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ABSTRACT 
Traditional decision support systems based on crop simulation models are normally site-specific. In 
policy formulation, however, spatial variability of crop production often need to be evaluated due to 
different soil conditions, weather conditions and agricultural practices within a target-region. To 
address the spatial variability, a spatial model “Spatial EPIC” was developed based on a crop 
simulation model EPIC (Erosion Productivity Impact Calculator). Since site-specific crop simulation 
models require point-based or fine resolution data, it is necessary to feed the fine resolution data at 
each grid-cell in order to “spatialize” crop simulation models. The authors proposed a method to 
generate fine resolution data from coarse resolution data which are usually available at regional or 
national level. In addition, since the original EPIC crop management practices are static in nature, a 
dynamic adaptation loop is added to evaluate the impacts of agricultural practice changes over 
temporal scale. Validation of the spatial EPIC was conducted at different spatial scales, i.e. National 
scale (approx. 50km cell-size) and regional scale (approx. 10km cell-size) in India. Results showed 
that at both resolutions level crop yield varied significantly as a function of seasonal climatic 
variation, soil water holding characteristics and applied crop management strategies. Also, the study 
successfully demonstrated model applicability in evaluating an impact of climate changes over major 
cereal crops productivity at national level taking spatial variability into account. 
 
Keywords: Crop simulation models, Geographic Information Systems (GIS), Agroecosystem, 
National analysis and planning, Crop productivity. 
 
1. INTRODUCTION 
There is an emerging need to support policy formulation and decision-making in agriculture at very 
large geographic scales. Typical issues are climate change impact assessment and formulation of 
mitigating measures, water resource allocation in a river basin at sub-continental scale such as Yellow 
River and Ganges River, and environmental impact assessment of agriculture activities in such a large 
river basin. 
In order to develop a decision support system, biophysical processes and human interactions such as 
adaptive changes of agricultural practice have to be modelled. The model should simulate, for 
example, how the changes of environment such as climate change may influence crop yield and how 
the changes in cropping pattern, cultivation intensity and management practices may affect the 
environment over time. Spatial variability in the impacts and changes of the processes need special 
attention in the modeling process. 
When we focus major crop production, it would be appropriate to apply process-based crop 
simulation model for the purposes above. However, crop simulation models usually need site specific 
characteristics such as weather, physical and chemical parameters of soil, water management, and 
agronomic practices (Whistler, et., al, 1986, Penning de Vries et al., 1989) as input data. Applicability 
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of these models can be extended to much boarder spatial scales by combining them with a Geographic 
Information System (GIS). Several researchers have demonstrated or discussed the strength of this 
concept for agricultural management decision and planning at various spatial scales (Dent and 
Thorton, 1988; Hoongenboom et al., 1990; Hoogenboom and Thorton 1990; Thorton and Dent 1987; 
Throrton and Dent 1990). Thornton (1991) discussed the possibility of linking GIS with crop models 
on a farm and regional level. Curry et. al. (1990) studied the crop model to find possible effects of 
climate change on agricultural productivity at regional level. Hoongenboom and Thornton (1990) 
applied GIS to bean, maize and sorghum crop models to test potential of linked systems for 
agro-technology transfer in Guatemala. The crop model CERES-SORGHUM, using IBSNAT 
standard input/output data formats, was linked to GIS to assist decision making in estimating 
sorghum production in Indian semiarid tropics. Calixtte et al. (1992) developed an Agricultural and 
Environmental Geographic Information System (AEGIS), which combined DSSAT crop models with 
GIS to assess the impact of different agricultural practices of Puerto Rico.  
However, there is no attempt to apply process-based crop simulation models at scale of a very large 
country or sub-continental scale. Since many of models applied to climate impact assessment at 
continental to global scale estimate potential productivity, not actual productivity, using climate data, 
effects of mitigation measures such as adaptation of agricultural practices can not be evaluated. 
The objective of this paper is to develop a GIS-based crop model, which can predict crop yield, plant 
growth and nutrient/moisture dynamics under different agricultural practices at national to 
sub-continental scale. At first, we have to evaluate how much accuracy can be achieved by 
“extending” the idea of GIS/crop model integration to large geographical scale using coarse 
resolution data, which are usually available at such large scale. Technically, we have to devise a 
mechanism to “generate” fine resolution data from coarse resolution data to run the models, which 
were originally developed as a site-specific model. Moreover, since some of process-based crop 
models are static in the sense that they can not take dynamic changes of practices into account, we 
have to modify them to simulate the impacts of dynamically changing practices. 
Therefore, the paper introduces the “Spatial-EPIC” (an extension of original EPIC), a dynamic 
adaptive crop growth model on GIS platform. A two-tier, country and regional level simulations were 
conducted to evaluate the model performances in India as a case study area. Finally to demonstrate 
potential of the model application, national scale climate change impact over rice crop is estimated in 
this paper. 
 
