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ABSTRACT: 

 
Statistical criteria are poor at evaluating spatial exploratory models of hedonic 
regression because they are heavily dependent on uncertain assumptions concerning 
spatial relationships. To resolve this problem, empirical evaluation methods are 
proposed in this paper. A simple linear model and three spatial models for a housing and 
land price dataset in Tokyo are studied for illustration. The prediction power of models 
is emphasized. With a cross-validation technique, the housing and land price at each 
sample point are predicted, and then, numerical and graphical criteria are supposed 
using these predicted values and real observed prices. The methods not only help us to 
select suitable models for a dataset, but also provide an alternative for the significance 
test of concerned spatial relationships.   
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1. INTRODUCTION 

 
Recently, a variety of hedonic regression models have been proposed in addition to a 
simple formed model to study the spatial nature of variables. All of them proposed to 
make use of the spatial characteristics of variables to improve models. Since they are 
often exploratory models, it is critical issue as how well a model is, whether the spatial 
characteristics identified by a model are convincible, and how to select the most suitable 
model for a dataset. 
 
A difficulty in making such judgment is the lack of appropriate evaluation techniques. 
This paper sets out to address this issue. 
 
Traditionally, statistical testing criteria such as R-square, t-statistic, F statistic, AIC∗ , 
and so on, are often used to evaluate regression models. However, models are always 
based upon such assumptions as linear assumption, normality, or non-collinearity, thus 
statistical testing methods inevitably depend on these assumptions. For exploratory 
models, this creates problems because assumptions are open for test. 
 
To overcome this problem, other evaluation methods have to be developed.  
 
 

2. ALTERNATIVE REGRESSION MODELS 
 
In this paper, we use a housing and land price dataset in Tokyo for illustration. It covers 
the transaction price, structural attributes, environmental attributes, and x, y coordinates 
of 190 detached housing lots. See Appendix A for details of it. 
 
2.1 A Simple Linear Regression Model 
 
Equation (1) shows the simplest form of hedonic regression models: 
 
 

y = a0 + ∑akxk+ ε,                          (1) 
 
 
where, y is unit price, xk for k= 1, 2, …, m are independent variables, ε is an error term, 
and a0 and ak are parameters to be estimated.  
 
An ordinary linear model in this form was developed in Gao and Asami (2001). It 
explains 75.6% of unit price, has 16 independent variables, all of which statistically 
significant at the level of F below 0.05. See Appendix B. 
 
Since this model has not fully considered the impact of spatial location on unit price, to 

                                                                 
∗ Akaike Information Criterion, a tradeoff of likelihood and the number of estimated 
parameters 
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study the spatial characters of dataset with location data is thought of a way to improve 
it.  
 
One of the spatial relationships being explored is spatial dependency. Another is spatial 
heterogeneity. The estimates of regression parameters in the presence of spatial 
dependency have been discussed by a number of literatures, e.g., Dubin (1992; 1998) 
and Can (1990; 1992), while, various localized modeling techniques were proposed to 
capture spatial heterogeneity (Casetti, 1972; Getis and Ord, 1992; Fotheringham and 
Brunsdon, 1999). In addition, some models are developed to detect both of them 
(Anselin, 1988; Can, 1992). 
 
In this paper, we choose three spatial regression models to explore the data.  
 
2.2 A Spatial Dependency Model 
 
In order to study spatial dependency effects, a prior probability method proposed by 
Switzer et al. (1982) is applied. The model had been used to process satellite 
classification maps. To evaluate the class at the center of a window using the data for 
that location and the prior probability estimates obtained from the nearby observations in 
the window area was shown to have increased classification accuracy. Similarly, the 
prior characteristic terms of sample lots, denoted by xk’ for k= 1, 2, …, m, are added to 
the simple linear model: 
 
 

y = a0 + ∑akxk + ∑ak’ xk’+ ε.                (2) 
 
 
For simplification, let xk’ take the value of xk that is associated with the nearest neighbor 
of a sample. Appendix C gives the OLS estimates of this model, with an R-square of 
0.801. 
 
