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A Computational Procedure for Making Seamless Map Sheets

Abstract

Map sheets are often used as basic spatial units for managing spatial data produced

from paper maps. This often results in incompatibility between adjacent map sheets -

spatial objects do not cross the boundaries smoothly and even the boundaries themselves

do not match their neighbors exactly. To solve the problem this paper proposes a

computational procedure for making seamless map sheets. Line objects digitized

separately in different map sheets are considered, which are frequently used to represent

road networks, gas pipelines, and boundaries of polygon objects. The procedure consists

of three steps: 1) extraction of end nodes, 2) detection of matching nodes, and 3)

transformation of the map sheet. Each step goes interactively so that unexpected errors

can be avoided by human observation. To test the validity of the procedure, map sheets

are combined containing the road network data of Tokyo 23-ku area, Japan.
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1 Introduction

Paper maps are usually compiled as separate map sheets. In general, rectangular

lattices are used as basic units of map sheets; in Japan, for example, 1/25,000

topographic maps are provided as 1.5 * 2.5 km rectangular maps. Landsat TM images

use 180 * 180 km square lattices.

This tradition still exists in spatial database - the digital form of paper maps. Map

sheets are often used as basic spatial units for managing spatial data produced from paper

maps. Maps are digitized separately and compiled as a set of map sheets in GIS.

However, it is obviously desirable for GIS users to use sheetless and seamless spatial

data because they wish to study regions larger than one map sheet. This complaint applies

to not only local analysis of geographical phenomena such as urban landuse and traffic

patterns but also sciences on a global scale, say, earth environment science and global

climatology.

Unfortunately, seamless spatial data cannot be easily obtained when paper maps are

separately digitized (Beard and Chrisman 1988). In theory, spatial data can be seamless if

individual map sheets are correctly digitized - if their reference to the earth's surface and

the location of spatial objects are correctly recorded in GIS. In practice, however, various

types of errors creep in map digitizing process such as displacement of control points,

distortion of papers, and human errors in manual operations. These errors cause

disagreement among map sheets: spatial objects do not cross the boundaries smoothly and

even the boundaries themselves do not match their neighbors exactly.

There are two approaches to obtain seamless data from separate map sheets: global

and local transformations. In either case one or several map sheets are transformed to

meet the adjacent ones. The basic difference between them lies in the scale of

transformation. Global methods transform the whole area of maps so that all the spatial

objects in map sheets may be affected. Local methods, on the other hand, work only

around map boundaries, preserving spatial objects near the center of map sheets.

In global methods, transformation is usually limited to the affine transformation to

avoid unnatural deformation of maps. Because of this global methods inevitably fail to

match all the end nodes with those in adjacent map sheets (Petersohn and Venderohe

1982; White and Griffin 1985). This implies that sliver polygons still remain after the

transformation if applied to polygon data. Local expansion and shrinkage of paper maps

cannot be retrieved appropriately.

Among local methods, the nearest matching method is most frequently used in GIS.

This method moves end nodes to their nearest ones so that lines are exactly connected

between map sheets. A fuzzy tolerance is used to avoid excessive displacement of nodes.

Since the nearest matching method is easy to understand and its implementation is
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straightforward, it is popular in geography and cartography; some systems can

automatically merge map sheets by the nearest matching method.

An extension of the nearest matching method is an algorithm called ZIPPER

proposed by Beard and Chrisman (1988). It uses two parameters to detect matching

nodes and to control the distortion area of maps. Consequently, it smoothly transforms

the original data to produce seamless maps containing no sliver polygons.

Unlike global methods, local methods cannot appropriately retrieve global distortion

of maps which can be caused by systematic errors in digitizing process and numerical

calculation. Therefore, as Beard and Chrisman (1988) noted, a combination of global and

local methods seems a desirable option because it can resolve both global and local errors.

Following the line of this hybrid approach, this paper proposes a new computational

procedure for making seamless map sheets. The procedure consists of three steps: 1)

extraction of end nodes, 2) detection of matching nodes, and 3) transformation of the map

sheet. Each step goes interactively so that unexpected errors can be avoided by human

observation.

