CSIS Discussion Paper #36

Damage and seismic intensity of the 1996 Lijiang

Earthquake, China: A GIS analysis

Honglin HE^{*}, Takashi OGUCHI^{*} Ruiqi ZHOU^{**}, Jianguo ZHANG^{**} and Sen QIAO^{**}

^{*} Center for Spatial Information Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0086, Japan

^{**} Yunnan Seismological Bureau, Kunming, Yunnan 650041, China

Abstract The damage caused by the 1996 Lijiang Earthquake in China is analyzed using Geographic Information Systems (GIS). Data for Lijiang District were collected from the local governmental offices and were converted into GIS data layers. Factors affecting the damage ratio of houses, seismic intensity and the occurrence of casualties are examined based on GIS mapping and analyses.

1. Introduction

Four recent large earthquakes in Asia, Hanshin-Awaji in Japan in 1995, Lijiang in China in 1996, Jiji in Taiwan in 1999 and Western India in 2001 induced catastrophic disasters. Evaluation of such earthquake disasters facilitates damage mitigation and better planning for the future. Studies concerning the Hanshin-Awaji earthquake (e.g. Usui and Konagaya, 1995; Iwai et al., 1996; Hatayama et al., 1999) have shown that GIS (Geographic Information Systems) can provide useful tools for evaluating earthquake disasters.

In recent years, many Chinese researchers have been interested in computer applications to earthquake disasters. For example, China Seismological Bureau (1998) developed software "Earthquake Disaster Loss Estimation System (EDLES)" with a graphic user interface for the Windows operation system. GIS applications to earthquakes in China, however, have been limited to the mapping of seismic zones (e.g., Zhou, 2001). It is necessary to analyze earthquake damage in China using GIS, as have been performed in Japan after the Hanshin-Awaji earthquake, although governmental offices often restrict the access to Chinese data concerning disasters.

On the 3rd of February, 1996, a severe earthquake with a magnitude of 7.0 in the Richter scale shocked Lijiang and surrounding areas of the Yunnan Province in China (Figure 1). It affected more than one million people in nine counties of four administration districts (Lijiang, Dali, Diqing and Nujiang). 309 people were killed and 17,057 people were wounded. More than one million civil houses were damaged and many public infrastructures and facilities were broken. The economical loss of the earthquake amounts to 2,583 billion RMB or ca. 320 million US dollars (Yunnan Seismological Bureau and Western Yunnan Earthquake Prediction Study Area, 1998). We collected available information regarding the damage of the Lijiang earthquake, and converted them into GIS data layers to perform analyses.

Figure 1 Map of Lijiang County

2. Data

2.1 Building damage ratios and earthquake damage index

About 10 hours after the Lijiang earthquake, the field investigation team of the Yunnan Seismological Bureau arrived in Lijiang and started collecting information about the damage. Although some general reports were published based on the collected data (Huangfu, 1997; Han and Zhou, 1997), many of source data have been classified by the local government. We were, however, allowed to use the data of building damage ratios for 111 villages and death toll in Lijiang District.

Han and Zhou (1997) proposed the classification of buildings and damage grades applicable to the Lijiang earthquake. In China, civil buildings have been divided into three types: I, II and III (Xie, 1957; Table 1). Han and Zhou (1997) note that buildings affected by the Lijian earthquake can be correlated with the types II and III, and that they can be further divided into eight sub-types shown in Table 2.

Туре	Description							
Ι	Simple and crude sheds, made of sun-dried mud brick and/or							
	rubble, covered with straw and mud							
II	1) Low-cost houses, made of rammed earth, sun-dried mud brick							
	and/or rubble; 2) old wood-framed houses							
	1) Firm wood-framed houses such as temples; 2) modern houses							
III	made of brick and rubble; 3) houses made of brick and concrete; 4)							
	houses framed with concrete							

Table 1 Classification of civil buildings in China (Xie, 1957)

