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Abstract

This paper proposes two statistical methods, called the network K-function

method and the network cross K-function method, for analyzing the distribution

of points on a network. The former method is used for testing the hypothesis

that points are uniformly and independently distributed over a network. The lat-

ter method is used for testing the hypothesis that points of one kind and points

of another kind are independently distributed over a network. The paper first de-

rives the equations of these functions. Second, these equations are implemented

in computational procedures. Third, the computational orders of these procedures

are obtained: the order of the K-function method is O(n2
Q log nQ) and that for the

network cross K-function is O(nQ log nQ), where nQ is the number of nodes of a

network.



1 Introduction

Among many kinds of statistical methods that examine the distribution of points

on a plane, probably the K-function method (Ripley 1981) is one of the most fre-

quently used methods in the literature (Cressie 1991; Fotheringham and Rogerson

1994; Bailey and Gatrell 1995). Like most statistical methods, the K-function

method assumes a continuous plane with the Euclidean distance. Recently, how-

ever, Miller (1994) criticized the limitation of this assumption in conjunction with

an increasing demand for detailed spatial analysis enhanced by geographic infor-

mation systems (GIS). Actually this limitation is problematic when we apply the

ordinary K-function method to a fairly small district. For instance, consider the

location analysis of fast-food stands in a downtown. The stands cannot be located

freely in the downtown, but they are located along streets. Consumers cannot fly

to the stands, but they have to access to the stands through streets. The Euclidean

distance is quite different from the route distance there. In addition to the discrep-

ancy between the Euclidean plane and an actual space, there is a great demand

for marketing in a small area with detailed spatial features, called micro-marketing

(Buxton 1992). This discrepancy and the demand for micro-marketing require the

development of a K-function method defined on a discrete network.

At present, however, this development is difficult because of the following reasons.

First, the ordinary K-function method assumes an infinite homogeneous plane, but

it is difficult to consider an infinite homogeneous network; a given network is almost

always irregular and it is difficult to expand this irregular network to an infinite

irregular network. Second, a method for computing a K-function on a network is

much more complicated than the ordinary K-function method, because a network is

usually inhomogeneous (note that the ordinary K-function assumes a homogeneous

plane). Third, it is difficult to obtain and manage digital network data. Recently, the
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progress in GIS has overcome the third difficulty, but the first and second difficulties

still remain unsolved. The objective of this paper is to overcome these difficulties

and propose a practical K-function method defined on a network.

Although we hardly find a K-function method in the literature, we can find some

statistical and/or computational methods for analyzing point objects on a network.

Miller (1994), Okabe and Kitamura (1996), and Okunuki and Okabe (1998) formu-

late the Huff model on a network. Okabe et al. (1995) formulate the nearest neighbor

distance method on a network. Miller (1999) proposes the space-time accessibility

measure defined on a network. We elaborate those computational methods and

apply them to the K-function method on a network.

The paper consists of five sections including this introductory section. In the

next section, i.e. Section 2, we formulate the K-function method on a network. This

method is used for testing the null hypothesis that points are uniformly distributed

over a network, or testing no spatial interaction among the points. In Section 3

we formulate the cross K-function method on a network. This method is used

for testing the null hypothesis that points of one kind are uniformly distributed

regardless of the locations of points of another kind. For example, this method is

useful to examine whether or not the distribution of fast-food stands is affected by

the locations of subway stations. In Section 4, we develop a computational method

for the network K-functions. We close this paper in Section 5, summarizing the

major results.

2 The network K-function method

First let us fix a general setting. We consider a finite connected planar network,

N = N (L, Q), consisting of a set of links, L = {L1, . . . , LnL
}, and a set of nodes,

Q = {q1, . . . , qnQ
}. We denote the whole links by LT (i.e. LT =

⋃nL
k=1 Lk) and the
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total length of LT by lT . Note that both ends of a link in L are nodes in Q and no

links are connected except at nodes of Q. In the real world, the network N may

represent a network of streets in a city where a node in Q represents an intersection

of streets and a link in L represents a street segment between two intersections. We

measure the distance between two points on LT of N by the length of the shortest

path between them, which we call the network distance. Note that we may refer to

a network distance simply as a distance when a network is understood.