In the following we consider line objects without attribute information including

identification numbers; this type of line data are frequently used to represent road

networks, gas pipelines and boundaries of polygon objects. We assume that spatial data

are managed in rectangular lattice, and that one of the map sheets is distorted so that it has

to be transformed to match its surrounding sheets (Figure 1). The procedure, however, is

also applicable to matching of two adjacent sheets. In the following sections, each step of

the procedure is described successively. In Section 5, a set of road network maps are

combined to test the validity of the procedure. The last section summarizes the

conclusions with discussion.

Figure 1 A distorted map sheet (thick lines) that has to be transformed to match its

surrounding sheets.

2 Extraction of end nodes

Suppose a rectangular lattice used for managing a set of map sheets containing

line objects. Let R0 be a rectangular region of the lattice whose corresponding map sheet

is distorted. We call the region R0 the standard unit. Our objective is to transform the

map sheet to make it compatible with its surrounding sheets. Note, however, that this

does not mean that the surrounding sheets are perfectly correct but that they are relatively

correct compared with the target sheet.

The region covered by the distorted map sheet is called the distorted unit denoted

by R'. The distorted unit may not be rectangular because map distortion does not always
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preserve the original shape of maps. The region that originally has to be covered by the

distorted map is called the true unit which is denoted by R. The true unit is not always

identical with R0 because errors usually exist in the surrounding sheets. Figure 2 shows

an example of the three units R0, R, and R’. The process of merging map sheets can be

interpreted as to find a one-to-one mapping from R' to R taking R0 into consideration.

Figure 2 An example of the standard unit R0 (gray-shaded area), true unit R (solid lines),

and distorted unit R’ (broken lines).

Boundaries of R0, R  and R ' are called the standard , true, and distorted

boundaries, and denoted by ∂R0, ∂R, and ∂R’, respectively. In general, the standard

boundary ∂R0 is explicitly recorded in spatial database or at least computable from known

coordinates. The true and distorted boundaries, on the other hand, are not recorded so

that we have to estimate them from the data.

Line objects are distributed in the distorted unit R'. The number of lines linked to a

node is called the order of the node. Nodes are classified by their order, and the set of

nodes of order i in R' is denoted by Ωi. The set Ω1 represents the set of end nodes. Let

#(Ωi) be the number of nodes in Ωi, and Ω be the set of all the nodes in R', that is,

  
Ωi

i
U .

The first step to merge map sheets is to extract end nodes, candidates for nodes to

be matched with those in adjacent map sheets. They are classified into two types:

boundary nodes and interior nodes. The former is a set of nodes that are expected to be

exactly on the distorted boundary ∂R’. They usually have their corresponding nodes in

the adjacent map sheets and consequently quite important in merging map sheets. The

latter is also a set of nodes that seem to match nodes in the adjacent sheets though located

inside ∂R’.

Extraction of boundary and interior nodes is a computational iterative process: we

first set the initial candidates and update them iteratively until a predetermined condition is

satisfied. The initial candidates are extracted from Ω1 as follows. Since boundary and

interior nodes are usually concentrated in the "neighborhood" of the standard boundary

∂R0, the ratio of #(Ω1) to #(Ω) is extremely high near ∂R0. Mathematically, the ratio is

represented by
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where B(x) is the inner buffer region of distance x from ∂R0. The value of x maximizing

Equation (1) is denoted by xmax, and the inner buffer region B(xmax) is considered to be
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the "neighborhood" of ∂R0. End nodes in B(xmax) and outside of R0 are the initial

candidates for boundary nodes, while those in B(2xmax) \ B(xmax) are candidates for

interior nodes.

Figure 3 Initial candidates for boundary (white circles) and interior nodes (double

circles). Gray-shaded area represents the inner buffer region B(xmax).

Initial candidates for boundary and interior nodes usually contain inappropriate

nodes, that is, nodes that do not have corresponding nodes in the adjacent map sheets. To

eliminate them we iteratively estimate the distorted boundary ∂R’ from candidate nodes

and update them by dropping the farthest one from the estimated boundary ∂ ˆ'R  until all

the candidates for boundary nodes are within the distance xmax/2 from ∂ ˆ'R . The distorted

boundary is estimated by fitting the line that minimizes the sum of the square distance to

the candidates for boundary nodes. Figure 4 illustrates an example of this process.

Figure 4 Update of candidates for boundary nodes. Broken lines represent the estimated

boundary ∂ ˆ'R . Black circles indicate boundary nodes rejected during the update process.

