target zone, we can

obtain a highly accurate estimate. Population count data, for instance, are often available

in several zonal systems such as census tracts, towns and villages, states, and so forth. It

is possible to choose the data aggregated across census tracts which have the smallest

zones among them, because they provide more accurate estimates than the others. In

practice, however, handling of spatial data consisting of small zones causes some

problems: cost of data acquisition, computation, and storage. High-resolution data are

more costly than low-resolution data, and they consume much space and time in spatial

operation including areal interpolation. Therefore, we try to choose the source data
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balancing the cost of data handling and the expected accuracy of estimates.

Such data choice requires us to understand the relationship between the accuracy of

estimates and a source zonal system. There are several studies investigating the accuracy

of areal interpolation in diverse situations (Flowerdew and Green 1991, Langford et al.

1991, Goodchild et al. 1993). However, since they employed particular sets of spatial

objects and zonal systems, it remains unknown whether the results have global

applicability. One exception is an analysis based on the Monte Carlo simulation (Fisher

and Langford 1995) where a variety of zonal systems were used. Even in this study the

distribution of spatial objects is given and the form of zone boundaries is quite limited,

thus the obtained results are not proved to be generally applicable.

The objective of this paper is to develop a theoretical framework for analyzing the

accuracy of count data transferred from a zonal system to an incompatible zone, and to

obtain some general results. We focus on the areal weighting interpolation method

(Markoff and Shapiro 1973) because it has been widely used in GIS. Other areal

interpolation methods are left for future research.

In Section 2, we propose areal weighting interpolation models which are theoretical

basis for the analysis of estimation accuracy. Introducing stochastic models we discuss a

set of situations by using their representative probabilistic functions. One of the models is

used in Section 3, where the relationship between the accuracy of estimates and the size

of source zones is analyzed. In Section 4 we perform a numerical examination of

estimation accuracy on lattice systems. Finally, we summarize the conclusions in Section

5.

2. Areal weighting interpolation models

As mentioned in the previous section, estimation accuracy depends on the situation,

that is, the source zonal system, the target zone, and the point distribution, which has

impeded a general discussion of this subject. One solution to the problem is to perform a

computed-assisted simulation of areal interpolation processes (Fisher and Langford

1995). This approach, however, has some limitations. First, because of its computational

cost, the realized situations are quite limited. Areal interpolation of count data depends on

the above three factors, and it is impossible to try numerous situations varying in all the

factors. Second, a simulation-based approach is not directly connected with a theoretical

analysis. Suppose, for instance, the relationship between the accuracy of estimates and

the size of source zones. Performing computed-assisted simulations we can obtain

numerical information on this relationship, say, a correlation coefficient. However, this

result is not supported by a firm theory, and thus the applicability of the result still

remains unknown.
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To overcome these difficulties, we propose two stochastic models which we call

the areal weighting interpolation models as a framework for analyzing estimation

accuracy. We replace a variety of situations by their representative stochastic models, and

discuss the models rather than individual situations. By this we can avoid

computationally expensive simulations to consider numerous situations.

Among the factors affecting the accuracy of estimates we are most concerned with

the source zonal system. Hence the source zonal system is given and fixed in models.

The shape and size of the target zone are also given. In contrast to these factors, the point

objects are assumed to follow a probability distribution, which is a representative of

diverse distributions. The location of the target zone also follows a probability

distribution. We should note that, however, the location of points and the target zone can

be fixed by adopting a suitable probability distribution, if a specific situation has to be

considered.

2.1 Basic model

Suppose a source zonal system S, a region Z0 of area A0 which consists of K zones

Z1, Z2, ..., ZK (Figure 1). The area of Zi  is denoted by Ai . The region Z0 represents, say,

a county, and each zone corresponds to a census tract, a school district, or a postal zone

by which count data are reported. A target zone T of area B in which count data need to

be estimated, say, a hypothetical market area, is assumed to be randomly dropped in such

a way that it intersects Z0 (Figure 2). The location of T is represented by a binary

function

C
if T

otherwise
x

x
( ) =

∈



1

0
. (1)

In the region Z0, N points (say, population) are independently and identically

distributed according to a probability density function f(x). The location of point j is

denoted by yj .

Figure 1 A source zonal system S. Gray-shaded area represents the region Z0.

Figure 2 Possible locations of the target zone T (the ellipses). Gray-shaded area

represents the region Z0. Note that the target zone is not necessarily wholly contained in

Z0.