We next consider a set of n objects, such as fast-food stands, which can be

regarded as a set of points, P = {p1, . . . , pn}, and assume that the points of P are

on the links LT of N . This implies that the size of the objects is negligibly small

relative to the size of the network, and the objects are located along streets (imagine

fast-food stands facing streets).

Now we assume that points of P are probabilistically distributed according to

the uniform distribution over LT of N , i.e.,

f(p) =




1

lT
, p ∈ LT ,

0 , p /∈ LT ,

(1)

where p is a point of P . Under this assumption, the probability of a point in P being

placed on a subset, LS, of LT is proportional to the length, lS, of LS. Thus, the

probability, Pr[N(LS) = nS], that the number, N(LS), of points of P being placed

on LS is exactly nS is given by

Pr [N(LS) = nS] = nCnS

(
lS
lT

)nS
(

1 − lS
lT

)n−nS

, (2)

where nCnS
= n!/ (nS! (n − nS)!). Since this is a binomial distribution, the stochas-

tic point process of P where points of P are distributed according to the uniform

distribution of equation (1) is called the binomial point process (Ripley 1981).

The assumption of the binomial point process implies the hypothesis that objects
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represented by P (say fast-food stands) are uniformly and independently distributed

over the street network N . Thus if this hypothesis is not accepted, we may infer

that the fast-food stands are spatially interacting and dependent each other; as a

result, they form a non-uniform pattern. The stands may tend to be close together,

or they may tend to keep away from each other. In the former case, we say that the

fast-food stands are clustering; in the latter case, we say that they are repelling.

Under the assumption of the binomial point process, we define a function, K(t),

by

K(t) =
1

ω
E


 the number of points of P within

network distance t of a point pi of P


 , (3)

where E(·) is the expected value with respect to i = 1, . . . , n (pi ∈ P ) where P follows

the binomial point process, and ω is the density of points of P , i.e. ω = n/lT . We

call this function K(t) the network K-function for the binomial point process.

Since the points of P are distributed according to the binomial point process,

all points in P are independently and uniformly distributed over LT , and hence the

above definition is equivalent to

K(t) =
1

ω
E


 the number of points of P within

network distance t of a point p on LT


 , (4)

where E(·) is the expected value with respect to all possible locations of p over LT .

Let Lp(t) be the subset of LT where the network distance between p and any point

on Lp(t) is less than or equal to t; lp(t) be the length of Lp(t). Since ω lp(t) indicates

the expected number of points of P on Lp(t) under the assumption of the binomial

point process, we can write K(t) as

K(t) =
1

ω
· 1

lT

∫
p∈LT

ω lp(t) dp

=
1

lT

∫
p∈LT

lp(t) dp , (5)
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where dp implies the integration of p along LT .

Now suppose that we observe n points of P on LT (consequently, P is fixed),

and let Lpi
(t) be a subset of LT where the network distance between pi and any

point on Lpi
(t) is less than or equal to t. From equation (3), the K-function for this

observed data set, K̂(t), is written as

K̂(t) =
1

ω
· 1

n

n∑
i=1

(the number of points of P within network distance t of pi)

=
1

ω
· 1

n

n∑
i=1

(the number of points of P on Lpi
(t)) . (6)

Since ω = n/lT , we can rewrite K̂(t) as

K̂(t) =
lT
n2

n∑
i=1

(the number of points of P on Lpi
(t)) . (7)

We call the function K̂(t) the observed network K-function for a given set P .

Once we obtain the observed network K-function K̂(t) and the network K-

function for the binomial point process K(t), we can examine whether or not the

observed points are distributed according to the binomial point process. If K̂(t) >

K(t), we may infer that the points of P are clustering; if K̂(t) < K(t), the points

of P are repelling.