Туре	Description
II-1	Houses made of rammed earth including some crushed stones,
	covered with tiles
	Houses made of sun-dried mud brick with wood frames; walls
II-2	are made of sun-dried brick or rammed earth; struts consist of
	irregular wood frames; covered with tiles
	Houses made of sun-dried mud brick with brick pillars; walls
II-3	are made of sun-dried brick; struts consist of brick pillars;
	frames are made of wood, covered with tiles
	Single-story houses made of brick; struts are made of
II-4	lower-level concrete; frames are made of wood; covered with
	tiles
	National houses made of wood and earth; wood frames bear the
III-1	load; walls are made of earth and covered with tiles; usually
	two stories and about 7 m in height; known as the Naxi national
	folklore houses
	National houses made of wood and brick; frames are similar to
III-2	those of III-1; walls are made of brick
	Houses made of brick and concrete; two or three stories; built
III-3	after the 1980s; struts consist of steel and concrete pillars to
	resist earthquakes with the intensity VIII
	Houses framed by steel and concrete, including buildings taller
III-4	than four stories; usually designed to resist earthquakes with
	the intensity VIII or higher.

Table 2 Classification of civil buildings in the Lijiang area (Han and Zhou, 1997)

Xie (1957) classified building damage due to earthquakes into four grades. Han and Zhou (1997) modified this classification and applied five damage grades to the Lijiang earthquake (Table 3).

Grade	Description
1: collapsed	Collapsed or seriously damaged; removal and reconstruction
	are needed
2: terribly damaged	Serious damage to principal parts or partly collapsed;
	intensive repair and partial removal are needed
3: moderately	Obvious damage to non-principal parts and/or some damage
damaged	to principal parts; can be used after repair or reinforcement
4: slightly damaged	Damage to non-principal parts and/or slight damage to
	principal parts; can be used without repair
5: little damaged	No damage or very slight damage to non-principal parts

Table 3 Classification of building damage due to the Lijiang earthquake (Han and Zhou, 1988)

Investigation Team of Earthquake Influence Field of Tonghai Earthquake (1977) introduced the damage index (DI) to quantify the degree of earthquake disasters. The estimation of DI is threefold: 1) select a representative type of civil houses; 2) estimate the ratio of damage grades for the representative houses; and 3) calculate DI using the following formula:

$$DI = \sum_{j} p_{j} \cdot AR_{j} \qquad (1)$$

where j is the damage grade (1,2,...n), p_j is the standard damage parameter for the j-th damage grade and AR_j is the areal ratio of buildings belonging to the j-th damage grade. In the area affected by the Lijiang earthquake, Naxi national houses of the III-1 type occur widely and are suitable for the calculation of *DI*. Investigation Team of Earthquake Influence Field of Tonghai Earthquake (1977) determined the values of p_j for such houses made of wood and earth. We aggregated some of the values to derive p_j corresponding to the five damage grades of Han and Zhou (1997) (Table 4).

Table 4 Standard earthquake disaster parameter applied to the Lijiang earthquake

Damage grade	5	4	3	2	1
Standard damage parameter	0	0.2	0.4	0.7	1.0

Table 5 shows the areal ratios of houses with different damage grades for the 111 villages, as well as the *DI* calculated using Eq. (1).