Let us consider the areal weighting interpolation in the above setting. The number

of points in T is given by

M C j
j

= ( )∑ y . (2)

This value is unknown to an analyst and has to be estimated through the areal weighting
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interpolation as follows. Suppose a function Ui(x) defined by

U
if Z

otherwisei
ix

x
( ) =

∈



1

0
. (3)

The number of points in Zj  is

n Ui i j
j

= ( )∑ y . (4)

The areal weighting interpolation assumes that the points are uniformly distributed in each

zone. Therefore, given the number of points for every zone, we have an estimate of M,

M̂
C

A
n

C

A
U

Z

i
i

i

Z

i
i j

ji

i

i

=
( )

=
( )

( )

∈

∈

∫∑

∫ ∑∑

x x

x x
y

x

x

d

d
(5)

Estimation error of M is given by
ε = −

= ( ) −
( )

( )∑ ∫ ∑∑ ∈

M M

C
C

A
Uj

j

Z

i
i j

ji

i

ˆ

y
x x

yx
d (6)

In the areal weighting interpolation models, the estimation error ε changes

stochastically because the point objects and the target zone are located according to

probability distributions. To evaluate the error, we adopt the mean square error (MSE) of

ε as a measure defined by

MSE S[ ] = [ ]E ε 2 . (7)

The calculation of E[ε2] is shown in Appendix A1, thus we show only the result.

MSE S N N f f T

N f T

N N
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f f T

N
A

f

ZZ
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i i
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f∫ ∫∑ ( )
∈

x x
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d
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(8)

Equation (8) contains the probabilities Pr[x∈ T] and Pr[x∪ t∈ T] which are not

explicitly given. These values can be computed as follows.
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Let m(T; Z0) be the measure of the set of all figures congruent to T intersecting Z0.

The probabilities Pr[x∈ T] is written as

Pr
;

x ∈[ ] = ( )T
B

m T Z

2

0

π
. (9)

If both T and Z0 are convex, m(T; Z0) is given by
m T Z A B P PT; 0 0 02( ) = +( ) +π , (10)

where P0 and PT are the perimeters of Z0 and T, respectively. Otherwise, computation of

m(T; Z0) requires a numerical simulation or a spatial sampling.

The probability Pr[x∪ t∈ T] is given by

Pr
;

;
x t

x t
∪ ∈[ ] =

−( )
( )T

m T

m T Z0

, (11)

where m(T; l) is the measure of the set of all figures congruent to T containing two points

separated by a distance l. If T has a simple shape, m(T; l) is represented by an explicit

form (for details, see Santaló 1976, Sadahiro 1999). For instance, if T is a circle of

radius r,

m T l
r

l

r
l r l l r

l r
;

arccos ,

.
( ) =





 − − ≤( )

>( )







4
2

4 2

0 2

2 2 2π π
. (12)

For a rectangle of sides b, c (b ≤ c), we have

m T l

bc b c l l l b

c l b cl b bc
b

l
b l c

c l b b l c b c l

bc
c

l

b

l

c l b c

b c

;

,

arcsin ,

arcsin arccos
,

( ) =

− +( ) + ≤( )
− − − + < ≤( )

− + − − + +( )
+ −





< ≤ +( )
+ <

2 4 2

4 4 2 4

4 4 2

4

0

2

2 2 2

2 2 2 2 2 2 2

2 2

2 2

π

ll( )















 .

(13)

If T has more complicated shape, m(T; l) is numerically computable by using

m T l
B

l
g lT;( ) = ( )

2

, (14)

where gT(l) is the probability density function of the distance between two points that are

randomly distributed in T (derivation of equation (14) is shown in Appendix A2). The

function gT(l) can be easily obtained in GIS: 1) overlay a square lattice on T, 2) calculate

the point-to-point distance for all pair of grid points in T, 3) make a histogram of the

distance.

2.2 Periodic continuation model

The basic model proposed in the previous subsection allows us to evaluate the

estimation accuracy of areal weighting interpolation in diverse situations. Calculation of
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equation (8), however, is sometimes computationally expensive because calculation of

Pr[x∈ T] may require numerical simulations. To reduce the computational cost, we

propose another areal weighting interpolation model which we call the periodic

continuation model.

The model setting is almost the same as that of the basic model. We hence describe

only the differences.

1) The region Z0 has such a shape that can cover a plane by its lattice (Figure 3).

