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Abstract

The image irradiance of a three-dimensional object is known to be the
function of three components: the distribution of light sources, the shape,
and reflectance of a real object surface. In the past, recovering the shape
and reflectance of an object surface from the recorded image brightness
has been intensively investigated. On the other hand, there has been little
progress in recovering illumination from the knowledge of the shape and
reflectance of a real object. In this paper, we propose a new method for
estimating the illumination distribution of a real scene from image bright-
ness observed on a real object surface in that scene. More specifically, we
recover the illumination distribution of the scene from a radiance distribu-
tion inside shadows cast by an object of known shape onto another object
surface of known shape and reflectance. By using the occlusion informa-
tion of the incoming light, we are able to reliably estimate the illumination
distribution of a real scene, even in a complex illumination environment.





CSIS Discussion PaperNo. 3 1

1 Introduction

The image irradiance of a three-dimensional object is known to be the function of the
following three components: the distribution of light sources, the shape, and reflectance
of a real object surface. From the relationship among them, three kinds of analyses
on the recorded image brightness are derived: recovering the surface shape from the
surface reflectance and illumination of the scene, recovering the surface reflectance
from the surface shape and illumination of the scene, and recovering illumination from
the shape and the reflectance of the surface.

In the past, the first two kinds of analyses, the shape recovery and the reflectance re-
covery, have been intensively studied using the shape from shading method [7, 8, 9, 16]
as well as through reflectance analysis research [1, 12, 13, 15, 17] . In contrast, there
has been little progress on the subject of recovering illumination from the knowledge
of the shape and the reflectance of an object surface. This is because real scenes usu-
ally include both direct and indirect illumination distributed in a complex way and it
is difficult to obtain correct illumination models to be used for the estimation. Most of
the previously proposed methods related with the first two kinds of analyses aimed to
estimate illuminant direction and color in a very specific illumination condition such
as a case where there would be only one direct light source in the scene. Accordingly,
those methods cannot be applied to the images taken under natural illumination envi-
ronments.

The purpose of this study is to present our progress in recovering an illumination
distribution of a real scene from the knowledge of the shape and reflectance of an real
object. In the proposed method, we use radiance changes inside shadows rather than
appearance changes on the surface due to the 3D geometry of the surface and the illumi-
nant direction. More specifically, we estimate an illumination distribution of the scene
by observing a radiance distribution inside shadows cast by an object of known shape
onto another object surface of known shape and reflectance. Shadows in a real scene are
caused by the occlusion of incoming lights as illustrated in Figure 1, and thus shadows
contain various pieces of information about the illumination of the scene. Nevertheless,
in the past, shadows have been used for determining the 3D shapes and orientations of
an object which cast shadows onto the scene [2, 11, 14, 18], while very few studies
have focused on the the illuminant information which shadows could provide.

In the proposed method, we are able to reliably estimate an illumination distribution
of a real scene by making use of the occlusion information of the incoming light. Also,
our method is applicable to the images taken under a complex illumination environment
such as images taken in an ordinary room, including reflections from the wall and other
objects in the scene.
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1.1 Overview

Before we describe the proposed method in detail, we should clarify the basic steps of
our method.

First, we take an image of the scene using a color CCD camera so that shadows
of an object appear in the image. In the rest of the paper, we refer to the image with
shadows as theshadow imageand the object of known shape, which cast shadows onto
the scene, as theoccluding object. (A typical example of ashadow imageis shown in
Figure 3.)

Then, based on the radiance distribution inside shadows, an illumination distribu-
tion of a real scene is estimated as a collection of imaginary point light sources dis-
tributed over the entire scene. The key idea of the proposed method is the discretization
of the overall illumination distribution by using the node directions of a geodesic dome.
In the proposed method, we assume that light sources in the scene are sufficiently dis-
tant from the objects and thus all light sources project parallel rays onto the object
surface.