Although one might argue that correlations between xk and xk’ may lead to unstable 
estimates, the question is secondary to the concern whether spatial dependency is present. 
If the absence of spatial dependency effects were demonstrated, the model itself would 
be improper, let alone its estimates. 
 
2.3 A Geographically Weighted Regression (GWR) Model 
 
To identify spatial variations in relationships, a GWR model proposed in Fotheringham, 
et al. (1998) is adopted. The model extends traditional regression framework by 
allowing parameters to be estimated locally so that the model in Equation (1) is 
rewritten as 
 
 

yi= a0i + ∑akixki + εi,                        (3) 
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where, a0i and aki represent the values of a0 and ak at point i.  
In order to estimate the model, an observation is weighted in accordance with its 
proximity to point i. Let Wi be an n×n matrix whose diagonal elements wij denotes the 
geographical weighting of all observed data for point i, and the off-diagonal elements 
are zero. Data from observations close to i are weighted more than data from 
observations far away. Equation (4) gives the estimation of ai: 
 
 

YWXXWXa i
T

i
T

i
1)(ˆ −= ,                (4) 

 
 
where, X and Y are the matrix of explanatory variables and unit prices, respectively.  
 
A weighting function in Equation (5) is applied:  
 
 

wij= exp(-
2

2

β
ijd

).                         (5) 

 
 

where, dij is the Euclidean distance between point i and j, β is a bandwidth. By 
minimizing (6), β is set to 1,250m. 
 
 

2)](ˆ[ βi
i

i yy ≠∑ − .                       (6) 

 
 

Note that )(ˆ βiy≠ is the estimates at i with samples near to i but not i.∗   
 
At the location of each of the 190 observations, regressions are run. The obtained 
localized parameter estimates exhibit a high degree of variability over space and 
demonstrate fairly complex spatial patterns of each variable.  
 
The localized regressions result in high R-square fittings, beyond 0.95 at all sample 
points. Apparently, it is the outcome of localized regression, so these values are not 
comparable to that of the simple linear model.  
 
2.4 A Spatial Dependency +GWR Model 
 
In the following, we use a specification in (7) to investigate whether spatial dependency 
and heterogeneity effects are both present.  
                                                                 
∗  Suppose that point i itself is also included to estimate a0i and aki. If β is very small, the 
weightings of all points except for i become negligible and the estimates will fluctuate 
wildly throughout space. 
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yi= a0i + ∑akixki + ∑aki’ xki’ + εi,                (7) 
 

 
Similar to the spatial dependency model, let xki’ represent the corresponding values of 
the nearest sample to i.  
 
In addition, regressions are localized at each sample point with a GWR technique, 
adopting a weighting scheme of (5), and the optimal value of β being 1650m. The 
regression yields the estimates of parameters at each sample points.  
 
 

3. AN EMPIRICAL EVALUATION OF THE MODELS 
 
Now, let us discuss how to select a best one from these models. The weakness of 
“black-box” statistical evaluation method is well aware of. For instance, models 
supported by high R-square fitting or satisfying significance level are frequently 
doubted because of weak assumptions or irrational estimates of parameters, thus a clear 
conclusion can hardly be reached with these statistical criteria. This is an unavoidable 
result of heavy dependency on statistical assumptions. The problem is especially 
distinct in spatial exploratory models for the assumptions of models are to a large 
degree uncertain. This prompts us to turn to an empirical evaluation approach. In 
particular, the methods being presented in this paper focus on the prediction power of 
models.  
 