2. DEVELOPMENT OF “SPATIAL-EPIC” 
In process of the development of “Spatial-EPIC”, the authors went for an extensive literature review 
pertaining crop environment management field scale models because of the fact that such crop 
models are the outcome of decades not years. The aim of this research in terms of model development 
was to select the most appropriate field scale/point based model rather than to start from scratch, and 
to develop them on a GIS platform with proper modifications to give a new approach through spatial 
modelling. 
 
2.1 Model Selection 
Proper model selection is one of the most important step in any modelling exercise, if the model is not 
being developed from very beginning. It was kept in mind that the selected model should provide 
agricultural managers with a powerful tool to assess simultaneously the affect of farm practices on 
crop production as well as on soil and water resources. Other model selection criteria included 
minimum data requirements to run the model, wide usage, and a reasonable accuracy in predictions. 
The following models were reviewed: (1) CREAMS and GLEAMS; (2) AGNPS; (3) ANSWERS; (4) 
SWRRB; (5) DSSAT and (6) EPIC.  CREAMS and GLEAMS are field scale continuous models, they 
do not possess a robust crop growth model (Ramanarayam 1994). ANSWERS and AGNPS were 
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eliminated as they are watershed scale models simulating the effect of single rainfall events and are 
not suited for simulating the continuous nature of plant growth (Binger 1990). The data requirements 
for these models are extensive (where the use of GIS data are helpful) because of the distributed 
nature of modelling. Furthermore distributed models provide tools to advance one`s understanding of 
physical processes, but for management purposes, their usefulness is limited (Grayson 1992).  
SWRRB and EPIC are almost synonymous, except for the fact that SWRRB is a basin scale 
simulation model. EPIC (Williams, J. R. and Sharpley, A.N.,1989), has improved residue-handling 
capabilities over SWRRB, and better nutrient cycling. Also EPIC has the added advantage of 
accounting for wind erosion (Binger 1990). DSSAT, crop simulation models and similar computer 
decision have been developed for each crop management and other related processes (IBSNAT, 1989). 
The limitation with DSSAT is that it doesn’t provide one model to simulate many crops instead it has 
models for all specific crops. Also, earlier it was not public domain software (recently they have 
started to distribute their code to the licensed user only) where the other researcher may take up for its 
further development as we did in case of EPIC model after having its source code. 
Therefore, based on the literature reviewed and expert opinion gathered from model developers, 
EPIC was selected for further development under the defined framework of this study. Some 
additional model features that favored the selection of EPIC are (Dumesnil 1993): 
➀ . EPIC is a continuous, field scale agricultural management/water quality model.  
➁ . EPIC is broad-based in terms of its components to model major biophysical processes which 
include weather, hydrology, erosion, nutrients (nitrogen and phosphorus) cycling, pesticide fate, soil 
temperature, crop growth, tillage, plant environmental controls and economics.  
➂ . The data required by EPIC are relatively minimal and was made available after deriving the 
concept of generators (weather generator and slope generator).  
➃  The model provides parameter data files for major crops, soils, and tillage practices. ➄  EPIC is 
also equipped with a stochastic weather generator, and ➅ . EPIC is capable of simulating the 
long-term effects of cropping systems on soil erosion and productivity in specific environments. 
 