By substituting a collection of imaginary point light sources for the entire illumi-
nation, we are able to derive a system of equations inn unknown radiance values of
imaginary point light sources from the image irradiance of theshadow image. We then
solve for a solution set of unknown radiance values which approximates the illumina-
tion distribution of the scene.

The rest of the paper is organized as follows. In Section 2 and Section 3, we explain
how to estimate an illumination distribution of a real scene from the image irradiance
of ashadow image. We first obtain a formula which relates an illumination distribution
of a real scene with the image irradiance of theshadow image(Section 2). Second, by
assigning the image irradiance of theshadow imageto the formula, we obtain a set of
linear equations with unknown illumination radiance values sampled at an equal solid
angle. Finally, we solve the set of linear equations for a unique illumination radiance
solution set which represents the illumination distribution of the scene (Section 3). Sec-
tion 4 shows experimental results of the proposed method applied to real images. To
evaluate the accuracy of the illumination distribution estimated by our method, we su-
perimpose a synthetic object with the same shape as that of theoccluding objectonto
an image of the scene. In Section 5, we present concluding remarks.

2 Formula for Relating Illumination Radiance with Im-
age Irradiance

In this section, we present a formula which relates an illumination distribution of a real
scene with the image irradiance of ashadow image. Based on the image formation, the
formula is obtained as follows:
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1. Illumination radiance to scene irradiance: find a relationship between the il-
lumination distribution of a real scene and the irradiance at a surface point in the
scene.

2. Scene irradianceto scene radiance: compute how much of the incoming lights
are reflected from the surface toward an image plane.

3. Scene radianceto image irradiance: find a relationship between the reflected
light from the surface and the image irradiance at a corresponding point on the
image plane.

(a) (b)

Figure 1: Total irradiance: (a) withoutoccluding object(b) with occluding object

2.1 From Illumination Radiance to Scene Irradiance

First, scene irradiance is computed from the entire illumination of the scene. To take
illumination from all directions into account, let us consider an infinitesimal patch of
the extended light source, of sizeδθi in polar angle andδφi in azimuth as shown in
Figure 2.

Seen from the center pointA, this patch subtends a solid angleδω = sin θiδθiδφi.
Let L0(θi, φi) be the illumination radiance per unit solid angle coming from the direc-
tion (θi, φi); then the radiance from the patch isL0(θi, φi) sin θiδθiδφi[6], and the total
irradiance of the surface pointA is

E =
∫ π

−π

∫ π
2

0
L0(θi, φi) cos θi sin θidθidφi (1)

Then occlusion of the incoming light by theoccluding objectis considered as

E =
∫ π

−π

∫ π
2

0
L0(θi, φi)S(θi, φi) cos θi sin θidθidφi (2)

whereS(θi, φi) are occlusion coefficients;S(θi, φi) = 0 if L0(θi, φi) is occluded by the
occluding object; OtherwiseS(θi, φi) = 1.
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Figure 2: (a)the direction of incident and emitted light rays (b)infinitesimal patch of an
extended light source)

2.2 From Scene Irradiance to Scene Radiance

Some of the incoming lights at pointA are reflected toward the image plane. As a
result, pointA becomes a secondary light source with scene radiance, which can be
computed from scene irradiance at pointA.

The bidirectional reflectance distribution function (BRDF)f(θi, φi; θe, φe) is de-
fined as a ratio of the radiance of a surface as viewed from the direction(θe, φe) to the
irradiance resulting from illumination from the direction(θi, φi). Thus, by integrating
the product of the BRDF and the illumination radiance over the entire hemisphere, the
scene radianceRs(θe, φe) viewed from the direction(θe, φe) is computed as

Rs(θe, φe) =
∫ π

−π

∫ π
2

0
f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi) cos θi sin θidθidφi (3)

2.3 From Scene Radiance to Image Irradiance

Finally, the illumination radiance of the scene is related with image irradiance on the
image plane. Since what we actually observe is not image irradiance on the image
plane, but rather a recorded pixel value in ashadow image, it is also necessary to con-
sider the conversion of the image irradiance into a pixel value of a corresponding point
in the image. This conversion includes several factors such as D/A and A/D conversions
in a CCD camera and a frame grabber.