We make one remark on the boundary effect. In general, we should distinguish

two types of the boundary effect when we use a spatial statistic dealing with the

distribution of points in a finite area, R. The first type boundary effect occurs

when points outside R are neglected. The second type boundary effect occurs when

a statistic which assumes a point process on an infinite area (such as the Poisson

point process) is applied to a finite area R. The second type boundary effect occurs

even when points are not distributed outside R. Any spatial statistic cannot correct

the first type boundary effect unless points outside R are given. The second type

boundary effect may be or may not be corrected. For example, consider the ordinary
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K-function method defined by

K(t) =
1

ω
E


 the number of points of P within Euclidean

distance t of pi of P on an infinite area


 . (8)

Under the assumption that the points of P are distributed according to the binomial

point process, K(t) is given by

K(t) =
1

ω
E


 the number of points of P within

Euclidean distance t of p on an infinite area




=
1

ω
(ωπt2) = πt2. (9)

If this K-function method is applied to a finite area R, the second type boundary

effect occurs, because the circle with radius t may not be included in R. To correct

this boundary effect, Bailey and Gatrell (1995) adopt an adjustment factor which

converts the finite area R to an infinite area. This modification is possible because

the ordinary K-function method assumes an infinite homogeneous area. In the case

of the network K-function method, however, we cannot adopt such an adjustment

factor, because, first, a network is not homogeneous; second, it is difficult to consider

an infinite homogeneous network. To overcome these difficulties, we need a method

that directly deals with a finite inhomogeneous network. In the network K-function

defined above, we consider this method in terms of lp(t) in theory. If this function

lp(t) is practically computable, the proposed network K-function method would be

useful in practice. We discuss this computational implementation in Section 4.

3 The network cross K-function method

In the preceding section, we dealt with one kind of points P . In this section we

deal with two kinds of points, Pa = {pa1, . . . , pana} and Pb = {pb1, . . . , pbnb
}, placed

on LT of N . For instance, Pa may be a set of fast-food stands and Pb may be a set
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of subway stations. We are concerned with whether or not the locations of subway

stations affect the distribution of fast-food stands. To examine this effect, we make

a null hypothesis that points Pa are distributed according to the binomial point

process. This assumption implies that fast-food stands Pa are uniformly distributed

over LT regardless the locations of subway stations Pb. Note that we make no

assumption on the distribution of points Pb. If the above hypothesis is rejected, we

may infer that the locations of subway stations Pb affect the distribution of fast-food

stands Pa.

Extending the network K-function defined in Section 2, we define a new function,

Kba(t), for two kinds of points Pa and Pb by

Kba(t) =
1

ωa

E


 the number of points of Pa within

network distance t of a point pbi of Pb


 , (10)

where E(·) is the expected value with respect to i = 1, . . . , nb (pbi ∈ Pb) where

Pb follows the binomial point process, and ωa is the density of points of Pa, i.e.

ωa = na/lT . We call this function Kba(t) the network cross K-function of Pa relative

to Pb for the binomial point process.

Let Lpbi
(t) be the subset of LT where the distance between pbi and any point

on Lpbi
(t) is less than or equal to t, and lpbi

(t) be the length of Lpbi
(t). Under the

assumption of the binomial point process, ωa lpbi
(t) gives the expected number of

points of Pa on Lpbi
(t). Thus we can rewrite Kba(t) as

Kba(t) =
1

ωa
· 1

nb

nb∑
i=1

ωa lpbi
(t)

=
1

nb

nb∑
i=1

lpbi
(t). (11)

Suppose that we observe the locations of na points of Pa and that of nb points of

Pb on LT . For these observed data sets, we write the cross K-function corresponding
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to equation (10) as

K̂ba(t) =
1

ωa
· 1

nb

nb∑
i=1

(the number of points of Pa on Lpbi
(t)) . (12)

Since ωa = na/lT , we can rewrite K̂ba(t) as

K̂ba(t) =
lT

nanb

nb∑
i=1

(the number of points of Pa on Lpbi
(t)) . (13)

We call the function K̂ba(t) the observed network cross K-function of Pa relative to

Pb.

Once we obtain the observed network cross K-function K̂ba(t) and the network

cross K-function for the binomial point process Kba(t), we can examine whether or

not the observed points Pa are distributed according to the binomial point process.