In the practice of hedonic regression, we often focus more on estimating unbiased 
coefficients to identify the marginal prices of explanatory variables, rather than simply 
see the prediction powers. Nonetheless, when spatial relationships are introduced to a 
simple ordinary model, we instinctively expect that this can improve the fitting of the 
model. Thus conversely, if it does not work better at predicting prices, we may just be 
satisfied with the simple model and think that its estimates are robust. From this 
viewpoint, the improvement of fittings can be been seen as an alternative to test the 
significance of spatial relationships, too. (Can, 1992; Dubin, 1992 and 1998; Brunsdon, 
et al., 1999) 
 
A cross-validation approach is used to carry out the idea, i.e., to see how well the prices 
already being observed can be predicted with the rest samples. An application of a 
similar method can be seen in Bourassa et al. (2001), where, random 80% samples are 
modeled to predict the rest 20% samples, and the sum of square of error is used as a 
criterion to evaluate proposed model. However, we are concerned tha t, to estimate a 
hedonic regression model, it is important to keep as large a sample size as possible. 
Thus, we predict the price at every point with all the rest 189 samples. 
 
3.1 Numerical Cross-validation Criteria 
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First, consider some numerical criteria, for instance, 2)ˆ( ii yy ≠−∑  and ∑ − ≠ ii yy ˆ ∗, 

where, yi and iy≠ˆ  denote the observed and the predicted unit price at point i, 
respectively.  
 
Table 2 gives their calculations. The values of all the three spatial models are slightly 
lower than that of the simple linear model. However, the falloffs are too small to suggest 
any critically large improvements. 

 
 
 
 

 Numerical criteria 
Model 2)ˆ( ii yy ≠−∑  ∑ − ≠ ii yy ˆ  

Simple linear model 1.96 15.29 
Spatial dependency model 1.92 15.11 

GWR model 1.81 14.60 
Spatial dependency +GWR model 1.76 14.33 

 
 
 
Centering on prediction error, more numerical criteria could be raised. Seriously though, 
numerical criteria just show a general aspect of model. Thus, some graphical criteria are 
further employed in order to illustrate broader and more complicated aspects of the 
relationships between model and data.  
 
3.2 The Distribution of Observation and Prediction 
 
On a scatter plot of observed unit price (yi) and predicted unit price ( iy≠

ˆ ), the prediction 
power of a model is indicated by the range occupied by the scatter points, in particular, 
the short breadth of this range. Obviously, all points being on 45o diagonal line indicates 
a perfect prediction, and higher prediction power is suggested by how slim and how 
close the range is to the 45o line. 
 
Following the idea, the three spatial models are compared with the simple linear model 
in Fig. 1~3. The 95% confidence regions of the scatter points are plotted, respectively. 
As results, again, all the spatial models are no much better than the simple linear model 
for this dataset. 
 
 

                                                                 
∗ This is deemed more robust than 2)ˆ( ii yy ≠−∑ . 

Table 2. A comparison of models by numerical criteria 
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Figure 1. Simple linear model and spatial dependency model 

Figure 2. Simple linear model and GWR model 
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3.3 Prediction Rate Curve 
 
We further evaluate the models by the proportion of well-predicted samples with respect 
to prediction error, which is referred to as prediction rate.  
 
To do this, let äi = ii yy ≠− ˆ  and sort äi. Then plot the ratio of well-predicted samples 
with sorted äi as horizontal axis. By this way, the prediction rate curve of a model is 
obtained.  
 
The introduction of this criterion allows us to capture the comprehensive performance 
of a model. In particular, it is helpful when we select models under a given level of 
prediction error. Consider two models having prediction rate curves shown in Fig. 4. 
Highly possibly, the sums of prediction errors of them are close. At tolerance level ξ1, 
70% of samples are correctly predicted by model 1, while only 60% can be predicted by 
model 2. However, if tolerance ξ2 is acceptable, more samples are correctly predicted by 
model 2.  
 
From an empirical point of view, a dataset always has some poor-to-predict 
observations. Thus, the performance of the prediction curves within a tolerable error 
scope may be thought of more important. 
 