Other studies concluded that image irradiance was proportional to scene radiance [6].
In our method, we calibrate a linearity of the CCD camera by using a gray scale chart so
that the recorded pixel values also become proportional to the scene radiance of the sur-
face. From Equation 3 the pixel value of theshadow imageP (θe, φe) is thus computed
as

P (θe, φe) = k
∫ π

−π

∫ π
2

0
f(θi, φi; θe, φe)L0(θi, φi)
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S(θi, φi) cos θi sin θidθidφi (4)

wherek is a scaling factor between scene radiance and a pixel value. Due to the scaling
factork, we are able to estimate unknownL0(θi, φi)(i = 1, 2, .., n) up to scale. To obtain
the scale factork, we need to perform photometric calibration between pixel intensity
and physical unit (watt/m2) for the irradiance.

3 Estimation of Illumination Distribution Using Image
Irradiance

After obtaining the formula which relates the illumination radiance of the scene with
the pixel values of theshadow image, illumination radiance is estimated based on the
recorded pixel values of theshadow image.

3.1 Approximation of Illuminate Distribution by a Geodesic Dome

First, the double integral in Equation 4 is approximated by discrete sampling over the
entire surface of the extended light source (Section 3.1).

Node directions of a geodesic dome are used for approximating the illumination
distribution of the scene as a summation of illumination radiance sampled at equal
solid angles. Nodes of a geodesic dome are known to be uniformly distributed over
the surface of a sphere. Therefore, by usingn nodes of a geodesic dome in a northern
hemisphere as a sampling direction, the double integral in Equation 4 is approximated
as a sampling at an equal solid angleδω = 2π/n.

P (θe, φe) =
n∑

i=0

f(θi, φi; θe, φe)L(θi, φi)S(θi, φi) cos θi (5)

whereL(θi, φi) is the illumination radiance per solid angleδω = 2π/n coming from
the direction(θi, φi), which also includes the scaling factork between scene radiance
and pixel values. The number of the nodesn can be adjusted by changing the sampling
frequency of a geodesic dome.

It should be noted that the recorded pixel valueP (θe, φe) is computed as a function
of the illumination radianceL0(θi, φi) and the BRDFf(θi, φi; θe, φi) in Equation 5. We
thus take two different approaches depending on whether BRDF of the surface is given
in the following sections. We explain the case where the BRDF is given in Section 3.2
and Section 3.3, and the other case where the BRDF is not given in Section 3.4.

3.2 Known Reflectance Properties: Lambertian Model

Suppose the surface is a Lambertian surface; BRDFf(θi, φi; θe, φe) for a Lambertian
surface is known to be a constant. From Equation 5, an equation for a Lambertian
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surface is obtained as

P (θe, φe) =
n∑

i=0

KdL(θi, φi)cosθiS(θi, φi) (6)

whereKd is a diffuse reflection parameter of the surface.
From Equation 6, a linear equation is obtained for each image pixel of theshadow
imageas

a1L1 + a2L2 + a3L3 + · · ·+ a1nLn = P (7)

whereLi (i = 1, 2, .., n) aren unknown illumination radiance specified byn node di-
rections of a geodesic dome. The coefficientsai(i = 1, 2, .., n) representKd cos θiSi in
Equation 6; we can compute these coefficients from the 3D geometry of a surface point,
theoccluding objectand the illuminant direction.1 P is the values of the image pixel
P (θe, φe).

If we select a number of pixels, saym pixels, a set of linear equations is obtained
as

a11L1 + a12L2 + a13L3+ · · · + a1nLn = P1

a21L1 + a22L2 + a23L3+ · · · + a2nLn = P2

a31L1 + a32L2 + a33L3+ · · · + a3nLn = P3

· · · · · ·
am1L1 + am2L2 + am3L3+ · · ·+ amnLn = Pm (8)

Therefore, by selecting a sufficiently large number of image pixels, we are able to
solve for a unique solution set of unknownLi’s. 2 Note that, since each pixel consists
of 3 color bands (R, G, and B), each band of radianceLi is also estimated from the
corresponding color band of the image.