2.2 Biophysical Computation 
The model is composed of physically based components for simulating plant growth, nutrient, 
erosion, and related process for assessing crop productivity, determining optimal management 
strategies, erosion and so on. Simultaneously and realistically, model simulates all these physical 
processes. Commonly used input data are weather, crop, tillage, soil-attributes and management 
parameters. The model runs on defined rather derived cell size data layers provided by the user 
depending on their availability. Figure 1 shows physical factors considered in computing a 
mathematical model to find the effects of crop productivity coming from different processes.  
“Spatial-EPIC” is composed of physically based submodels for simulating weather, hydrology, 
erosion, plant nutrients, plant growth, soil tillage and management, and plant environment control. 
The model runs on daily time-step therefore, each model is linked subsequently and interactively with 
other sub models as demonstrated in figure 2. In brief, the computational procedures of all the 
submodels are described here under. Weather: daily rain, maximum and minimum temperature, solar 
radiation, wind and relative humidity can be given directly or else they can be generated 
stochastically. Hydrology: runoff, percolation, lateral subsurface flows are simulated. Erosion: it 
simulates soil erosion by wind and water (for this paper the erosion part has not been included).  
Nutrient Cycling: the model simulates, nitrogen and phosphorus fertilization, transformations, crop 
uptake and nutrient movement. Nutrient can be applied as mineral fertilizers, in irrigation water, or as 
animal manures. Soil: soil temperature responds to weather, soil water content and bulk density. It is 
computed daily in each soil layer. Tillage: the equipment used affects soil hydrology and nutrient 
cycling. The user can change the characteristics of simulated tillage equipment, if needed. Crop 
Growth: A single crop model capable of simulating major agronomic crops. Crop-specific parameters 
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are available for most crops. The model also simulates crop grown in complete rotations. Plant 
Environment: It is capable of variety of cropping variables, management practices, and other 
naturally occurring processes. These include different crop characteristics, plant population, dates of 
planting and harvest, fertilization, irrigation, tillage and many more those are normally practiced in 
the field. 
Figure 3 shows a brief schematic presentation GIS data layers required for crop modelling and 
integrated model run process respectively under “Spatial-EPIC”. This serves as an example of listed 
natural resources and climatic data obtained from different sources and formats for creating GIS 
layers to feed the model inputs 
 
2.3 Development of Dynamic Adaptations Loop 
The original EPIC is static with respect to management and technology. A single crop or rotation, 
tillage practice, conservation measure, crop planting and harvesting date, and machine sequence is 
specified prior to an EPIC simulation and cannot be varied during a simulation. The level of 
technology (such as plant genetic material and efficiency, plant varieties or cultivar, irrigation 
efficiencies, and so on) is also fixed. This was one of the main bottlenecks to apply EPIC for crop 
modelling over temporal scales because it can not adopt the management as per the climatic and 
resources prevailed. Therefore, the “Spatial-EPIC” carries a component where all these management 
and technologies practices have been made dynamic. With this, one can easily change the practices, 
crop rotation, other crop management like time-series fertilizer application, irrigation scheduling, 
tillage practice and so on as per the crop and area depending upon the resources and adaptations 
required. The management practices applied under this simulation were crop based as well as their 
respective growing seasons.  Hence, the development of  “Spatial-EPIC” with an addition of dynamic 
adaptations model is able to evaluate the impacts of agricultural practices more realistically over a 
temporal run which were lacking in the original EPIC model.  
 