No	Village	AR_{1}	AR_{2}	AR ₃	AR_{4}	AR_{5}	DI	Est. Intensity
1	Mingyin	0.05	0.42	0.38	0.15	0	0.52	IX
2	Daju (Yingpan)	0.04	0.83	0.12	0	0	0.68	IX
3	Toutai	0	0.06	0.88	0.03	0.03	0.4	VIII
4	Guoluo	0.06	0.56	0.39	0	0	0.61	IX
5	Yuhu	0.06	0.65	0.29	0	0	0.63	IX
6	Yulong	0.09	0.64	0.27	0	0	0.65	IX
7	Wenhuazhongcun	0.19	0.43	0.26	0.12	0	0.62	IX
8	Longshan	0.13	0.42	0.33	0.11	0	0.58	IX
9	Xiacun	0.15	0.5	0.33	0.02	0	0.57	IX
10	Wenhua	0.31	0.38	0.31	0	0	0.65	IX
11	Shipingxiacun	0.25	0.32	0.42	0	0	0.64	IX
12	Jinshan	0.12	0.34	0.51	0.03	0	0.57	IX
13	Dadong	0.3	0.46	0.17	0.07	0	0.7	IX
14	Liangmei	0.36	0.26	0.32	0.06	0	0.68	IX
15	Wutai	0.11	0.81	0.08	0	0	0.69	IX
16	Shanglidu	0	0.67	0.16	0.13	0.15	0.59	IX
17	Kazi	0.04	0.11	0.18	0.41	0.26	0.27	VII
18	Mingyin (Xicaiban)	0.33	0.46	0.01	0.03	0.48	0.46	VIII
19	Boliluo	0.03	0.07	0.47	0.37	0.06	0.34	VIII
20	Buguzi	0	0.45	0.36	0.05	0.09	0.47	VIII
21	Xuehuacun	0	0.42	0.32	0.26	0	0.47	VIII
22	Laozhichang	0.07	0.81	0.12	0	0	0.67	IX
23	Qingsong	0.12	0.41	0.47	0	0	0.5	VIII
24	Longshantou	0	0.9	0.05	0.05	0	0.65	IX
25	Yiwanshui	0.13	0.8	0.07	0	0	0.71	X
26	Xinhuoshan	0.31	0.42	0.16	0.11	0	0.69	IX
27	Jiuzihai	0.41	0.53	0.06	0	0	0.78	Х
28	Xiangyang	0	0.7	0.3	0	0	0.62	IX
29	Gantangzi	0.26	0.59	0.15	0	0	0.48	VIII
30	Lariguang	0.32	0.57	0.07	0	0	0.75	X
31	Wenming	0	0.61	0.38	0	0	0.58	IX
32	Xiachangshui	0	0.01	0.79	0.2	0	0.36	VIII
33	Wenbi	0.04	0.25	0.61	0.1	0	0.49	VIII
34	Xiashuhe	0	0.45	0.22	0	0	0.47	VIII
35	Zhonghe	0.05	0.81	0.12	0	0	0.66	IX
36	Xilinwa	0.06	0.87	0.03	0.05	0	0.69	IX
37	Dalai	0.06	0.4	0.46	0.08	0	0.54	IX
38	Qiliang	0.22	0.45	0.3	0.02	0	0.65	IX
39	Zegu	0.12	0.73	0.14	0.01	0	0.69	IX
40	Shangcunren	0.83	0.16	0.01	0	0	0.94	X
41	Wenzhi	0.93	0.07	0	0	0	0.93	X
42	Tuanshang	0	0.15	0.85	0	0	0.44	VIII
43	Luocheng	0	0.23	0.61	0.12	0	0.47	VIII
44	Qingxi	0.06	0.29	0.35	0.29	0	0.45	VIII
45	Meiluo	0	0.2	0.76	0.44	0	0.52	IX

Table 5 Areal ratio of III-1-type houses with different damage grades, $(AR_1 \text{ to } AR_5)$, damage index *(DI)* and estimated seismic intensity for 111 villages