3.3 Known Reflectance Properties: Non-Lambertian Model

Our method is limited not only to the Lambertian reflection model; but it can also be
extended to other reflection models. As shown in the previous case, our method requires
a set of linear equations with unknown illumination radiance. Hence, any reflection
model is applicable to our method providing such a set of linear equations is obtained.

1We established the correspondence between the 3D world coordinate system in the scene and the
2D image coordinate system by using the camera calibration algorithm proposed by Tsai [20]. From the
calibration process, a plane ofz = 0 is also defined on the calibration board, onto which theoccluding
objectcast shadows.

2The question of how to select image pixels to obtain a unique solution set for unknown radiance
values seems to be leading to an interesting research topic. For instance, a similar discussion on this
subject can be found in [10].
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Take a simplified Torrance-Sparrow reflection model [15, 19] for example; the pixel
value of shadow imageP (θe, φe) is computed as

P (θe, φe) = Kd

n∑
i=0

L(θi, φi)S(θi, φi)cosθi + Ks

n∑
i=0

L(θi, φi)S(θi, φi)
1

cosθr
e

−γ(θi,φi)
2

2σ2

=
n∑

i=0

(Kdcosθi + Ks
1

cosθr
e

−γ(θi,φi)
2

2σ2 )S(θi, φi)L(θi, φi)

whereθr is the angle between the surface normal and the viewing direction,γ(θi, φi)
is the angle between the surface normal and the bisector of the light source direction
and the viewing direction,Kd andKs are constants for the diffuse and specular re-
flection components, andσ is the standard deviation of a facet slope of the Torrance-
Sparrow reflection model. From Equation 9, we obtain a linear equation for each
image pixel whereL(θi, φi)(i = 1, 2, .., n) are unknown illumination radiance, and

(Kdcosθi + Ks
1

cosθr
e

−γ(θi,φi)
2

2σ2 )S(θi, φi) (i = 1, 2, .., n) are known coefficients. Again,
if we use a sufficiently large number of pixels for the estimation, we are able to solve
for a unique solution set of unknown illumination radianceL(θi, φi)(i = 1, 2, .., n).

3.4 Unknown Reflectance Properties : Lambertian Model

Even in the case where the BRDF is not given, we are still able to estimate an illumi-
nation distribution of a real scene if the surface is a Lambertian surface. The question
we have to consider here is how to cancel the additional unknown numberKd in Equa-
tion 6.

An additional image of the scene taken without theoccluding objectis used to can-
cel Kd. We refer to the image as asurface image. The image irradiance of asurface
imagerepresents the surface color of the plane in the case where none of the incoming
light is occluded. From this, in the case of thesurface image, the shadow coefficients
S(θi, φi) always becomeS(θi, φi) = 1. Therefore, using Equation 6, the image irradi-
anceP ′(θe, φe) of thesurface imageis computed as

P ′(θe, φe) = Kd

n∑
j=0

L(θj , φj)cosθj (9)

From Equation 6 and Equation 9, the unknownKd is canceled as

P (θe, φe)

P ′(θe, φe)
=

Kd
∑n

i=0 L(θi, φi)cosθiS(θi, φi))

Kd
∑n

j=0 L(θj , φj)cosθj

=
n∑

i=0

L(θi, φi)∑n
j=0 L(θj , φj)cosθj

cosθiS(θi, φi)

(10)
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Finally, we obtain a linear equation for each image pixel where L(θi,φi)∑n

j=0
L(θj ,φj)cosθj

(i = 1, 2, .., n) are unknowns,cosθiS(θi, φi) (i = 1, 2, .., n) are computable coefficients,
and P (θe,φe)

P ′(θe,φe)
is a right-hand side quantity. Again, if we use a sufficiently large number

of pixels for the estimation, we are able to solve the set of linear equations for a unique
solution set of unknown L(θi,φi)∑n

j=0
L(θj ,φj)cosθj

(i = 1, 2, .., n).