If K̂ba(t) > Kba(t), we can infer that the points of Pa are clustering around the

points of Pb; if K̂ba(t) < Kba(t), the points of Pa are repelling the points of Pb.

4 Computational methods for the network K-functions

In the preceding sections we theoretically obtained the equations of the network

K-function and the network cross K-function, but those equations are implicit for

actual computation. In this section, we wish to develop their computational methods

by extending the methods proposed by Okabe et al. (1995), Okabe and Kitamura

(1996), and Okunuki and Okabe (1998). Since a computational method for the

network K-function is an extension of that for the network cross K-function, we

first show the latter method and next the former method.

4.1 A computational method for the network cross K-function

We notice from equation (11) that Kba(t) is computable if the length lpbi
(t) of

Lpbi
(t) is computable for all points in Pb = {pb1, . . . , pbnb

}. In this subsection, we
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develop a procedure for computing lpbi
(t) (illustrative examples in Figure 1 would

be helpful to understand this procedure).

In Figure 1(a), Lpbi
(t) (the subset of L where the distance from pbi to any point on

Lpbi(t) is less than or equal to t) is indicated by the thick gray-colored lines. Recalling

that a network distance is the length of the shortest path between points, we notice

that a set of the gray lines Lpbi
(t) forms part of the ‘extended’ shortest path tree

rooted at pbi, and lpbi
(t) is given by the length of this gray tree. This observation

suggests a strategy for computing lpbi
(t): first, we construct the ‘extended’ shortest

path tree; second, we obtain Lpbi
(t); third, we measure the length of Lpbi

(t), which

gives lpbi
(t).

To obtain the ‘extended’ shortest path tree, we first insert a point pbi of Pb in

the network N and regard it as a node (the black circle in Figure 1(b)). Second, we

construct the shortest path tree rooted at pbi (the thick black lines in Figure 1(b)).

On each link that is not included in this shortest path tree (the thin lines in Figure

1 (b)), there exists one point to which two shortest paths from pbi through the two

end points of the link have the same distance (the stars in Figure 1(b)). We call this

point a break point generated by pbi. Third, we cut links at all break points, and

put nodes on both cut ends (the white circles in Figure 1(c)). We call the resulting

nodes break-point nodes generated by pbi. Let N+i = N+i(L+i, Q+i) be the network

modified through the above procedure, where L+i denotes a set of resulting refined

links, and Q+i denotes a set of nodes consisting of Q and the resulting break-point

nodes. Since the distance from the root pbi to every node in Q+i is known by the

extended shortest path tree, we can easily obtain Lpbi
(t).

We next measure the length lpbi
(t) of Lpbi

(t) (the gray lines in Figure 1(d)). To

this end, we treat Lpbi
(t) link by link; we measure the length of Lpbi

(t) for each link,

and sum up those lengths. To be explicit, let gpbi
j (t) be the length of Lj ∩ Lpbi

(t),
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i.e. the length of part of a link Lj that is included in Lpbi
(t). Then we can obtain

lpbi
(t) from

lpbi
(t) =

n+i
L∑

j=1

gpbi
j (t) , (14)

where n+i
L is the number of links in L+i.

The form of gpbi
j (t) varies according to the relation between Lj and Lpbi

(t). Let

lj be the length of Lj , and qcj and qrj be the end points of Lj where d(pbi, qcj) <

d(pbi, qrj) (for simplicity, we denote d(pbi, qcj) by dcj, and d(pbi, qrj) by drj). When

Lj is not included in Lj(t), i.e. Lj ∩ Lpbi
(t) = ∅, it is obvious that gpbi

j (t) = 0

(for example, L1 in Figure 1(d)). When Lj is completely included in Lpbi
(t), i.e.

Lj ∩ Lpbi
(t) = Lj , it is plain to see that gpbi

j (t) = lj (L2 in Figure 1(d)). When Lj

is partly included in Lpbi
(t), gpbi

j (t) is given by the length of Lj ∩Lpbi
(t), i.e. t− dcj

(L3 in Figure 1(d)). In terms of these equations, gpbi
j (t) is written as

gpbi
j (t) =




0 , 0 ≤ t < dcj ,

t − dcj , dcj ≤ t < drj ,

drj − dcj (= lj) , drj ≤ t < ∞ .