46 Zhonghai	0.55	0.45	0	0	0	0.87	Х
47 Qihe	0	0.43	0.32	0.25	0	0.48	VIII
48 Shudi	0	0.42	0.33	0.25	0	0.47	VIII
49 Junliang	0.06	0.27	0.62	0.04	0	0.38	VIII
50 Yachakou	0.03	0.03	0.58	0.22	0.14	0.33	VIII
51 Xinmin	0.03	0.06	0.89	0.02	0	0.43	VIII
52 Geben	0.08	0.19	0.27	0.32	0.14	0.39	VIII
53 Shengsepo	0	0.31	0.38	0.15	0.16	0.4	VIII
54 Yongan	0	0.24	0.45	0.3	0	0.41	VIII
55 Xinminzhongcun	0	0.16	0.24	0.49	0.11	0.31	VIII
56 Sangu	0	0.23	0.32	0.29	0.16	0.35	VIII
57 Zengming	0	0.2	0.35	0.3	0.15	0.34	VIII
58 Jiyu	0.03	0.05	0.44	0.43	0.05	0.33	VIII
59 Lashi	0.08	0.1	0.17	0.36	0.29	0.3	VII
60 Haidong	0.08	0.28	0.53	0.05	0.06	0.59	IX
61 Enzuo	0	0.01	0.44	0.44	0.11	0.37	VIII
62 Lijiang	0.01	0.01	0.31	0.69	0.01	0.26	VII
63 Changsong	0	0.03	0.04	0.5	0.43	0.26	VII
64 Jiangbian	0.2	0.14	0.48	0.15	0.03	0.59	IX
65 Haba	0.02	0.06	0.43	0.45	0.28	0.33	VIII
66 Baidi	0.01	0.3	0.2	0.39	0.09	0.39	VIII
67 Meizi	0.45	0.36	0.13	0.02	0.04	0.7	IX
68 Xintun	0	0.21	0.38	0.36	0.05	0.37	VIII
69 Jinsuo	0	0.17	0.18	0.65	0	0.32	VIII
70 Zhongjicun	0	0.03	0.07	0.89	0	0.23	VII
71 Tianxin	0.01	0	0.13	0.86	0	0.23	VII
72 Qiaotou	0	0	0.06	0.9	0.04	0.2	VII
73 Gaoshicun	0.07	0	0.08	0.5	0.35	0.2	VII
74 Guifeng (Sanyuan)	0.05	0.39	0.56	0	0	0.55	IX
75 Shounan	0.01	0.15	0.65	0.19	0	0.41	VIII
76 Baojicun	0.01	0.04	0.7	0.25	0	0.37	VIII
77 Guangming	0	0.08	0.24	0.27	0.41	0.21	VII
78 Shimenkan	0	0.09	0.19	0.2	0.52	0.18	VII
79 Xichuan	0	0.13	0.25	0.21	0.41	0.23	VII
80 Changping	0	0.1	0.3	0.24	0.36	0.24	VII
81 Guantian	0	0.12	0.25	0.29	0.34	0.24	VII
82 Jiuhe	0	0.06	0.27	0.3	0.37	0.21	VII
83 Xinren	0	0.08	0.22	0.39	0.31	0.22	VII
84 Sanba	0	0.09	0.25	0.35	0.31	0.23	VII
85 Yitou	0	0.12	0.24	0.28	0.37	0.24	VII
86 Hongmai	0	0	0.4	0.47	0.13	0.25	VII
87 Daan	0	0.09	0.36	0.18	0.36	0.24	VII
88 Songping	0	0.13	0.26	0.23	0.38	0.24	VII
89 Puzi	0	0	0.06	0.47	0.47	0.12	VII
90 LongpanXinlian	0	0.1	0.4	0.32	0.18	0.29	VII
91 Tuguancun	0	0	0.22	0.33	0.45	0.16	VII
92 Runan	0.04	0.08	0.36	0.4	0.12	0.33	VIII
<u>93 J1Z1</u>	0	0.11	0.28	0.39	0.22	0.27	VII
94 Dachang	0	0	0.17	0.23	0.6	0.11	VII
95 Qingkou	0	0	0.08	0.12	0.8	0.05	VI

Table 5 (continued)

96	Shigu	0	0.02	0.03	0.05	0.9	0.03	VI
97	Dongling	0	0	0.2	0.05	0.75	0.09	VI
98	Diannan	0	0.01	0.07	0.37	0.55	0.1	VI
99	Xiaozhongdian	0	0	0	0.68	0.32	0.13	VII
100	Songgui	0	0	0.11	0.21	0.68	0.08	VI
101	Meiyuan	0	0	0.16	0.27	0.57	0.11	VII
102	Xiyi	0	0	0.09	0.3	0.61	0.1	VI
103	Duomei	0	0	0.12	0.18	0.7	0.08	VI
104	Lanping	0	0	0.1	0.2	0.7	0.08	VI
105	Hongqiao	0	0	0.04	0.33	0.63	0.09	VI
106	Jiulong	0	0	0	0.75	0.25	0.15	VII
107	Annan	0	0	0	0.38	0.62	0.08	VI
108	Paomaping	0	0	0	0.2	0.8	0.04	VI
109	Yongning	0	0	0.15	0.82	0.03	0.22	VII
110	Jinguan	0	0	0.1	0.29	0.61	0.09	VI
111	Junhe	0	0	0.01	0.51	0.48	0.1	VI

Table 5 (continued)

2.2 Seismic intensity

Xie (1957) proposed 12 grades of seismic intensity applicable to China. China Seismological Bureau (1977) revised the system to include the relation between the seismic intensity and *DI*, originally introduced by Investigation Team of Earthquake Influence Field of Tonghai Earthquake (1977). Table 6 shows the grades of seismic intensity and relevant phenomena.