2.3 Generating “Fine” Resolution Data from “Coarse” Resolution Data 
As discussed before the “EPIC” model used for development is a field scale model. Hence the fine 
resolution data requirements was a big gap for applying it on a regional or national level scale, where 
only relatively coarse resolution data are usually available. The concept of “generators” helps fill the 
gap. The generators are used not to save data storage size but to provide high-resolution (temporal 
and spatial) data from coarse resolution data. The generators helped to integrate or establish the 
linkage of data to build a multi-scale GIS database. A weather generator model developed by 
Richardson (1981a) was used for generating the daily weather data from statistical characteristics of 
the actual recorded weather data. The model is designed to preserve the dependence in time, the 
internal correlation, and the seasonal characteristics that exist in actual daily weather data to compute 
their monthly coefficients. These coefficients were used to generate back the daily data for model 
input by stochastic simulation method for the said number of years as shown briefly in figure 4. The 
authors compared the estimated yield using recorded daily weather condition data vs. generated daily 
weather condition data, to see the differences, whereas after comparison they were negligibly small. 
By extending the idea underlying the weather generator to spatial dimension, the authors develop a 
slope generator, which generates fine resolution slope gradient from coarse resolution ones. Fine 
resolution slope gradient data is essential in estimating soil loss and resulting productivity 
degradation. Figure 5 illustrates the procedure of slope generation from 10 km resolution DEM data 
and how to apply the slope generator to soil loss estimation. The right part of the figure is a 
scatterogram of fine resolution slope gradient values (i.e. 1km grid size) against coarse resolution 
slope gradient values (i.e. 10km grid size). When a coarse resolution slope gradient value is given at a 
specific location, it can be inferred from the scatterogram to how much extent fine resolution slope 
gradient value can fluctuate at the same location. The range of fluctuation or the distribution of fine 
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resolution slope gradient can be converted to the distribution of soil loss through soil loss vs. absolute 
slope gradient curve in the left part of Figure 5. By integrating the distribution of soil loss, total soil 
loss can be estimated within a coarse grid cell from coarse resolution slope gradient. Unfortunately, 
due to the lack of appropriate validation data, soil loss estimation using the slope generator was not 
validated. The same kind of the idea, however, can be applied to generate a variety of spatial data 
such as soil data. Thus, dynamic linkage between short-term, fine scale data with relatively long-term 
and coarser resolution data can be established by devising nesting of observations at multiple 
spatio-temporal scales. 
 
3. STUDY AREA AND DATASET 

The chosen study area is India, lies to the north of equator, between 8°4’ and 37°6’ North and 68°7’ and 

97°25’ East. It is bounded in the south by the Indian Ocean, in the west by the Arabian Sea, in the east by 

Bay of Bengal, in the north-east, north and a part of the north-west by Himalayan ranges, and the rest of 
the north-west by the Great Indian Desert. The soil characteristics of Indian nation obtained from 
different sources (like Survey of India and National Atlas Thematic Mapping Organization, NATMO) 
at national level in the form of maps (scale; 1:6 million) were used after digitization which has the 
properties like soil texture, soil pH and soil depth. All these soil properties were used in the form of 
layers for simulation. Slope information of the country was derived from 1km GTOPO (NGDC, 
1997). Weather data were obtained and their surfaces were generated using World Meteorological 
Organization (WMO) station falling around 230 in number scattered throughout India. With the help 
of weather generator several layers were generated to feed the model, for example, minimum 
temperature, maximum temperature, rainfall, minimum and maximum standard deviation of 
temperatures and many more. Agricultural management data were obtained at state level where 
numbers of the states are more than 30 in total of entire India at 5 year interval which was used for 
coarse level whole country simulation of 50 km cell size. On the other hand we succeed in procuring 
time-series data from 1974-1994 for one of the Indian State Bihar for detailed study at finer resolution 
simulation of 10-km cell size. Figure 6 shows an example illustrating how the base data layers were 
used into simulation after unified scale of analysis. Also to show further characterization of some data 
layers figure 7 shows the amount of fertilizer used for the year 1990 in India at state and district level. 
Whereas, figure 8 shows the simulated root zone soil moisture as an intermediate output for the year 
1970 and 1990 of entire country. With the help of above three figures (from 6 to 8) characterizations 
of different data layers derived/used after different analysis under simulation can be easily 
understood. 
 