(15)

Therefore Kba(t) is explicitly written as

Kba(t) =
1

nb

nb∑
i=1

n+i
L∑

j=1

gpbi
j (t) . (16)

Having established the computational procedure, let us consider the computa-

tional order of this procedure. Almost all of the computations in the above procedure

have a linear order with respect to the number of links, but the computation of the

shortest path tree has more order than that. Fredman and Tarjan (1984) show

that the computational order of constructing the shortest path tree rooted at one

node of a network is O(nQ log nQ), where nQ is the number of nodes of the network.

In the above procedure, we construct the shortest path tree rooted at each point
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of Pb = {pb1, . . . , pbnb
}, and hence the total computational order is O(nbnQ log nQ)

(note that the number of nodes in Q+i has the same order of nQ). In usual applica-

tions, the number of points of Pb (say, subway stations) is much smaller than that

of Q (the nodes of the network), and so the computational order is dominated by

O(nQ log nQ).

4.2 A computational method for the network K-function

We notice from equation (5) that K(t) is computable if the length lp(t) of Lp(t) is

computable for all possible locations of p over LT of N . In theory, a computational

method for lp(t) is similar to that for lpbi
(t) of the network cross K-function shown

in the above subsection, but the former method becomes much more complicated

in practical computation. The reason is that in the cross K-function method, we

compute lpbi
(t) for a finite number of points in Pb (i.e. pb1, . . . , pbnb

), but in the

K-function method, we have to compute lp(t) for every point p on LT (infinite). We

carry out this computation by moving p continuously along all links in LT .

In Figure 2, the cross mark indicates the location of a point p on N , and the

thick gray lines indicate Lp(t). As p moves along links, the form of Lp(t) changes

(compare Figure 2(a), (b), and (c)), but we notice that the topological relation of

nodes in Lp(t) does not change while p moves along a certain range (for example,

Figure 2(a) and (b) have the same topological relation of nodes in Lp(t); the topology

remains the same while p moves between q1 and q2). Since this topological invariance

property makes computation tractable, we first decompose LT into refined links in

such a way that the topology of Lp(t) remains the same when p moves along each

of the refined links. Once such refined links are obtained, we can obtain the length,

lp(t|s), of Lp(t) as a function of a parameter value, s, indicating the distance of p

from one end point of the refined link on which p moves. Averaging the resulting
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function lp(t|s) with respect to s and all refined links, we obtain the expected length

of Lp(t) for every point p in LT . This procedure consists of the following four steps

(illustrative examples in Figure 3, 4, and 5 would be helpful to understand these

steps). Note that in the following, the network N is assume to have no parallel links

(but relaxation of this assumption is simple).

Step 1: refinement of links

First, we insert the break-points, Q∗, generated by all nodes of Q = {q1, . . . , qnQ
}

in L (the white circles in Figure 3(b)). We call the resulting refined links the first

order refined links and denote them by L∗ = {L∗
1, . . . , L

∗
n∗

L
}, where n∗

L is the number

of links in L∗.

Now we choose an arbitrary first order refined link, L∗
k, in L∗, and suppose that

p moves along this link from one end point, qkA, to the other end point, qkB (in

Figure 3(c), the link q∗1q∗2 is chosen as L∗
k). Further, we refine the first order refined

links by inserting the break-point nodes, Q∗k, generated by qkA and qkB (the gray

circles in Figure 3(c)). We call the resulting refined links the second order refined

links with respect to L∗
k and denote them by L∗k = {L∗k

1 , . . . , L∗k
n∗k

L
}, where n∗k

L is the

number of links in L∗k. In general, indices of links in L∗ and those of links in L∗k

are different, but for notational convenience, we use the same index k for the link

on which p moves (i.e. L∗
k and L∗k

k indicate the same link).

Step 2: classification of the second order refined links

Having obtained the second order refined links L∗k, we now classify them into

four types.