Rectangles, parallelograms, and regular hexagons meet this requirement.

2) The region Z0 is surrounded by its copies, and the copies have the same zonal system

and point distribution as those of Z0 (Figure 4). This assumption is often called periodic

continuation (Ripley 1981, Stoyan and Stoyan 1995).

3) If T does not completely lie in Z0, we replace the portion of T outside Z0 by its

corresponding figure as shown in Figure 5. We then assume that all possible shapes and

positions of T appear randomly.

Figure 3 Possible shapes of the region Z0 (the upper row). It is confirmed from the lower

row figures that those shapes satisfy the requirement 1).

Figure 4 The region Z0 and its surrounding copies.

Figure 5 Transformation of T.

In the above setting we have

Pr x ∈[ ] =T
B

A0

. (15)

Substituting equation (15) into equation (8), we obtain
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(16)

The probability Pr[x∪ t∈ T] is given by

Pr
;

x t
x u

u t

∪ ∈[ ] =
−( )

∈ ( )
∑T

m T

A2 0πΩ

, (17)

where Ω(t) is a set of points corresponding to t in the surrounding copies of Z0 (Figure

6). Equation (16) then becomes

MSE S
N N

A
f f m T

N
B

A

N N

A A
f f m T

ZZ

i
Z Zi

[ ] = −( ) ( ) ( ) −( )

+
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;
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x u x t x x
u t
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i
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1

0
2π Ω

.

(18)

Note that equation (18) does not contain the term m(T; Z0) whose computation often

requires a numerical simulation. The measure m(T; l) is easily computable as mentioned

earlier, and so is MSE[S]. The periodic continuation model is more tractable that the basic

model.

Figure 6 Point located at t and the set of its corresponding points Ω(t) in the surrounding



8

regions (Gray-shaded area represents the region Z0).

The choice of the above two models depends on the case. Concerning the model

setting, the basic model is more flexible than the periodic continuation model. The latter

puts some additional assumptions, and there may be the case where they are not

acceptable. If the assumptions are allowable, the periodic continuation model would be a

better choice because it is computationally less expensive. Moreover, since equation (18)

is more simple than equation (8), the periodic continuation model seems more suitable for

an analytical investigation of estimation accuracy.

3. Accuracy of estimates and the size of source zones

Having defined the areal weighting interpolation models, we are now ready to

analyze the accuracy of estimates. In this section we take an analytical approach to the

relationship between the estimation accuracy and the size of source zones.

We consider the case where the points (say, population) are distributed in the

region Z0 according to the uniform distribution. This implies that in a statistical sense an

even distribution of population is assumed in Z0. Formally, the assumption is represented

as

f
A

x( ) = 1

0

. (19)

Indeed, this assumption scarcely holds in a strict sense. However, analyzing the case of

uniformly distributed points would be helpful in considering a variety of point

distributions, especially for those analogous to the uniform distribution.

From the two available models we choose the periodic continuation model because

of its tractability. Substitution of equation (19) into equation (16) yields
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∫∫∑

∫∫∑∑

∈

∈∈
+ −( )





∪ ∈[ ]

d

d d

t

x t x t

t

xt
1

1

0

2

Pr
''

(20)

Noticing that
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Pr Prx t x t x t x t
xt xt

∪ ∈[ ] = ∪ ∈[ ]
∈∈ ∈∈∫∫∑ ∫∫T T

ZZ
i

ZZi

d d d d
0 00

, (21)

and that

Pr Pr
''

x t x t x t x t
xt xt

∪ ∈[ ] = ∪ ∈[ ]
∈∈ ∈∈∫∫∑∑ ∫∫T T

ZZ
ii

ZZii

d d d d
00

, (22)

we obtain

MSE S N
B

A
N

A A
T

N

A
B

A A
m T

i
ZZ

i

i
ZZ

i

ii

ii

[ ] =






− ∪ ∈[ ]

= − −( )







∈∈

∈ ( )∈∈

∫∫∑

∑∫∫∑

0 0

0 0

1 1

1
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1

Pr d d

d d

x t x t

x u x t

xt

u t
xtπ

;
Ω

. (23)

Equation (23) indicates that the MSE does not depend on the spatial arrangement of

zones in Z0. Three zonal systems shown in Figure 7 have the same MSE.

Figure 7 Zonal systems having the same MSE.

Using equation (23), we analyze the relationship between the accuracy of estimates

and the size of source zones. To this end, we consider three typical zonal systems: the

hierarchical zonal system, the zonal system consisting of sets of congruent figures, and

the lattice system.