4. Results and Discussion 
The model developed in section 2 was found capable for simulating a number of crop management 
strategies, based on the selection and data provided by the user. It is a good contrast with site-specific 
original EPIC, where the management information given in the beginning continues for the total 
period of simulations year, hence the trend of output used to be more or less static and doesn’t 
correspond to the actual farm practice. An addition of dynamic adaptations had overcome this issue. 
Now with this, during computation, the model runs for each and every pixel following the rows and 
columns sequence with various multiple soil, climate, and management information provided in the 
form of layers. Two-year crop rotation was found appropriate for long term simulation. Two-year 
crop rotations were used. This proved to be better for the farmers to decide their productivity-based 
profit from the resources applied to continue the rotation or not. Hence, it was applied to impersonate 
more realistic simulation. The crops selected were maize-wheat-rice. These three crops were selected, 
as they are the first three main cereal crops from acrage and consumption in India. Crop management 
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option supplied by user in the model can briefly be seen from figure 3 on its right hand side given 
management table. Besides these there are many other information which need to be fed like start of 
simulation date, planting date, harvesting date, tillage time, irrigation timing and its amount, 
fertilization time and so on. Amount of fertilizer applied was the reported state and district level data 
from 1975 to 1992 procured during the study. The crop selected in sequence for modelling was 
rainfed maize (without irrigation), irrigated wheat and monsoon rice. Possible measures explained 
above were taken into account to mimic the more realistic field practice. For better understanding of 
major and minor growing areas of these three crops in India, figure 9 can be referred with their 
planting and harvesting calendar. Yield simulation of the rainfed maize varied from 0.4 to 3.5 t/ha as 
shown in figure 10 described below under validation section for its spatial distribution of productivity 
throughout India. The maize yield shows high potentiality but being a third cereal it is not grown so 
widely like rice and wheat.  Yield distribution of irrigated wheat crop varied between 0.5 to 3.5 t/ha 
also shown in figure 11 described below under validation section clears that mostly the northern part 
of India is the wheat belt. This is because the Indo-Gangetic plains form the most important wheat 
area. The cool winters and the hot summers are very conducive to a good crop of wheat, whereas the 
rice is being grown throughout India but the southern part of India forms most favorable season from 
agro-climatic conditions. The yield variation of monsoon rice was found to be fluctuating from 0. 3 to 
3.0 t/ha. The spatial distribution of crop productivity output has been dealt in following validation 
section with its mapping/graphical representation to demonstrate the correspondence between 
simulated and reported crop yields. 
 
4.1 Validation 
The first approach used to evaluate “Spatial-EPIC” yield simulation was to compare the output at 
state level average reported data for the year 1995 values. Closeness between measured and predicted 
yield at state level is the first and coarse level validation to see whether the simulated output is 
following the trend of reported aggregate average. For doing this, simulated 0.5 degree pixel 
resolution falling under the state were averaged and their mean were compared with the reported state 
level average shown in the form of bar chart from figure 10 to figure 12 for maize, wheat and rice crop 
respectively. Again to go further ahead at same resolution validation for whole India, the output for 
maize, rice and wheat for the year 1990 of these growing belts were compared by overlaying the 
district coverage. To extract the mean value of a district simulated yield; all pixels were overlaid with 
all India district boundaries, which are roughly 450 in number. All the pixels following under 
particular district were averaged and their computed means were compared with the average reported 
statistical value for these three crops. Spatial simulated vs. reported yield of maize, wheat and rice 
comparisons were helpful to find correspondence between growing region productivity. Although 
there were some places where model has simulated more or less yields in case of maize and rice 
whereas in general their simulated vs. reported values were close to each other (figure 13 to 15). The 
reason for getting less and more yields especially in rice crop is due to the limitation of not having 
district level time series data of entire nation instead we applied state level average management data 
(esp. fertilizer, figure 7). The above comparison demonstrates rough spatial cum average state level 
validation because of the fact that the applied management data for whole country simulations were 
state level average.  
The other approach used to evaluate “Spatial-EPIC” yield simulations was to compare the mean and 
standard deviation (SD) of the simulated yields of a crop with the same statistics for measured yields. 
Closeness between measured and predicted yields for these two statistics is important when making 
long-term decisions. This exercise was done for Bihar (one of the slightly north eastern Indian state) 
where time-series management data were applied as well as reported district level crop yield starting 
from year 1975 to 1994 made available. “Spatial-EPIC’s” mean simulated yields were found close to 
the reported mean yields (table 1). The mean differed by 12% or less. The difference between the 
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reported and simulated means was smallest for rice than the wheat and greatest for maize. The 
standard deviations of the simulated yields were also similar to the SD’s of measured, but the 
differences in percentage between simulated and measured were greater in general for the SD’s than 
for the means. The greatest difference, 32%, was for rice. The other two crops maize and wheat had 
differences of 15 and 2%. Regression analysis for simulated yield on reported yield is another 
valuable technique of describing model performance. The first aspect of this approach was to check a 
significant relationship between simulated and predicted yields. This consisted of testing whether the 
slope of regression was significantly different than zero. If it was not, the model would have failed to 
show any superiority over simply using the mean reported yield for prediction. Finally, the r squared 