Let l∗kj be the length of the link L∗k
j (j = 1, . . . , n∗k

L ), and s be the network

distance between p and qkA (0 ≤ s ≤ l∗kk ). As p moves along L∗k
k from qkA to qkB

(i.e. s varies from 0 to l∗kk ), each break point generated by p moves along a link in
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L∗k. We call the traces of these break points the trace links of p. Note that each

trace link is one of the second order refined links, and that the length of each trace

link is equal to l∗kk . In an illustrative example shown in Figure 3(d), as p moves from

q∗1 to q∗2, the break points, p′(1) and p′(2), generated by p move from q∗k1 to q4 and from

q3 to q∗k2 , respectively. Thus, q∗k1 q4 and q3q∗k2 are trace links of p.

Now we classify the second order refined links into four types (see Figure 4):

Type 1 is L∗k
k , on which p moves, and Type 2 is the trace links of p. If we separate

links of Type 1 and Type 2 from the network, the remaining network has two trees

rooted at qkA and qkB, respectively. Type 3 links are the links forming the tree

rooted at qkA, and Type 4 links are those forming the tree rooted at qkB.

Step 3: formulation of the length of L�k
j

∩ Lp(t) for each type of links

We consider the length, gk
j (t|s), of L∗k

j ∩ Lp(t), i.e. the length of part of a link

L∗k
j where the distance between p and any point on that part is less than or equal

to t for each type of links. Illustrative examples are shown in Figure 5, where the

cross mark indicates the location of p, the thick gray lines indicate Lp(t), and the

thick black lines on Lp(t) indicate L∗k
j ∩ Lp(t). Note that qcj and qrj are the end

points of L∗k
j where d(qkA, qcj) < d(qkA, qrj), and dcj and drj indicate d(qkA, qcj) and

d(qkA, qrj), respectively.

Type 1: L∗k
k (i.e. the link on which p moves)

Suppose that p is located on the left half of L∗k
k i.e. 0 ≤ s ≤ l∗kk /2. If 0 ≤ t < s,

then Lp(t) is completely included in L∗k
k , and so gk

k(t|s) = 2t. If s ≤ t < (l∗kk − s)

(see Figure 5(a)), the right half of Lp(t) is completely included in L∗k
k , but the left

half of Lp(t) is beyond qkA. Thus gk
k(t|s) = t + s. If (l∗kk − s) ≤ t < ∞, then

L∗k
k is completely included in Lp(t), and so gk

k(t|s) = l∗kk . In the same way, we can

formulate gk
k(t|s) when p is located on the right half of L∗k

k . Summing up the above,

we can write gk
k(t|s) as follows:
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0 ≤ s ≤ l∗kk

2

gk
k(t|s) =




2t , 0 ≤ t < s ,

t + s , s ≤ t < l∗kk − s ,

l∗kk , l∗kk − s ≤ t < ∞ ,

(17)

l∗kk

2
< s ≤ l∗kk

gk
k(t|s) =




2t , 0 ≤ t < l∗kk − s ,

t + (l∗kk − s) , l∗kk − s ≤ t < s ,

l∗kk , s ≤ t < ∞ .

(18)

Type 2: the trace links of p (see Figure 5(b))

In this case, a shortest path from p to a point on a trace link may go through

either qkA or qkB according to the value of s. Thus we can write gk
j (t|s) for links of

Type 2 in the same way as in Type 1.

0 ≤ s ≤ l∗kk

2

gk
j (t|s) =




0 , 0 ≤ t < dcj + s ,

t − (dcj + s) , dcj + s ≤ t < l∗kk + dcj − s ,

2t − (2dcj + l∗kk ) , l∗kk + dcj − s ≤ t < l∗kk − dcj ,

l∗kk , l∗kk − dcj ≤ t < ∞ ,

(19)

l∗kk

2
< s ≤ l∗kk

gk
j (t|s) =




0 , 0 ≤ t < dcj + l∗kk − s ,

t − (dcj + l∗kk − s) , dcj + l∗kk − s ≤ t < dcj + s ,

2t − (2dcj + l∗kk ) , dcj + s ≤ t < l∗kk − dcj

l∗kk , l∗kk − dcj ≤ t < ∞ .