3.1 Hierarchical zonal systems

Socioeconomic data are often aggregated in a hierarchical zonal system. Population

count data, for instance, are available at various levels of hierarchy, say, census tracts,

towns and villages, and states. In a hierarchical zonal system, a higher level system is

obtained by combining several zones of a lower level system (Figure 8).

We now have a question whether a lower level zonal system, that is, a system

consisting of smaller zones, really yields more accurate estimates than a higher level

system . In other words, we wish to examine whether the combination of zones lowers

the estimation accuracy.

Figure 8 A hierarchical zonal system.

Suppose hierarchical zonal systems S1 and S2, where S1 is at the lower level of S2.

We assume for simplicity that S1 consists of two zones Z1 and Z2, while S1 consists of

zone Z0. The MSE's are given by
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and
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respectively. From these equations we have
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After a few steps of calculation equation (26) becomes

∆MSE
N

A A A
A C A C

Z Z
= ( ) − ( ){ }



∈ ∈∫ ∫

0
2

1 2
2 1

2

1 2

E d dx x x x
x x

. (27)

and thus

∆MSE ≥ 0. (28)

This indicates that S1 is better than S2 with regard to the mean square error.

The above discussion can be easily extended to a hierarchical zonal system

consisting of more than two zones, which leads to a conclusion that in any hierarchical

system a lower level system always gives a smaller MSE than a higher level system. It is

desirable to choose a lower level system in a hierarchical zonal system regardless of the

shape and size of the source and target zones.

3.2 Zonal systems consisting of sets of congruent figures

We next consider the zonal system that consists of sets of congruent figures.

Suppose a zonal system S, the region Z0 consists of m types of figures (Figure 8a). We

denote the covering ratio of type i figures as α i  (α1+α2+...+αm =1). The MSE of this

system is given by

MSE S
N

A
B

A
m Ti

i
ZZ

i ii

[ ] = − −( )





∈ ( )∈∈ ∑∫∫∑

0
2

1
2π

α
; x u x t

u t
xt

Ω

d d . (29)

We then suppose a zonal system Si , the region Z0 consists of only type i figures (Figures

8b and 8c). The mean square error MSE[Si] is given by
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MSE S
N
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B

A
m Ti

i
ZZ ii

[ ] = − −( )





∈ ( )∈∈ ∑∫∫

0
2

1
2π

; x u x t
u t

xt
Ω

d d . (30)

From equations (29) and (30) we obtain
MSE S MSE Si i

i

[ ] = [ ]∑α . (31)

As seen in equation (31), MSE[S] is given by the linear combination of MSE[Si] 's

weighted by the covering ratio (Figure 8). This implies that the MSE of a zonal system

consisting of sets of congruent figures lies among MSE's of zonal systems consisting of

all congruent figures. The following inequation holds for the zonal systems shown in

Figure 9.
MSE S MSE S MSE S1 2[ ] < [ ] < [ ] (32)

Figure 9 A zonal system consisting of sets of congruent figures.

3.3 Lattice systems

Count data aggregated into a lattice form are now widely used in GIS. It sometimes

happens that several lattice data are available differing in the cell size though not having a

hierarchical structure (Figure 10). To treat such a case, we analyze the relationship

between the accuracy of estimates and the cell size of a lattice.

Figure 10 Lattice systems differing in the cell size.

Suppose two lattice systems L1 and L2 whose cells are similar in shape but

different in size. The unit cell and its area of Li  are denoted by Zi  and Ai , respectively

(A1<A2). We assume that Z0 is still larger than T so that the following equation holds for

any x and t in both Z1 and Z2.
m T m T; ;x u x t

u t

−( ) = −( )
∈ ( )
∑

Ω

. (33)

The MSE of L1 is given by

MSE L
N

A
B

A
m T

N

A
B g l m T l l

ZZ

Zl

1
0 1

2

0
0

1
2

1
2

11

1

[ ] = − −( )







= − ( ) ( )


∈∈

=

∞

∫∫

∫

π

π

;

;

x t x t
xt

d d

d

,` (34)

where gZ1(l) is the probability density function of the distance between two points which

are randomly distributed in Z1. Similarly,

MSE L
N

A
B g l m T l lZl2

0
0

1
2 2

[ ] = − ( ) ( )
=

∞

∫π
; d . (35)