We should point out that the estimated radiance from these equations is a ratio of
of the illumination radiance in one directionL(θi, φi) to scene irradiance at the surface
point

∑n
j=0 L(θj , φj)cosθj . Hence, without knowing the ratio of the scene irradiance

among color bands, there is no way to relate the estimated radiance over the color
bands. Our method avoids this problem because of the initial camera calibration. Since
we use a white board with regularly spaced dots as a calibration board, the recorded
color of the board directly shows the ratio of the scene irradiance among color bands.

4 Experimental Results

We have tested the proposed method by using real images of indoor environments. To
evaluate the accuracy of the illumination distribution estimated by our method, we su-
perimpose a synthetic object with the same shape as that of theoccluding objectonto
an image of the scene taken without theoccluding object, and compare the shadows of
the synthetic object with those of theoccluding objectin theshadow image. Section 4.1
explains how to superimpose a synthetic object onto the real scene by using the esti-
mated illumination distribution. In Section 4.2, we describe experimental results in the
case where reflectance properties of a reflected surface are known. Then, in Section 4.3,
we describe experimental results in the case where reflectance properties of the surface
are unknown.

4.1 Superimposing a Synthetic Occluding Object onto the Scene

The ray casting algorithm is used to superimpose a synthetic object. If the ray generated
from camera projection center through the image pixel intersects a synthetic object, we
compute a color to be observed at the surface point using a simplified Torrance-Sparrow
reflection model from Section 3.3. From the model, a color to be observed at the surface
point Rs(θe, φe) is computed using the estimated illumination distribution of the real
scene as

Rsc(θe, φe) = Kd,c

n∑
i=0

Lc(θi, φi)cosθi + Ks,c

n∑
i=0

Lc(θi, φi)
1

cosθr
e

−γ(θi,φi)
2

2σ2

c = R, G, B

whereLc(θi, φi) (i = 1, 2, .., n)are the estimated illumination radiance values.
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Otherwise, the influence of the synthetic object onto the real object surface is con-
sidered. In other words, we create shadows cast by the synthetic object onto the surface.

First, we compute total irradianceE1 at the surface point using the estimated illumi-
nation distribution in the case where a synthetic object does not occlude any incoming
light (Figure 1.a).

E1,c =
n∑

i=0

Lc(θi, φi)cosθi c = R, G, B (11)

whereL(θi, φi) (i = 1, 2, .., n) are the estimated illumination radiance values.
Second, we compute total irradianceE2 at the surface point in the case where the

synthetic object occludes some of the incoming light (Figure 1.b).

E2,c =
n∑

i=0

Lc(θi, φi)cosθiS(θi, φi) c = R, G, B (12)

whereS(θi, φi) = 0 if the synthetic object occludes illumination radianceL(θi, φi);
otherwise,S(θi, φi) = 1.

Then, we compute the ratio ofE2 to E1, which represents how much of the irradi-
ance at the intersection would still be preserved if the synthetic object were placed in
the scene. Finally, by multiplying the ratioE2/E1 to the observed color of the image
pixel I, we obtain the colorI ′ that would be the color of the image pixel if there were
a synthetic object in the scene.

I ′
c = Ic

E2,c

E1,c
c = R, G, B (13)

4.2 Experimental Results for Known Reflectance Property

An image of a surface with anoccluding objectcalled ashadow imagewas taken under
the usual illumination environment in our office, including direct light sources such as
fluorescent lamps and windows to the outside, as well as indirect illumination such as
reflections from a wall (Figure 3).