(20)

In a similar fashion, we can formulate gk
j (t|s) for links of Type 3 and Type 4 as

follows.

14



Type 3: the links included in the tree rooted at qkA (see Figure 5(c))

gk
j (t|s) =




0 , 0 ≤ t < dcj + s ,

t − (dcj + s) , dcj + s ≤ t < drj + s ,

drj − dcj (= l∗kj ) , drj + s ≤ t < ∞ .

(21)

Type 4: the links included in the tree rooted at qkB (see Figure 5(d))

gk
j (t|s) =




0 , 0 ≤ t < dcj − s ,

t − (dcj − s) , dcj − s ≤ t < drj − s ,

drj − dcj (= l∗kj ) , drj − s ≤ t < ∞ .

(22)

Step 4: integration of gk
j
(t|s)

As we showed above, we can formulate gk
j (t|s) for each second order refined link

L∗k
j with respect to an arbitrary location of p on L∗k

k . Thus we can obtain the value,

lkp(t|s), of lp(t) when p is located at s on L∗k
k as

lkp(t|s) =
n∗k

L∑
j=1

gk
j (t|s) . (23)

Therefore, the expected value, E(lp(t)), of lp(t) for all possible locations of p over

LT is given by

E(lp(t)) =
1

lT

n∗
L∑

k=1

∫ l∗
k

0
lkp(t|s) ds , (24)

and K(t) in equation (5) can be rewritten as

K(t) =
1

lT

∫
p∈LT

lp(t) dp ,

=
1

lT

n∗
L∑

k=1

∫ l∗k
k

0
lkp(t|s) ds . (25)

We end up this subsection with the computational order of the above procedure.

In the above procedure, we have to construct the shortest path tree rooted at each

node of Q = {q1, . . . , qnQ
} and Q∗ (note that the number of nodes in Q∗ has at

15



most the same order of nQ). This computational order is O(n2
Q log nQ). Just like

the computational procedure in the preceding subsection, other computations in the

above procedure have a linear order with respect to the number of links, so that the

total computational order of the above procedure is dominated by O(n2
Q log nQ).

5 Conclusions

The ordinary K-function method, which is often used in spatial statistics, as-

sumes a homogeneous plane with the Euclidean distance. This assumption is hardly

acceptable when we analyze the distribution of points in a fairly small district where

the Euclidean distance is quite different from the shortest path distance on a street

network and points are distributed along streets. To overcome this difficulty, this

paper proposed the network K-funciton method and the network corss K-funciton

method.

The network K-function method, defined by equations (5) and (7), is designed for

testing the hypothesis that points are uniformly and independently distributed over

a network (for instance, this statistic is useful for testing whether or not fast-food

stands are uniformly distributed over streets in a downtown).

The network cross K-function method, defined by equations (11) and (13), is

designed for testing the hypothesis that points of one kind are independently dis-

tributed on a network regardless of the locations of points of another kind (for

instance, this statistics is useful for testing whether or not fast-food stands tend to

gather around bus stops in a downtown).

These methods become practical by the computational methods shown in Section

4. The computational order of the network K-function method and that of the

network cross K-function method are O(n2
Q log nQ) and O(nQ log nQ), respectively,

where nQ is the number of nodes of the network.

16



We expect that these K-function methods provide a powerful tool for spatial

analysis in a detailed geographical space with a street network, in particular, for

micro-marketing.
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Figure captions

Figure 1: A computational method for the network cross K-function

(a) the subset Lpbi
(t), (b) break points generated by pbi,

(c)break-point nodes generated by pbi, (d)subset Lpbi
(t)

Figure 2: Topological relation of nodes

Figure 3: Refinement of links

(a) an original network, (b) first order refined links,

(c) second order refined links, (d) trace links of p

Figure 4: Types of Links

Figure 5: Computation of gk
j (t|s)

(a) Type 1, (b) Type2, (c) Type 3, (d) Type 4
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Figure 1: A computational method	for the netw ork cross K-function
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Figure 2: Topological relation of nodes
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Figure 3: Refinement of links
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Figure 4: Types of links
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Figure 5: Computation of gjk(t|s)
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