Noticing that Z1 and Z2 are similar in shape, we have
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g l
A

A
g

A

A
lZ Z2 1

1

2

1

2

( ) =






. (36)

Substitution of equation (36) into (35) yields

MSE L
N

A
B

A

A
g

A

A
l m T l l

N

A
B g l m T

A

A
l l

Zl

Zl

2
0

1

2

1

2
0

0

2

1
0

1
2

1
2

1

1

[ ] = −






( )













= − ( )


















=

∞

=

∞

∫

∫

π

π

;

;

d

d

. (37)

From equations (34) and (37) we have
∆MSE MSE L MSE L

N

A
g l m T l m T

A

A
l lZl

= [ ] − [ ]

= ( ) ( ) −
















=

∞

∫

2 1

0

2

1
02 1π

; ; d
. (38)

Since A A2 1 1/ >  and gZ1 (l) ≥0 for any l, ∆MSE  is positive if m (T ; l) is a

monotonic decreasing function of l. The condition is satisfied at least when the target

zone T is convex. The reason for this is as follows. The measure m(T; l) is equal to the

measure of the set of all point pairs separated by a distance l in T. If T is convex, m(T; l)

is also equal to the measure of the set of all line segments of length l in T. The set of
possible locations of a line segment of length A A l2 1/  includes the possible locations of

a line segment of length l (recall A A2 1 1/ > ). Therefore, an inequation

m T l m T
A

A
l; ;( ) ≥







2

1

(39)

holds for any l. Inequation (41) indicates that m(T; l) is a monotonic decreasing function

of l, and consequently ∆MSE is always positive. From this we can say that it is desirable

to choose a lattice system consisting of smaller cells when T is convex.

Unfortunately, theoretical approach appears difficult in case of non-convex T. We

thus experimentally computed the MSE for non-convex T such as U-shape, T-shape, and

H-shape using numerical calculations, yet ∆MSE was always positive in all the cases.

The MSE seems to increase monotonically with the cell size even if T is non-convex,

though it still remains unproved.

In this section, we have analytically investigated the relationship between the size

of source zones and estimation accuracy. The obtained results strongly suggest that the

MSE decreases as source zones become smaller. From this we can say that smaller zones

give better estimates on a wide range of zonal systems. Though this has been reported on

an empirical basis (say, Fisher and Langford 1995, Cockings et al. 1997), it is

meaningful to prove it on a theoretical basis because it warrants the global applicability.
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4. Numerical examination of estimation accuracy on lattice systems

In this section we analyze the effect not only of the size but of the shape of source

and target zones on estimation accuracy. To this end, we numerically examine the

accuracy of count data estimated on lattice systems. We focus on the lattice system

because it is widely used in GIS. It should be emphasized, however, that any zonal

system can be numerically analyzed in a similar way.

We follow the approach taken in the Subsection 3.3, that is, we employ the

periodic continuation model, assuming that the points are uniformly distributed and that

the region Z0 is still larger than the target zone T. The MSE of a lattice system L is given

by

MSE L
NB

A

B g l g l

l
lZ T

l
[ ] = −

( ) ( )





=

∞

∫
0

0
1

2
1

π
d . (40)

Let µ be the expectation of the number of points contained in T, that is,

µ = [ ]E M . (41)

From equations (2) and (A 4) we obtain

µ = ( )









=

∑E C

NB

A

j
j

y

0

. (42)

Substituting equation (42) into equation (40), we have

MSE L
B g l g l

l
lZ T

l
[ ] = −

( ) ( )





=

∞

∫1
2

1

0π
µd . (43)

In this section we fix the values of N, A0, and B, in order to focus on the effect of the

size and shape of source zones on estimation accuracy. This implies that µ in equation

(43) is constant. The area of the target zone T is set to 1.

4.1 Square lattices

We first examine the square lattice, a zonal system consisting of a set of congruent

squares. For the shape of the target zone T, we consider the circle, square, and six types

of rectangles whose ratios of the vertical to the horizontal length (denoted by v/h ratios

hereafter) are 2, 3, 4, 8, 16, and 32.

The relationship between MSE[L] and the cell size is illustrated in Figure 11. As

shown in the previous section, MSE[L] monotonically increases with the cell size. It

increases rapidly at smaller cells while slowly at larger cells.

Figure 11 The relationship between MSE[L] and the cell size of the square lattice.
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Numbers in circles indicate the v/h ratios of rectangular target zones.