		Damage of general wo	oden hous-		Seismic components	
Inten-		es (equivalent to the l	III-1 type)	Other		
sity	Perception of people		Damage	phenomena	Horizontal	Horizontal
grade		Change or damage	index		acceleration	velocity
_			(DI)		(cm/s^2)	(cm/s)
Ι	Not perceptible		_			
II	Less than 10% of unmoving		-			
_	people in rooms perceive					
III	50-70% of unmoving people	Doors and windows	-	Hanging things lightly		
_	in rooms perceive	lightly tremble		sway		
IV	50-70% of people in rooms	Doors and windows	-	Hanging things obviously		
	and 10-50% of people	tremble		sway		
	outside perceive; 10-50% of					
	sleeping people are shaken					
	up					

Table 6 Seismic intensity grades applied to China (Xie, 1957 and China Seismological Bureau, 1977)

	Almost all people in rooms	Doors, windows,	-	Unstable things fall down	22-44	2-4
	and 50-70% of people	roofs and roof trusses				
	outside perceive; 50-70% of	tremble; dust fell and				
	sleeping people are shaken	some mortar gets				
	up	fissured				
	Many people get frightened	Little or no damage to	0-0.1	Fissures emerge on banks	45-89	5-9
	and some people escape out	non-frame parts;		or weak soil; sand and		
	of rooms	some tiles fell; walls		water spout from saturated		
		get fissured lightly		sand layers; chimneys get		
_				fissured		
	70-90% people escape out of	Light to moderate	0.11-0.30	Banks partly collapse;	90-177	10-18
	rooms	damage to		sand and water spout from		
		non-principal parts,		saturated sand layers;		
		or slight damage to		many fissures emerge on		
		principal parts		weak soil; 70-90% of		
				chimneys get damaged		
	Difficult to walk because of	Obvious damage to	0.31-0.50	Some fissures emerge on	178-353	19-35
	land swaying and jolting	non-principal parts,		dry and hard soil; 70-90%		
		or some damage to		of chimneys get terribly		
		principal parts		damaged		
	Impossible to keep seated;	Serious damage to	0.51-0.70	Fissures emerge on hard	354-707	36-71
	moving people may fall	principal parts, or		soil and bedrock;		
	down	partly collapse		widespread slope failures		
	People riding on bicycles	Collapse or serious	0.71-0.90	Mountain landslides and	708-1414	72-141
	may fall down	damage to almost all		an earthquake fault		
		buildings		emerge; arch bridges on		
				bedrock get damaged;		
				70-90% of chimneys are		
				destroyed		
		All destroyed	0.91-1.00	Widespread mountain		
				landslides; an extended		
				earthquake fault emerges;		
				arch bridges on bedrock		
				destroyed		
			about 1.0	Severe landscape changes		

Table 6 (continued)

The seismic intensity derived from DI for the 111 villages is shown in Table 5. Such intensity estimation requires detailed data of building damage ratios. Therefore, seismic intensity has often been estimated based on rapid field observations of the damage. In this way Han and Zhou (1997) obtained the intensity of the Lijiang earthquake in 36 towns (Table 7) to draw contours of the intensity (Figure 2).

No	County	Town	Intensity	No	County	Town	Intensity
1	Lijiang	Huangshan	IX	19	Ninglang	Zhanhe	VI
2	Lijiang	Baisha	IX	20	Heqing	Songgui	VI
3	Lijiang	Dadong	IX	21	Ninglang	Paomaping	VI
4	Lijiang	Daju	IX	22	Heqing	Duomei	VI
5	Lijiang	Jinshan	IX	23	Zhongdian	Hutiaoxia	VII
6	Lijiang	Lijiang	IX	24	Zhongdian	Qiaotou	VII
7	Lijiang	Baoshan	VIII	25	Ninglang	Ningli	VII
8	Heqing	Xintun	VIII	26	Ninglang	Cuiyu	VII
9	Lijiang	Longpan	VIII	27	Ninglang	Hongqiao	VI
10	Zhongdian	Sanba	VII	28	Ninglang	Paomaping	VI
11	Lijiang	Longshan	VIII	29	Ninglang	Yongning	VII
12	Lijiang	Fengke	VII	30	Yongsheng	Daan	VII
13	Heqing	Jindun	VII	31	Yongsheng	Guanghua	VII
14	Ninglang	Xichuan	VII	32	Yongsheng	Songping	VII
15	Lijiang	Shigu	VII	33	Yongsheng	Jinguan	VI
16	Lijiang	Jiuhe	VII	34	Lanping	Lanping	VI
17	Zhongdian	Xiaozhongdia	VI	35	Jianchuan	Dongling	VII
18	Ninglang	Xinyingpan	VI	36	Jianchuan	Diannan	VII