3 Detection of matching nodes

Having extracted end nodes in R’, we have to detect their corresponding nodes in

the adjacent map sheets. In theory, all of order 1 nodes in the adjacent sheets are

candidates for corresponding nodes. However, it is practically sufficient to examine only

the nodes in the "neighborhood" of ∂R0 which is given by the buffer operation.

Among the end nodes in R’ we first examine only the boundary nodes. We assign

them to the nearest nodes in the adjacent map sheets, and adopt node pairs that are the

nearest neighbors with each other (Figure 5a). To improve the accuracy of matching, we

then drop the p percent (say, five percent) of the pairs whose node-to-node distance is

relatively long.

We next investigate the interior nodes and the boundary nodes rejected in the

previous step together. One can also include the nodes rejected in the update process of

candidates for boundary nodes, if necessary. The procedure is quite similar; we assign

the nodes to the nearest nodes in the adjacent map sheets, and adopt node pairs that are

the nearest neighbors with each other (Figure 5b). We again drop the p percent of the

pairs whose node-to-node distance is relatively long. The node pairs detected in these two

steps are considered to be "matching" (see Sato 2001 for details).

Detection of matching nodes plays a key role in merging map sheets. Consequently,

it is desirable for GIS users to examine the result of detection visually and revise it if
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necessary. The system developed by Sato (2001) provides the function of visualizing

matching nodes and their displacement vectors.

Figure 5 Detection of matching nodes. Solid lines represent line objects in the distorted

map sheet while broken lines in its adjacent sheet. White and black circles indicate the

boundary and interior nodes, respectively. (a) Investigation of the boundary nodes. Node

pairs encircled by broken ellipses are the nearest neighbors with each other. (b)

Investigation of the interior nodes and the boundary nodes rejected at the previous step.

Using the matching nodes detected, we can estimate the true and distorted units R

and R’. Let Ni' be the ith node in the distorted map sheet detected in the above procedure

(i=1, ..., n; Nn+1'=N1'). We assume that the nodes are numbered counterclockwise with

respect to the gravity center of the standard unit R0 denoted by G. The node in the

adjacent sheets corresponding to Ni' is denoted by Ni. The polygons N1N2N3...Nn and

N1'N2'N3'...Nn' are good estimators of R and R’, respectively.

4 Transformation of the map sheet

Having detected matching nodes, we finally transform the distorted map sheet to

obtain seamless spatial data. Transformation of the map sheet proceeds by two steps: a

global transformation and a set of local transformations.

In general, local transformations are not desirable because they often yield unnatural

distortion at the boundary of regions where different transformations are applied, even if

the transformation functions are smoothly continuous across the regions. On the other

hand, seamless map sheets cannot be obtained only by the global transformation. We thus

adopt a hybrid approach of these two methods in order to obtain seamless map sheets

without unnatural local distortions.

In the global transformation, nodes in the distorted map sheet are moved by the

affine transformation that minimizes the sum of the square distance between matching

nodes. The affine transformation includes not only the similarity transformation but also

the mirroring and shearing transformations. If the mirroring and shearing transformations

are to be avoided, the similarity transformation should be chosen which permits only the

translation, rotation, and scaling of spatial objects. The transformation can also be limited

only to the translation and rotation to keep the map scale.

The global transformation is followed by a set of local transformations. The

distorted unit R’ is divided into a set of triangular regions each of which is given by G,

Ni', and Ni+1' (Figure 6, broken lines). Nodes are added to the line objects that cross the

boundaries of triangles. The local transformation function is determined for each
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triangular region - transformation from the triangle ∆GNi'Ni+1' into the trilateral

∆GNiNi+1 (Figure 6, solid lines). Note that the resulted regions may not be triangles but

may contain curved edges; it depends on the transformation functions.

Figure 6 Tessellations of R (solid lines) and R’ (broken lines).