 
 

Figure 3. Simple linear model and spatial dependency +GWR model 
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Prediction rate curve actually indicates the density of the scatter points in Fig. 1~3 with 
respect to their distance to the 45o diagonal line. To illustrate, let us see the prediction 
rate curves of the simple linear model and the spatial models in Fig. 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The four curves twist together for most of the span. This implies that their performances 
are fairly alike. All of them predict the unit price of about 70% of samples if a tolerance 
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Figure 5. A comparison of prediction rate curves 
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of 0.1 million yen/m2 is accepted. Within a tolerance of 0.2 million yen/m2, about 95% 
are correctly predicted. With the prediction error being larger than 0.2 million yen/m2, 
only about 5% of the sample can be predicted.  
 
On the other hand, it might have been noted that the tail of the simple linear model 
winds up a bit earlier than the other models. This is able to explain why this model 
looks better than the others in Fig. 1~3. Nevertheless, we can still draw the conclusion 
that they are similar, allowing that the tail part is not very important. 
 
From the above empirical tests, it seems proper to say that, for this dataset, the proposed 
spatial dependency model, GWR model, and the mixed model of the two are not 
significantly better than a simple linear model. In other words, the simple linear model 
is fairly satisfactory. Moreover, we should not stick to the spatial relationships revealed 
by the above spatial models. 
 
The failure of these three spatial models might either result from inappreciable spatial 
relationships in the sample area, or result from inappropriate model specifications. In 
the latter case, alternative specifications might be constructed and tested with similar 
empirical techniques as described above. 
 
 

4. CONCLUSION 
 
In the sense that empirical criteria are not dependent on statistical assumptions, they fit 
for any dataset and their application is not restricted to a certain kind of models. 
Nonetheless, these methods are especially outstanding to evaluate spatial exploratory 
models of hedonic regression, where assumptions concerning the presence of spatial 
relationships are uncertain. In such models, it is quite reasonable to believe that the 
additional consideration on spatial relationships should improve the prediction power of 
an ordinary model. Accordingly, we can simply focus on the prediction power of 
models. This is plain and straightforward. These tests also provide an alternative for the 
significance test of spatial relationships. If a spatial model does not outperform an 
ordinary model, we may just think that the estimates of the latter are robust enough.  
 
Much extension can be made based on the empirical evaluation concept. For example, 
we can judge the contribution of a variable by comparing the prediction powers of 
models with and without the variable, or look for an optimal tolerance level for a dataset, 
and so forth. The empirical approach might become effective alternatives for statistical 
evaluation methods.  
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APPENDIX A. A DESCRIPTION OF DATASET 

 
The database used in this paper was developed in Gao and Asami (2001). It involves 
190 detached housing lots in western Tokyo. Sample area is small, about 110 hectare. 
Sample properties were drawn from the Oct. 1996 to Sep. 1997 issues of Weekly 
Housing Information magazine, which provides transaction price and basic information 
of land and houses in Japan.  
 
In addition to the information provided by the magazine, details of sample properties, 
such as road, sunshine, distances to public facilities, and neighborhood environments, 
were obtained through site survey, GIS applications, and so on. The dataset also 
includes the location information of sample lots, represented by the x and y coordinates 
of their center point.  

 
 

APPENDIX B. THE ESTIMATES OF A SIMPLE LINEAR MODEL 
 

 
 

Coefficient 
(million 

yen/m2)/unit 

Std. 
Coefficient t-statistic Sig. level 

Constant 0.9115  9.165 .000 
ActualFAR 0.1276 0.182 3.215 .002 
T.station -0.0157 - 0.420 - 9.612 .000 
W.road 0.0209 0.137 2.855 .005 
Residual.b.age/S 0.5686 0.401 6.419 .000 
Landscape -0.1726 - 0.400 -8.463 .000 
T.Shinjuku -0.0168 - 0.310 -6.596 .000 
Frontage 0.0058 0.113 2.383 .018 
Goodpavement  0.0420 0.114 2.798 .006 
Parkinglot 0.0382 0.153 3.536 .001 
B.quality1 0.0575 0.150 3.507 .001 
Sunshine/S 0.9476 0.125 2.669 .008 
Con.greenery/S 21.4547 0.268 3.138 .002 
Con.greenery -0.1956 -0.257 -2.968 .003 
Mix-use3/S -17.4766 -0.381 -2.438 .016 
Mix-use3 0.2384 0.404 2.635 .009 
Tree1 0.0335 0.085 1.992 .048 

 
 
 
 
 
Statistical tests showed that the coefficients are quite stable, suggesting that the model 
does not have serious multi-collinearity problems. In addition, the model was shown to 
be superior to some other simple formed models such as log linear regression model. 
 