First, an illumination distribution of the scene was estimated using the image irradi-
ance inside shadows in theshadow imageas explained in Section 3.2. Then a synthetic
object with the same shape as that of theoccluding objectwas superimposed onto an
image of the scene taken without theoccluding object, called thesurface image. Syn-
thesized results are shown in Figure 4 (a), (b), and (c). Also, we superimposed another
synthetic object of a different shape onto the scene in Figure 4(d). The number of
nodes of a geodesic dome used for the estimation is shown under the resulting image.

We found through our experiments that, the larger number of nodes we used, the
more the shadows of the synthetic object resembled those of theoccluding objectin
the shadow image. Especially in the case of 521 nodes, the shadows of the synthetic
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object are indistinguishable from those of theoccluding objectin the shadow image:
this shows that the estimated illumination distribution gives a good presentation of that
of the real scene.

Figure 5 numerically shows the improvement of the accuracy by increasing the
number of samplings. The vertical axis represents average error in pixel values inside
the shadow regions in the synthesized images compared with those in theshadow im-
age. Here, the initial difference in pixel values of shadow regions between thesurface
imageandoriginal imageis set to100 %. The horizontal axis represents the number
of nodes of a geodesic dome used for the estimation. From the plot in the figure, we
can clearly see that the accuracy improves rapidly as we use more imaginary point light
sources.

Also the small pictures right next to the plot shows error distributions inside shadow
regions in the synthesized images. Darker color represents larger error in a pixel value
in the shadow regions compared with the real shadows of theoccluding objectin the
shadow image.

Also, the resulting images indicate that it is required to adjust the number of nodes
of a geodesic dome depending on the complexity of a scene to obtain a reasonably good
estimation for less computational cost. We are currently extending our work so that an
appropriate number of nodes is automatically selected for the estimation, depending on
the scene complexity.

4.3 Experimental Results for Unknown Reflectance Property

We also applied our method to the case where reflectance properties of a surface were
unknown. The input images used in this experiment are shown in Figure 6. Since
the reflectance properties of the surface were unknown, the image irradiance of both
the shadow imageand thesurface imagewere used for estimating the illumination
distribution of the scene as explained in Section 3.4.

In the same way as in the previous case, a syntheticoccluding objectwas superim-
posed onto the surface of thesurface image. Synthesized results are shown in Figure 7.
Again, in the case of 521 nodes, the shadows in the resulting image strongly resem-
ble those of theoccluding objectin theshadow image. This shows that the estimated
illumination distribution gives a good representation of the characteristics of the real
scene.

We concluded from our experiments that the proposed method is effective for pro-
viding an illumination distribution which can be used as a substitution for a real illumi-
nation distribution.
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5 Conclusions

In this paper, we have proposed a new method for estimating an illumination distribu-
tion of a real scene from a radiance distribution inside shadows cast by a real object of
known shape onto other object surface of known shape and known reflectance. By us-
ing the occlusion information of the incoming light, we could estimate an illumination
distribution of a real scene reliably even for the images taken in a complex illumination
environment.

There have also been several methods proposed for measuring illumination of a
real scene in the field of augmented reality research [3, 4, 5]. However, those methods
tended to measure the illumination directly from images of the scene and therefore,
they suffered from two technical problems: how to capture a wide field of view of the
scene, and how to record high dynamic range of the scene. In the proposed method,
since we observe shadows and not the illumination itself, no effort to overcome these
problems is required.

To demonstrate the effectiveness of the proposed method, we have successfully
tested our method by using sets of real images taken in our office with different surface
materials of shadow regions.



12

References
[1] R. Baribeau, M. Rioux, and G. Godin, “Color Reflectance Modeling Using a Polychromatic Laser

Range Sensor”IEEE IEEE Trans. PAMI, vol. 14, no. 2, pp. 263-269, 1992.

[2] J. Bouguet and P. Perona, “3D Photography on Your Desk,” Intl. Conference on Computer Vision,
pp.43-50, 1998.

[3] P. E. Debevec, “Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-
based Graphics with Global Illumination and High Dynamic Range Photography,”Proc. SIG-
GRAPH 98, pp. 189-198, July, 1998.