Table 7 Seismic intensity based on rapid field observations (Han and Zhou, 1997)

Figure 2 Contours of seismic intensity based on rapid field observations (Han and Zhou, 1997)

2.3 Death toll

Among the 309 people killed by the Lijiang earthquake, 294 died in Lijiang County, 5 in Zhongdian County, 8 in Heqing County, 1 in Ninglang County and 1 in Jianchuan County. We obtained death toll data for Lijiang County from the seismological office of the county (Table 8). Among 294 victims, 241 were directly smashed to death below the collapsed buildings, 25 died because of illness, 2 died because of fire, 3 died because of shock, 6 died because of suffocation and 16 died for other reasons. The age distribution of the killed persons (Table 9) shows that the youngest and oldest generations were major victims.

No	Town	Ad Village	Toll	No	Town	Ad Village	Toll	No	Town	Ad Village	Toll
1	Lijiang	Dayan	81	17	Baisha	Yuhu	2	32	Qihe	Qianshan	2
2	Lijiang	Wenzhi	24	18	Baisha	Xinshang	1	33	Qihe	Qihe	1
3	Lijiang	Yihe	5	19	Baisha	Kaiwen	15	34	Qihe	Wufeng	1
4	Lijiang	Yizheng	21	20	Baisha	Baisha	2	35	Qihe	Longtan	1
5	Lijiang	Yishang	3	21	Huangshan	Zhongji	9	36	Qihe	Xinming	1
6	Lijiang	Xiangyun	5	22	Huangshan	Baihua	9	37	Shigu	Shigu	2
7	Lijiang	Wutai	5	23	Huangshan	Wenhua	1	38	Daju	Toutai	5
8	Lijiang	Bahe	4	24	Huangshan	Huangshan	9	39	Daju	Baimai	1
9	Jinshan	Jinshan	12	25	Huangshan	Nanxi	1	40	Daju	Peiliang	1
10	Jinshan	Dongyuan	13	26	Huangshan	Changshui	2	41	Longshan	Longxing	1
11	Jinshan	Xintuan	19	27	Lashi	Lashi	1	42	Longshan	Guangle	1
12	Jinshan	Yangxi	2	28	Lashi	Junliang	3	43	Longshan	Longshan	2
13	Jinshan	Guifeng	3	29	Lashi	Nanrao	1	44	Dadong	Dadong	4
14	Jinshan	Yanle	1	30	Lashi	Meiquan	1	45	Dadong	Baishui	3
15	Jinshan	Liangmei	5	31	Qihe	Gonghe	2	46	Dadong	Jiazi	5
16	Jinshan	Lamagu	1		•						

Table 8 Death toll in Lijiang County

Table 9 Death toll according to age

Age	<10	10-19	20-29	30-39	40-49	50-59	60-69	>70	unknown
Number	58	23	18	19	16	28	42	61	29

3 Mapping and analysis of earthquake damage using GIS

The tabulated data concerning house damage and death toll were converted into GIS data layers with geographic coordinates. Some paper maps were also digitized to provide the electronic data files of basic map components such as administrative boundaries, locations of towns and villages, transportation networks and drainage networks. The maps used are "Administrative Division of Lijiang County" (Comprehensive Scientific Investigation Team of Qinghai-Xizang Plateau and Institute of Geography, Chinese Academy of Science, 1990), "Administrative Division of Lijiang Administrative Division of Lijiang and analyses of the data were performed with ArcView, a GIS software package from ESRI, USA.