Let us turn to the effect of the shape of T. Figure 11 shows little difference between

MSE[L] of the circle T and that of the square T. However, when T is a rectangle,

MSE[L] increases as T becomes elongated. The shape of T clearly affects the accuracy of

estimates. Concerning the cell size, we can say that a lattice consisting of small cells is

desirable if T has a oblong shape. Suppose, for instance, that we want to keep MSE[L] at

0.5µ. The cell size needs to be smaller than 0.46 if v/h=4, while 0.77 if T is a square.

When T is a rectangle of v/h=16, a lattice of cells smaller than 0.16 is necessary. This

implies that, if we want to estimate the count data in a rectangular area of v/h=16, the

amount of required source data is approximately as five times large as that of the data

required for the estimation of a square area. Attention should be paid to the size of source

zones when the target zone has a oblong shape, say, the buffer zone of a road.

4.2 Regular lattices

There are three possible regular lattices on a plane, that is, triangular, square, and

hexagonal lattices. The strength and weakness of these lattices have been discussed in the

literature (Burt, 1980; Star and Estes, 1990; Okabe and Sadahiro, 1997). We compare

these lattices from the viewpoint of estimation accuracy. For the shape of T we try the

circle, square, and four types of rectangles whose v/h ratios are 4, 8, 16, and 32.

Figure 12 illustrates the relationship between MSE[L] and the cell size of the

lattices. Since regular triangles and hexagons are convex, MSE[L] of the lattices

monotonically increases as the cells become larger. The relationship between MSE[L] and

the cell size on the triangular and hexagonal lattices looks similar to that on the square

lattice. Especially the square and hexagonal lattices show quite similar results regardless

of the shape of T, though the hexagonal lattice always gives a slightly smaller MSE[L]

than the square lattice.

Considering the result and the tractability of spatial database, we can say that the

square lattice is practically the best choice among all possible regular lattices. This

conclusion is compatible with that reported in Okabe and Sadahiro (1997).

Figure 12 Comparison of the regular lattices. Numbers in circles indicate the v/h ratios of

rectangular target zones.

4.3 Rectangular lattices

We finally investigate the rectangular lattice. Though the rectangular lattice is not

popular, the analysis will help us to understand the relationship between the accuracy of
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estimates and the shape of source zones.

In the analysis we consider five types of lattices consisting of rectangles whose v/h

ratios are 2, 3, 4, 8, and 16. For the shape of T, we adopt the circle, square, and six

types of rectangles whose v/h ratios are 2, 3, 4, 8, 16, and 32.

Let us examine Figures 13a and 13b, which depict the relationship between

MSE[L] and the cell size on the rectangular lattices of v/h=4 and 16, respectively. Both

figures are similar in general to Figures 11 and 12: the effect of the cell size on MSE[L]

decreases as cells becomes large; MSE[L] increases as the shape of T becomes elongated

from the circle and the square to the rectangles.

Figure 13 The relationship between MSE[L] and the cell size of the rectangular lattice.

The v/h ratios of the rectangular cells are (a) 4, (b) 16. Numbers in circles indicate the v/h

ratios of rectangular target zones.

Figure 14 compares rectangular lattices varying the v/h ratio of the lattice cells.

Interestingly, the effect of the cell shape is very similar to that of the shape of T: MSE[L]

increases as cells become elongated.

Figure 14 Comparison of rectangular lattices. The v/h ratios of the rectangular target zone

are (a) 1 (square), (b) 4, (c) 16. Numbers in squares indicate the v/h ratios of rectangular

cells.

From the above results, we notice that estimation accuracy is significantly

influenced by not only the size but the shape of cells and the target zone. Estimates

become inaccurate as the shape of cells and the target zone becomes elongated, which is

compatible with the results reported in Cockings et al. (1997). Unfortunately, it seems

difficult to give a theoretical explanation on this relationship, yet an intuitive discussion

based on integral geometry is possible as follows.

Let us consider a lattice L of unit cell Z. We denote the area and perimeter of Z as A

and P, respectively. A target zone T of area B and perimeter PT is dropped randomly on

the lattice L.

Suppose that T is now overlaid on L as shown in Figure 15. Estimation error in

count data occurs only in the cells intersected by the boundary of T (dark gray cells in

Figure 15). Hence it is supposed that estimation error increases with the number of cells

intersected by the boundary of T, which is denoted by κ.