Let us consider the transformation from ∆GNi'Ni+1' into ∆GNiNi+1. Set the origin

of the coordinate system at G . The locational vector of a point in ∆GNi'Ni+1' is

represented by two parameters s and t:
x x x' ' ' ,= + −( ){ } ≤ ≤( )+s t t s ti i1 0 11 , (2)

where xi’ is the locational vector of Ni'. Let Ti,i+1(x') be the transformation function at

x ', that is, the point at x ' in ∆GNi'Ni+1' is moved to Ti,i+1(x '). The displacement

function ∆Ti,i+1(x') is then given by
∆T Ti i i i, ,' ' '+ +( ) = ( ) −1 1x x x . (3)

We adopt the transformation whose displacement function is

∆ ∆ ∆T s t T t Ti i i i i i i i, , ,' ' '+ + + +( ) = ( ) ( ) + −( ) ( ){ }1 1 1 11x x xγ , (4)

where s and t are given by Equation (2). The function γ(s) is a monotonically increasing

function of s that satisfies

γ 0 0( ) = , (5)

and

γ 1 1( ) = . (6)

Substituting Equations (3) into (4), we obtain the transformation function
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The transformation given by Equation (7) keeps the topology of line objects in R’; the

gravity center G is not moved while the vertices Ni' and Ni+1' are exactly moved to Ni

and Ni+1, respectively; line segments parallel to Ni'Ni+1' are not curved after

transformation. To keep the topology of spatial objects is critical in GIS because it

represents the structure of spatial objects. The monotonicity of γ(s) assures that the

displacement of spatial objects increases monotonously with s; points near the gravity

center G move slightly while those around the edge Ni’Ni+1’ move greatly. Figure 7

shows an example of the transformation.

Figure 7 Transformation of ∆GN1'N2' (broken lines) into ∆GN1N2 (solid lines).

There are a wide variety of functions satisfying the conditions mentioned above. In

this paper we use the power function
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γ αs s( ) = . (8)

The parameter α determines the range of transformation; a small value of α indicates that

the transformation works globally; as the value of α increases the transformation becomes

local, that is, only the spatial objects near the boundaries are moved. The trilateral

∆GNiNi+1 becomes a triangle when α=1.

The parameter α is so determined as to maximize the correlation coefficient of the

bidimensional regression where the points in N1'N2'N3'...Nn' and N1N2N3...Nn are the

dependent and independent variables, respectively (for details of the bidimensional

regression, see Tobler 1994 and Nakaya 1997). The correlation coefficient ρ is given by
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The correlation coefficient ρ  represents how close the transformation from

N1'N2'N3'...Nn' to N1N2N3...Nn is to the similarity transformation. Consequently, a

large value of ρ is desirable because the similarity transformation does not yield

unnnatural distortion of spatial objects. Integral terms in Equations (9) and (10) are

practically calculated by numerical integration.

Local transformation functions are calculated for individual triangular regions, and

applied to all the nodes of line objects including those added in the triangulation of R’.

This, however, often changes straight lines running across triangles into polygonal lines

because the transformation function is different among the regions. We thus finally

remove the redundant nodes on the boundaries of triangles to restore straight lines. The

topology of line objects is examined at each step of node removal to preserve the original

topology. Figure 8 shows an example of the transformation process.

Figure 8 Transformation of line objects. (a) Original (distorted) lines and triangles, (b)

triangulation (nodes are added), (c) transformation, (d) removal of redundant nodes.

5 Empirical study

To test the validity of the procedure proposed above, we combine map sheets

containing the road network data of Tokyo 23-ku area, Japan. About 250 map sheets

cover the Tokyo 23-ku area, each of which is a rectangle of 1.5 * 2.5 km.

We have transformed three map sheets that do not match their surrounding sheets,
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but show only the result of one of the sheets S0 due to the limitation of space. Figures 9

and 10 shows the data in the original sheet and some mismatches between S0 and its

adjacent map sheet.

Figure 9 Original data of the map sheet. Solid and broken lines indicate the road network

in the S0 and its adjacent sheets, respectively.

Figure 10 Mismatches between S0 and its adjacent map sheet.

To transform S0 we first extracted its end nodes, candidates for nodes to be

matched with those in adjacent map sheets, using the method proposed in Section 2. The

distance xmax which determines the "neighborhood" of ∂R0 was set to 0.240m, which

yielded 110 initial candidates for boundary nodes and 26 interior nodes. The initial

candidates for boundary nodes were then updated by the iterative estimation of the

distorted boundary, and as a result, 83 boundary nodes were extracted. Figure 11 shows

the boundary and interior nodes in S0.

Figure 11 Boundary and interior nodes extracted in S0. White and black circles indicate

the boundary and interior nodes, respectively.