3.1 Distribution of seismic intensity

As noted above, Han and Zhou (1997) manually produced the contours of seismic intensity based on field observations in 36 towns (Figure 2). Using the interpolation capability of ArcView, we also constructed contours from the data collected by Han and Zhou (1997). The resultant map (Figure 3) indicates that the distribution of seismic intensity is more complex than the nearly elliptical pattern suggested by Han and Zhou (1997)

Figure 3 GIS-produced seismic intensity map based on data from rapid field observations

Seismic intensity was also derived from the damage index values (Table 5). Figure 4 shows the map of seismic intensity based on the data in Table 5. The damage index values depend on the detailed house damage ratios, and the number of data in Table 5 is much larger than that in Table 7. Accordingly, Figure 4 can be more trustable than Figures 2 and 3. Figure 4 indicates that the actual distribution of seismic intensity is further complex. For example, Intensity X occurs in three separated areas: around Lijiang (1 in Figure 4), near Dadong (2) and near Daju (3). The above (1) and (3) correspond to basins with thick alluvium as well as the inferred epicenter along the earthquake fault (Figure 1), indicating that these two factors account for the high intensity. The thickness of the alluvium in Lijiang Basin attains 1,200 m (PLA 00939 Troops, 1979). Intensity IX around Qihe (4 in Figure 4) also occurs in and around a basin with alluvium (Figure 1).

In contrast, Intensity X near Dadong (2) occurs in an area without thick alluvium. This area is characterized by the tectonic intersection of the Lijiang-Jianchuan fault system (F2 in Figure 1) and the Daju-Dadong fault system (F3), suggesting that such complex tectonic structure was responsible for the enhanced ground movement. The extended distribution of Intensity X to the NNE of Lijiang (1) appears along the eastern side of the eastward dipping earthquake fault. This observation indicates that more serious damage took place on the hanging wall of the fault, as have been often observed elsewhere. The comparison between Figures 1 and 4 shows that Intensity IX and X mostly occur within a triangular tectonic block bordered by three major fault systems: Longpan-Qiaohou (F1), Lijiang-Jianchuan (F2) and Daju-Dadong (F3). The prolongation of the earthquake fault (F4) is also confined within the tectonic block. Consequently, the existing structure of fault systems has played an important role in determining the spatial distribution of the earthquake fault, seismic intensity and building damage.

Figure 4 Distribution of seismic intensity based on the damage index

3.2 Distribution of building damage ratios

The damage index (*DI*) and seismic intensity estimated from *DI* can be regarded as generalized parameters of earthquake disasters. Mapping of the original building damage ratios permits more precise investigation. Figure 5 is GIS-produced maps showing the areal ratio of houses belonging to each damage grade. Collapsed houses tend to occur abundantly around Lijiang, Baisha and Dadong (1 and 2 in Figure 4). Very dense distribution occurs along a NNE-SSW line through Lijiang. The line corresponds to the Lijiand-Jianchuan fault system (F2 in Figure 1) indicating that the ground motion was accelerated along the fault. Terribly damaged houses occur distinctly near Daju and Qihe (3 and 4 in Figure 4) as well as the area to the NNE of Lijiang. These observations and the distribution of seismic intensity (Figure 4) show that the same intensity grade may result from different types of house damage, depending on physical settings such as fault distribution. The ratio of moderately damaged houses is high in the area between Lijiand and Heqing. Despite the proximity to the epicenter, the area experienced relatively weak damage because of the inter-basin condition without thick alluvium.

Figure 5 Distribution of areal ratio of buildings belonging to each damage grade

3.3 Distribution of persons killed

Most people killed in Lijiang County due to the earthquake occurred around Lijiang (Figure 6) where many buildings were collapsed (Figure 5). In contrast, areas with less collapsed houses but abundant terribly damaged houses show much smaller death toll, reflecting the fact that most victims were smashed below the collapsed buildings.

Figure 7 is a contour map showing the ratio of deaths to total population. The area around Lijiang has high death ratios as well as large death numbers. Although the area close to Dadong (2 in Figure 4) also has the high ratio of collapse, the death ratio and number are much lower than those around Lijiang. One possible explanation for this difference is the differing density of houses. The death distribution in Lijiang is concentrated in the town center (Figure 8) where many wooden houses stand closely together along narrow streets. Under such a situation, quick escape to safe places may have been more difficult than rural areas. Another possible explanation is that the collapse of houses on alluvium around Lijiang may have proceeded more dangerously or immediately than that of houses on consolidated rocks near Dadong. More than 69% of deaths around Lijiang occurred within Lijiang Basin with thick alluvium (Figure 8).