R-square: 0.756, adjusted R-square: 0.734.  
See Appendix D for the definition of variable names. 
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APPENDIX C. THE ESTIMATES OF SPATIAL DEPENDENCY MODEL 

 

 
Coefficient 

(million 
yen/m2)/unit 

Std. 
Coefficient t-statistic Sig.  

level 

Constant 0.8720   7.464 .000 
ActualFAR 0.0949 0.136 2.073 .040 
T.station -0.0117 -0.311 -3.532 .001 
W.road 0.0048 0.069 1.154 .250 
Residual.b.age/S 0.6610 0.467 6.910 .000 
Landscape -0.4670 -1.082 -4.453 .000 
T.Shinjuku -0.0091 -0.168 -2.363 .019 
Goodpavement 0.0400 0.108 2.269 .025 
Frontage 0.0779 0.151 3.102 .002 
Parkinglot 0.0296 0.118 2.559 .011 
B.quality1 0.0686 0.179 3.637 .000 
Sunshine/S 0.6310 0.083 1.773 .078 
Con.greenery/S 34.4830 0.431 4.172 .000 
Con.greenery -0.2760 -0.363 -3.925 .000 
Mix-use3/S -13.7990 -0.301 -1.879 .062 
Mix-use3 0.2070 0.351 2.147 .033 
Tree1 0.0209 0.053 1.122 .264 
     
NN-actualFAR 0.0299 0.044 0.680 .497 
NN-t.station -0.0033 -0.085 -0.978 .330 
NN-w.road 0.0099 0.068 1.026 .306 
NN-residual.b.age/S -0.1080 -0.074 -1.127 .262 
NN-landscape 0.2780 0.650 2.629 .009 
NN-t.Shinjuku -0.0074 -0.138 -1.941 .054 
NN-goodpavement 0.0242 0.065 1.338 .183 
NN-frontage 0.0015 0.031 0.572 .568 
NN-parkinglot 0.0080 0.032 0.725 .469 
NN-b.quality1 -0.0266 -0.070 -1.433 .154 
NN-sunshine/S 0.6290 0.073 1.582 .116 
NN-con.greenery/S -13.7210 -0.163 -1.435 .153 
NN-con.greenery -0.0011 -0.001 -0.014 .989 
NN-mix-use3/S -8.8210 -0.174 -0.787 .432 
NN-mix-use3 0.0914 0.145 0.650 .517 
NN-tree1 0.0069 0.017 0.324 .746 

 
 
 
 
 
 
 

NN- indicates the prior characteristic terms estimated 
from the nearest neighbor of sample lots. 
R-square: 0.801, adjusted R-square: 0.761. 
See Appendix D for the definition of variable names. 
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APPENDIX D. THE DEFINITION OF VARIABLES 

 
Variable name Meaning (unit) 
ActualFAR Building floor area / lot area (ratio) 
Con.greenery Adjacent to public green space, if true, 1, otherwise 0 
Frontage The frontage of a lot (m) 

Goodpavement  The pavement  of the road in front of a lot being good, if true, 1, 
otherwise 0 

Landscape Within designated landscape areas, if true, 1, otherwise 0 
Mix-use3 Intensive mixed land use, if true, 1, otherwise, 0 
Parkinglot The count of parking lots (number) 
Residual.b.age Residual building age (year) 
S The size of a lot (m2) 
Sunshine Sunshine duration (hour) 
Tree1 Greenery in the district being good, if true, 1, otherwise 0 
T.Shinjuku Time distance to central city area (minute)  
T.station Time distance to the nearest station (minute)  
W.road The width of the road in front of a lot (m) 
 
 
 