Figure 15 A locational relationship between the lattice L and the target zone T.
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The expectation of κ is given in an analytical form as below (Santaló, 1976).

E κ π
π

[ ] = +( ) +2
2

A B P P

A
T (44)

Assuming A and B fixed, we find that E[κ] increases monotonically with P and PT.

These perimeters are minimized when Z is a regular hexagon and T is a circle, which

consequently gives the minimum of E[κ]. As Z and T become elongated, both P and PT

increase and so does E[κ]. Therefore, we surmise that an increase of P and PT makes the

estimate inaccurate.

Certainly the above discussion is somewhat vague. However, it helps us to

understand intuitively the relationship between the accuracy of estimates and the shape of

cells and the target zone.

5. Concluding discussion

In this paper we have analyzed the accuracy of count data transferred from a zonal

system to an incompatible zone through the areal weighting interpolation method. We

proposed areal weighting interpolation models on a stochastic basis as a framework for

handling a variety of point distributions and locations of the target zone. Using an areal

weighting interpolation model, we analyzed the relationship between the accuracy of

estimates and the size of source zones where points followed the uniform distribution.

The results suggest that smaller zones give better estimates on a wide range of zonal

systems.

In the previous section we performed numerical examinations of estimation

accuracy on lattice systems. We focused on the shape and size of lattice cells and the

target zone, and found that not only the size but the shape of cells and the target zone

significantly affects the accuracy of estimates. We discussed the effect of the shape in

relation to the perimeter and suggested that it may be partly explained from the view of

integral geometry.

Analytical and numerical investigations of estimation accuracy assumed that points

were randomly distributed in the region, which may be unrealistic in some cases. We

should emphasize, however, that this assumption is not essential as seen in the setting of

the areal weighting interpolation models. The models are applicable when the points

follow a nonuniform distribution.

The areal weighting interpolation models have wide applicability, yet they have

some limitations. We finally discuss them for further research. First, the models assume

that a target zone is randomly distributed. This assumption does not always hold in

spatial analysis. Recall a process of store site selection mentioned in the introductory
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section. The process includes repeated areal interpolations which estimate the population

within the market area. However, the distribution of proposed sites is usually

nonuniform, which does not satisfy the assumption. A model to treat nonuniformly

distributed target zones should be developed. Second, the models consider only the areal

weighting interpolation method. Though this method is simple and its algorithm runs so

fast, it often gives inaccurate estimates as reported by Fisher and Langford (1995). If

source data are not available which have a resolution high enough for areal interpolation,

intelligent interpolation methods should be attempted. Areal interpolation methods other

than the areal weighting interpolation need to be modeled and evaluated.
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Appendix A1

The expectation of ε2 is given by the following equation.

E E E Eε 2 2 22[ ] = [ ] − [ ] + [ ]M MM Mˆ ˆ (A 1)

We separately derive the three terms in the above equation.
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Since the points are independently distributed, equation (A 2) becomes

E E E EM C C Cj j
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we have
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Let us proceed to the second term of equation (A 1).
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Substitution of

E
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and
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The second term of the above equation becomes
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Thus we have
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The third term of equation (A 1) is written as
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Substituting equation (A 7), we have
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Using equations (A 5), (A 11), and (A 13), we obtain
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Appendix A2

Suppose a region T of area B and two points that are independently and randomly

distributed in T. We denote the location of the points by the vectors x and t, and consider

a function

D l
if l

otherwise
x t

x t
, ,( ) =

− ≤
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0
. (A 15)

The probability distribution function of the distance between the two points is written as
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B

D lT TT
( ) = ( )

∈∈ ∫∫1
2 x t x t

xt
, , d d . (A 16)

The function gT(l), the probability density function of the distance between the points, is

given by
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We then turn to the measure m(T; l), which is equivalent to the measure of the set of

all point pairs separated by a distance l in T. To derive m(T; l), we first fix one of the

points at x and examine possible locations of the other.

Obviously, the location of the movable point is restricted on the arc Γ , which is

given as the union of a circle of radius l centered at x and the region T (Figure A1). Thus

we have
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where θ(x, l) is the included angle of Γ. The left side of equation (A 18) is rewritten as
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Substitution of equation (A 19) into equation (A 18) yields
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The measure m(T; l) is given by
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Substitution of equation (A 20) into equation (A 21) yields
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From equations (A 17) and (A 22) we have
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Figure A1 The arc Γ defined by the union of a circle of radius l centered at x and T.
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