value provided the final means of describing how well the simulated and reported yields agreed. 
Simulated yields of maize, wheat and rice were also significantly correlated to the reported yields. 
The r2 were 0.73, 0.68 and 0.59 for maize, wheat and rice respectively. Figure 16 to 18 shows the 
temporal correlation against 1:1 slope line with their best-fit line for the said time series data of maize, 
wheat and rice. These figures showed that the temporal changes of crop yield from 1974 to 1990 
could impersonate the reality hence it can be applied to relatively long-term crop yield simulation as 
well. Therefore, from the evaluation results described above, it can be concluded that the crop yield 
simulation using “Spatial-EPIC” appeared to be adequate for the purpose for which it was designed.  
 
4.2 Sensitivity Analysis 
A sensitivity analysis of “Spatial-EPIC” was undertaken to identify those inputs which, when 
modified, produce important changes in the value of outputs. The aim of sensitivity analysis here was 
to identify an impact of particular sensitive physical inputs. While carrying these processes the 
physical changes of soil properties in terms of soil texture i.e. the content of sand, silt and clay was 
given with two different data source as well as of two scales. One of them scales were 1 degree 
roughly 100km on ground and was derived from global ecosystems dataset where other was bought in 
digital form (Source: SOI, 1988 paper map, scale 1:2million) from India. The advantages with the 1 
degree dataset was that it had four layer, where the first layer was fixed to 10mm with sand, silt and 
clay content, the other layers information was provided based on global ecosystem dataset which 
varies from 0.1 to 0.5 cm.  Output with such a coarse resolution used to be good due to the different 
layer information whereas the other digitized data had much better information due to high resolution 
but it didn't had the information in terms of different layer. Hence, while applying the relatively high 
resolution data to the model it was assumed that all layer has same values in terms of information to 
feed the model but in reality it was not the case. This serves a good example of showing the sensitivity 
of the model as data were changed and used to run the model.  Its impact was found and could be seen 
from figure 19 which shows impact over yield fluctuations in terms of pixel response of these two 
dataset. Another interesting example of sensitivity analysis was, using soil pH map obtained from 
FAO derived data source. As the FAO derived pH showed most of the Indian soils acidic hence the 
output as a crop yield response just followed the pH trend with a very low productivity to moderate 
one (see figure 20). Applying this we found the model is quite sensitive to data and to correct this we 
went in procuring toposheet of 1:2M scale from Survey of India, digitized and used which gave a 
satisfactory and the desired result. Figure 20 serves an example of the sensitivity in its spatial map 
form to have a clear understanding. Besides these sensitivity tests the impact of two applied cell size 
10 km and 50 km respectively for Bihar State and whole India were also studied. It is very clear that 
depending upon the cell size, the level of details becomes available at different resolutions. It is thus 
important to realize the impact of different resolution dataset while generating it for model 
application from its accuracy and better performance viewpoint. To visualize an impact of these two 
scales figure 21 serve a very good example to show how an output of a  wheat crop of Bihar State 
varied significantly due to the two high (~10km) and low (~50km) resolutions dataset. 
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4.3 Application of “Spatial-EPIC” to the climate change assessment at national scale  
The following example will demonstrate the potential uses of the model application to assess climate 
change impact (e.g. global warming) over Indian agriculture. As we know the large-scale distribution 
of crops is usually determined by climate, the results of rice crop in a changing climate with it impacts 
are presented here. The whole exercises were carried out using several regional and global 
agricultural-environmental databases. For this simulation, all the management inputs given at the 
base year 1995 are assumed to be same except the changes in climate based on the scenarios for the 
next twenty-year. Simulation with assumed weather conditions generated from climate change 
scenarios resulted in spatial agricultural potential changes are shown in figure 22. Result shows that 
there will be large regional differences in the response of crops across the country. The north-south 
and east-west regions responded differently with projected climate changes with increased and 
decreased productivity (refer figure 22) depending upon the scenarios separately.  As an application 
the model succeeded in quantifying the spatial crop productivity and hence it might become a good 
tool for planners to formulate a country or regional level policies and mitigation measures. 
 