[4] G. Drettakis, L. Robert, S. Bougnoux, “Interactive Common Illumination for Computer Aug-
mented Reality”Proc. 8th Eurographics Workshop on Rendering, pp. 45-57, 1997.

[5] A. Fournier, A. Gunawan and C. Romanzin, “Common Illumination between Real and Computer
Generated Scenes,”Proc. Graphics Interface ’93, pp.254-262, 1993.

[6] B. K. P. Horn,Robot Vision, The MIT Press, Cambridge, MA., 1986.

[7] B. K. P. Horn, “Obtaining Shape from Shading Information,” Chapter 4 inThe psychlogy of Com-
puter Vision, McGraw-Hill Book Co., New York, N.Y., 1975.

[8] B. K. P. Horn and M. J. Brooks, “The Variational Approach to Shape from Shading,”Computer
Vision, Graphics, and Image Processing, 33(2), pp.174-208, 1986.

[9] K. Ikeuchi and B. K. P. Horn, “Numerical Shape from Shading and Occluding Boundaries,”Arti-
ficial Intelligence 17(1-3), pp.141-184, 1981.

[10] K. Ikeuchi and T. Kanade, “Automatic Generation of Object Recognition Programs,”PIEEE(76),
No. 8, pp.1016-1035, 1988.

[11] J. R. Kender and E. M. Smith, “Shape from Darkness: Deriving Surface Information from Dy-
namic Shadows,”Proc. Intl. Conference on Computer Vision, pp.539-546, 1987.

[12] G. Kay and T. Caelli, “Estimating the Parameters of an Illumination Model using Photometric
Stereo,”Graphial Models and Image Processing, vol. 57, no. 5, pp. 365-388, 1995.

[13] J. Lu and J. Little, “Reflectance Function Estimation and Shape Recovery from Image Sequence
of a Rotating Object,”Proc. IEEE Intl. Conference on Computer Vision ’95, pp. 80-86, 1995.

[14] A. K. Markworth, “On the Interpretation of Drawings as Three-Dimensional Scenes,”PhD thesis,
University of Sussex, 1974.

[15] S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: physical and geometrical perspec-
tives,” IEEE Trans. PAMI, vol. 13, no. 7, pp. 611-634, 1991.

[16] A. P. Pentland, “linear Shape From Shading,”Intl. J. Computer Vision, 4(2), pp153-162, 1990.

[17] Y. Sato, M. D. Wheeler, and K. Ikeuchi, “Object shape and reflectance modeling from observa-
tion,” Proceedings of SIGGRAPH 97, pp. 379-387, 1997.



CSIS Discussion PaperNo. 3 13

[18] S. A. Shafer and T. Kanade, “Using Shadows in Finding Surface Orientations,”Computer Vision,
Graphics, and Image Processing, 22(1), pp. 145-176, 1983.

[19] K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surface,”
J. Optical Society of America, vol.57, pp.1105-1114, 1967.

[20] R. Tsai, “A Versatile Camera Calibration Technique for High Accuracy Machine Vision Metrology
Using Off-the-Shelf TV Cameras and Lenses,”IEEE Journal of Robotics and Automation, vol. 3,
no. 4, pp. 323-344, 1987.



14

�

Figure 3: Input images : (a)surface image(b) shadow image(c) calibration image

(a) number of nodes :  89 (b) number of nodes : 193

(d) number of nodes : 521(c) number of nodes : 521

Figure 4: Synthesized images: known reflectance property

average error

number of nodes

Figure 5: Error Analysis: known reflectance property
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Figure 6: Input images : (a)surface image(b) shadow image(c) calibration image

(a) number of nodes : 89 (b) number of nodes : 193

(d) number of nodes : 521(c) number of nodes : 521

Figure 7: Synthesized images: unknown reflectance property

average error

number of nodes

Figure 8: Error Analysis: unknown reflectance property