Figure 6 Distribution of persons killed in Lijiang County

Figure 7 Distribution of death toll ratio

Figure 8 Death distributions Lijiang Basin (left) and Lijiang town (right)

Conclusions

This paper has applied GIS to the evaluation of the damage caused by the Lijiang earthquake in China. The mapping and interpolation functions of GIS have facilitated the analyses of earthquake damage and seismic intensity in more detail than previous studies. Seismic intensity and the damage ratio of houses do not decrease simply with an increasing distance from the epicenter, but shows complex distribution patterns. Thick alluvium in basins and the structure of fault systems mainly account for this complexity. The density of houses may also have affected the distribution of people killed by the earthquake.

Automated mapping and quantitative data analyses using GIS have been successfully applied to the investigation and mitigation of natural disasters in various countries. In recent years, earthquake disasters repeatedly occurred in China especially in Yunnan Province. It is hoped that modern GIS facilities and spatial databases devoted to Chinese earthquake disasters will be provided in the near future.

Acknowledgement

Honglin He acknowledges the financial support from the Postdoctoral Fellowship Program of the Japan Society for the Promotion of Science (No. P00094). Thanks are due to G. Huangfu, X. An and other people in China Seismological Bureau for their kind help during our investigation in China. We also thank A. He, Department of Agriculture, University of Tokyo for supplying some maps of Lijiang County.

References

- China Seismological Breau, 1977. *China Zonation Map of Seismic Intensity*, with 1:3,000,000 map. (in Chinese)
- China Seismological Bureau, 1998. *Technique Guide Book and Outline of Field Work in An Earthquake Disaster*. Seismological Press, Beijing. (in Chinese)
- Comprehensive Scientific Investigation Team of Qinghai-Xizang Plateau and Institute of Geography, Chinese Academy of Science, 1990. *The Serial Agriculture Maps of Naxi's Autonomic County, Lijiang, Yunnan Province*. Science Press, Beijing. (in Chinese)
- Han, X. and Zhou, R., 1997. Intensity distribution of the M7.0 Lijiang earthquake. *Journal of Seismological Research*, 20-1, 33-46. (in Chinese)

- Hatayama, M., Matsuno, F., Kakumoto, S., and Kameda, H., 1999. Development of spatial temporal information system DiMSIS. *Theory and Application of GIS*, 7-2, 25-33. (in Japanese)
- Huangfu, G., 1997. The M7.0 Lijiang earthquake in Yunnan on February 3, 1996. *Journal of Seismological Research*, 20-1, 1-8 (in Chinese)
- Investigation Team of Earthquake Influence Field of Tonghai Earthquake, 1977. Intensity distribution and site effect of Tonghai Earthquake. *Bulletin of Seismic Engineering Research*, 3, 1-14 (in Chinese).
- Iwai, S., Kameda, H., Usui, T., and Morikawa, H., 1996. GIS application to data management for analysis of urban facility damage in Nishinomiya City by the 1995 Hyokoken-Nambu earthquake. *Theory and Application of GIS*, 4-2, 63-73. (in Japanese)
- PLA 00939 Troops, 1979. *Reconnaissance Survey Report of Hydrogeology, Lijiang*, with 1:200,000 maps. (in Chinese)
- Toponym Office of Lijiang Administrative Region, 1999. *Map of Administrative Division of Lijiang Administrative District*. Chengdu Cartographic Publishing House, Chengdu, China (in Chinese)
- Usui, T. and Konagaya, K., 1995. The distribution pattern of debris in the Hansin-Awaji earthquake: A GIS analysis. *Geographical Review of Japan*, 68A-9, 621-633. (in Japanese)
- Xie, Y., 1957. A new scale of seismic intensity adapted to the conditions in Chinese territories. *Acta Geophysica Sinica*, 6-1, 35-47. (in Chinese)
- Yunnan Institute of Geography, 1997. *Map of the Yunnan Province*. Chengdu Cartographic Publishing House, Chengdu. (in Chinese)
- Yunnan Seismological Bureau and Western Yunnan Earthquake Prediction Study Area, 1998. Lijiang Earthquake of 1996. Seismological Press, Beijing, China, 47-53. (in Chinese)
- Zhou, Q., 2001. *Application of Artificial Intelligence to Delineation of Potential Sources*. PhD dissertation, Institute of Geology, China Seismological Bureau. (in Chinese)