4 CONCLUSIONS 
The methodology presented here was found to be encouraging because it provides an opportunity for 
plant physiologist, a modeler and GIS users  to have a common ground in order to discuss simulation 
results and further potential research directions. Simulated crop yield and other maps generated under 
different scales within India and Bihar can be used to better communication over the model 
predictions. Hence, using this methodology a region/nation can be modeled for any crop productivity, 
which help researchers and decision-makers understand the status and extent of climate, soils and 
crop cum field management effects on global processes such as rice, wheat and maize production. 
To evaluate “Spatial-EPIC” yield simulation validation were carried out in different pockets of India 
based on the major growing reasons. Two tier validations were done at two different cell resolutions, 
coarse and fine for whole India (0.5 degree cell size) as well as one of the Indian states Bihar (0.1 
degree cell size) respectively. Coarse resolution validation results for the entire country found to be 
successful for wheat and maize productivity whereas in case of rice it was a bit under estimated in 
southern most part of India whereas the other places gave better correlation between the simulated 
and observed values. It is believed that the model can be used in simulating any piece of land since 
India is one of the best example of showing the diversity from one place to other in terms of climate, 
natural, economical as well as social conditions from model applicability viewpoint.  
Usually in developing world all the data reported could be fetched at not lower than the district levels. 
And size of those districts also may vary to a greater extent. But the multi-scale approach helps in 
simulating the developing world where data are always a limitation. 
Hence, the “Spatial-EPIC” possesses immense potential as a decision tool especially for regional to 
national policy formulations. However, further research should be focused on improving the model 
prediction, and the field level interactions within the system. Also, availability of new agricultural 
land-use maps with seasonal crop delineation, and other information of the management practices 
will help in bettering the model results.  
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Table 1. Means and standard deviations of reported and simulated yields 
                  District_Average_Yield   

               Measured       Simulated   
Crop Mean SD Mean SD r2 
          ----------------tons/ha-----------------------   
Maize 1.39 0.39 1.57 0.34 0.74 
Wheat 1.47 0.29 1.34 0.46 0.68 
Rice 1.24 0.19 1.14 0.26 0.59 
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Figure 1. Physical Components of the Model 
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Figure 2. Modelling Linkage Diagram 
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Figure 3. Brief schematic Presentation of modelling under 
“Spatial-EPIC” 
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Figure 4.  Concept of ‘weather’ generator (generating high resolution temporal daily data from coarse 

resolution monthly data.) 
 
 

 
 

Figure 5.  Concept of ‘slope’ generator (deriving the range and impact of two resolution DEM 
computed slope over soil loss) 
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Figure 6. Example of data applied in the model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Characterization of fertilizer layer applied (a) State level (b) district level in the year 1990 
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Figure 8. Characterization of simulated root zone soil moisture district level in the year 1990 
 
 
 
 
 
 
 

Figure 9. Main Growing Region of Corn (Maize), Wheat and Rice Crop in India 
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Figure 10. State Wise Comparison of Maize Crop Yield (t/ha) 
 

Fig. 11. State Wise Comparison of Wheat Crop Yield (t/ha) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. State Wise Comparison of Rice Crop Yield (t/ha) 
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Figure 13. Rough Spatial Validation of Maize 
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Fig. 16 Time-Series Validation of Maize Crop in Bihar 
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Fig. 17 Time-Series Validation of Rice Crop in Bihar 

Fig. 18 Time-Series Validation of Wheat Crop in Bihar 

Figure 19. Sensitivity analysis of model response with two different resolutions of soil data over rice 
crop 
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Figure 5.29 Direct Impact of Input Data on Yield a Sensitivity Example of the Model

Figure 20. Direct Impact of Input data (soil pH) on crop yield; an example of model sensitivity  
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Fig. 22 Model application as a climate impact assessment over rice crop  