Though the distance xmax was considerably small, extraction of end nodes seemed

successful by visual observation. We thus accepted the results and proceeded to detect

their corresponding nodes in the adjacent map sheets. At the first step of detection, only

the boundary nodes in S0 were examined. Among 83 boundary nodes, 67 nodes were

assigned to their corresponding nodes in the adjacent sheets. We then dropped the five

percent of the pairs whose node-to-node distance is relatively long. At the second step,

we investigated the interior nodes and the boundary nodes rejected together, and found

corresponding nodes for 33 interior and boundary nodes among 42. We again dropped

the five percent of the pairs whose node-to-node distance is relatively long, and obtained

100 matching node pairs. Figure 12 shows several examples of the nodes that failed to

find their corresponding nodes.

Figure 12 Nodes that failed to find their corresponding nodes (black circles). Solid

and broken lines indicate the road network in the S0 and its adjacent sheets, respectively.

Using the matching nodes detected we finally transformed the map sheet S0 by

global and local transformations. Global transformation is so determined as to minimize
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the sum of the square distance between matching nodes. After the global transformation,

the map sheet S0 is divided into 100 triangular regions as shown in Figure 13 in each of

which a local transformation is applied.

Figure 13 Tessellations of the map sheet S0.

The parameter α in the function γ(s) which determines the range of transformation

is set to 0.280 that maximizes the correlation coefficient of the bidimensional regression

mentioned earlier. Since the value is relatively small, the transformation is performed

locally around the boundaries. Local transformations were followed by removal of

redundant nodes on the boundaries of triangles to restore straight lines. Figure 14 shows

several examples of the removal of redundant nodes, which effectively demonstrates the

usefulness of this operation. Figure 15 shows the final result of transformation in which

the road network is exactly compatible between adjacent map sheets.

Figure 14 Examples of the removal of redundant nodes. Road networks before

(broken lines) and after (solid lines) the removal.

Figure 15 Final production of the transformation.

6 Concluding discussion

In this paper we have proposed a computational procedure for making seamless

map sheets. The procedure consists of three steps: 1) extraction of end nodes, 2)

detection of matching nodes, and 3) transformation of the map sheet. It is applicable to

spatial data representing line objects managed in the rectangular lattice such as road

networks and gas pipelines. The procedure was empirically applied to the map sheets

containing the road network data of Tokyo 23-ku area, Japan, and successfully combined

the map sheets into seamless spatial data.

Advantages of our approach over existing methods are summarized as follows.

1) Our method uses both global and local transformations to merge map sheets.

Consequently, it works for maps distorted in either scales; unlike global

methods, it produces exactly seamless maps; unlike local methods, it keeps

unnatural deformation of maps to a minimum.

2) The rectangular boundaries of map sheets effectively work as a key information

to extract end nodes. They greatly contribute toward extracting correct nodes,

and consequently, improve the efficiency of the whole process.
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3) Our method does not use attribute information of line objects including

identification numbers, which provides its wide applicability. This property

makes it applicable to polygon data whose boundaries often do not have

attribute information; we can merge map sheets containing polygon objects by

treating their boundaries as line objects.

4) Unlike existing local methods, the transformation function works not only near

the map boundaries but also over the whole map sheet. This provides smooth

transformation of spatial objects.

5) The map transformation keeps the topology of original lines. This property is

indispensable especially to line objects such as road networks where the

topology is of great importance.

One of the characteristics of our method is, as mentioned above, that it uses the

rectangular boundaries of map sheets as a key information to extract end nodes. This is

because spatial data are usually managed in rectangular lattice. However, the method can

be applied to other systems of data management such as the longitude-latitude system; we

can replace the linear function used in estimation of map boundaries by curvilinear

functions to treat various systems. In addition, our method works even if the map sheet

system is not known. Though the accuracy of end node extraction decreases, we can still

merge map sheets by interactively checking end nodes extracted.

Our method can be extended further, because it does not make full use of

information provided by spatial objects. For example, if lines have attribute information,

it will drastically improve the accuracy of the procedure. In road network data, names of

major streets are often recorded as an attribute, which are quite useful for matching node

extraction. Even the data of road width would be helpful in finding node pairs. The shape

of line objects also gives a clue to find matching nodes, because lines have to be

combined smoothly at the map boundary. Though it was sufficient in the empirical study

to use only the locational information of end nodes, taking additional information into

account is an important subject for future research.
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