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Abstract 

 

Keywords: point distributions, comparison and classification, spatial scale 

 

Spatial analysis often faces point distributions representing a wide variety of spatial objects. A first step 

of point data analysis is to evaluate the distribution of the data and classify them into groups with similar 

patterns. It helps us to understand the relationship and common properties of point distributions as well 

as the underlying structure that determines the distributions. This paper proposes a novel method of 

classifying and comparing point distributions, and analyzing their relationships at a variety of spatial 

scales ranging from local to global. Compared with existing approaches, this method is more robust to 

positional errors that are inevitable in spatial data. The validity of the method is tested through its 

application to the analysis of trip behavior data of the public transport users in Brisbane, Australia. The 

results support the technical soundness of the method, and reveals travel patterns that cannot be easily 

obtained by visual analysis and other existing methods. 
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1. Introduction 

Spatial analysis often faces point distributions representing a wide variety of spatial objects. 

Retail geography discusses the spatial patterns in the distribution of retail stores, service shops, and 

restaurants. Sociology and demography analyze the mixture and segregation of different ethnic groups in 

urban areas. Ecology treats the relationship between the distributions of different species of plants and 

animals. 

A first step of analyzing multiple distributions is to evaluate the data and classify them into 

groups with similar patterns. It helps us to understand the relationship and common properties of point 

distributions and explore the underlying structure that determines the distributions. Several options are 

available for this purpose. 

A most popular approach to comparison is the quadrat method (Diggle (1983); Upton and 

Fingleton (1985)). Overlaying a lattice on point distributions, we count the number of points in each cell 

and compare them by the χ-square statistic. Another option is the nearest neighbor spatial association 

measure R* proposed by Lee (1979). The measure evaluates the spatial closeness of two sets of points, 

by which we can statistically test whether the sets are spatially close, separated, or independent. A revised 

version of R* is the conditional nearest-neighbor spatial-association measure proposed by (Okabe and 

Miki 1984). Their method evaluates the similarity of one distribution with respect to another, which yields 

asymmetrical measures. The method is appropriate when an asymmetrical association is expected 

between point distributions such as cause and result relationship. Instead of a single measure, Ripley 

proposed a function that evaluates the similarity between two sets of points. The cross K-function 

represents the similarity as a function of distance variable (Ripley (1976); Ripley (1977); Ripley (2005); 

Cressie (2015)). 

Classification of point distributions can be performed by evaluating the similarity between point 

distributions by a single measure. Among the methods mentioned above, the quadrat method, R*, and its 

revised forms satisfy this condition. The distances between every pair of distributions form a distance 

matrix, which become the basis of classification using an existing method of cluster analysis such as 

single-linkage, complete-linkage, and Ward’s method. 

Spatial scale plays a key role in the comparison and classification of point distributions, because 

evaluation of similarity depends on the scale at which one compares the point distributions. Suppose there 

are eight point patterns on a one-dimensional space (Figure 1). Points in Γ1, Γ2, and Γ3 are uniformly 

distributed, but with different starting points. Points in Γ1 are more closely located with those in Γ2 than 

in Γ3, and thus we regard distribution Γ1 is more similar to Γ2 than Γ3. Distributions from Γ1 to Γ3 are 

similar on a global scale with a slight variation on a local scale. Distributions Γ4 and Γ5 both consists of 

a set of uniform distribution and a point cluster on the right. We may say that they are partially similar to 

Γ1 but hesitate to say that they are globally similar to Γ1. Distributions Γ7 and Γ8 also contain point clusters. 

Though they are similar on a global scale, they are different on a local scale because of the difference in 
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the two points on the left. Points in distribution Γ9 are clustered on a global scale and hence this pattern 

is different from distributions from Γ1 to Γ3. Evaluation of similarity is scale-dependent, and hence we 

need to consider explicitly the spatial scale in the comparison and classification of point distributions. 

 

 
 

Figure 1 Point distributions on a one-dimensional space. 

 

The nearest neighbor spatial association measure R*, unfortunately, does not involve the 

concept of spatial scale. The quadrat method and cross K-function, on the other hand, consider the scale 

of analysis. In the quadrat method, the size of cells used in point counting represents the spatial scale. 

Large cells conceal local difference between points and thus the distributions tend to look similar. Small 

cells emphasizes the difference so that the distributions look different. The cross K-function represents 

the similarity as a function of spatial scale, and thus evaluates the similarity at various scales from local 

to global. The quadrat method and cross K-function, however, are sensitive to errors in positional data 

because they are based on the number of points contained in regions with crisp boundaries. A slight error 

in positional information may drastically change the evaluation outcome of similarity. Such instability in 

evaluation is critical since spatial data are generally inaccurate to some extent due to noise and 

measurement errors. In addition, the assessment of similarity depends on not only the spatial scale but 

also the location of lattice in the quadrat method. Since the effects of scale and location are inseparable, 

we cannot evaluate the role of spatial scale explicitly in the comparison and classification of point 

distributions. The cross K-function is free from the location problem, but is not appropriate for 

classification since it does not provide a single measure. 

This paper proposes a new method applicable to the classification and comparison of point 
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distributions. The method considers the spatial scale explicitly, and is more robust to positional error. 

Section 2 describes the method with illustrations. Section 3 applies the method to the analysis of trip 

patterns in Brisbane, Australia. Section 4 summarizes the conclusions with discussion. 

 

2. Methods 

2.1 Representation of point distributions 

 There has been a long debate on the definition of scale in geography (extensive reviews include 

Lam and Quattrochi (1992), Quattrochi and Goodchild (1997), Wu and Li (2009), and Zhang et al. (2014)). 

Among the four scale definitions discussed in Zhang et al. (2014), analysis of point distributions is 

primarily related to geographical and measurement scales. Geographical scale refers to the spatial extent 

in which spatial analysis is performed, while measurement scale is the smallest distinguishable unit in 

data collection, which is often called observation scale or resolution. Let us consider the relationship 

between these two scales in terms of similarity between point distributions in Figure 1. We use the terms 

scale and resolution to refer to geographical and measurement scale, respectively. 

Distributions from Γ1 to Γ3 are all similar on a global scale. The global similarity can be 

observed at 0.01 or coarser resolutions because a slight difference in the location of points between the 

distributions is not distinguished at these resolutions. Distributions Γ1 and Γ3, on the other hand, requires 

0.05 or coarser resolutions to find their global similarity. Distributions Γ9 requires a very coarse resolution 

to detect a global similarity between distribution Γ1, because a finer resolution distinguishes the location 

of points in Γ1 and that of points in Γ9. Distribution Γ6 consists of four points distributed at the same 

intervals and four points that are tightly clustered. We often say that Γ6 is similar to Γ1 on a local scale 

but different from Γ1 on a global scale, or that Γ6 is partially similar to Γ1. The local similarity can be 

detected by 0.01 resolution, while a very coarse resolution is necessary to evaluate the global difference. 

 The above observation implies that the relationship between scale and resolution is rather 

complicated and sometimes confusing. Similarity between point distributions detected at a fine resolution 

is connected with the similarity on both global and local scales, while coarse resolution is primarily related 

to the similarity on a local scale. Though the terms scale and resolution are often used interchangeably, 

this paper distinguish these terms in the following, i.e., scale refers to geographical scale while resolution 

refers to measurement scale. 

Scale and resolution of spatial analysis depends on the location or spatial unit of analysis, and 

the way in which we interpret spatial phenomena. The quadrat method, for instance, counts the number 

of points in each cell and compares them between different types of points. The cell serves as the basic 

spatial unit of analysis and the points in each cell are treated equally independent of their relative location. 

The cross K-function counts the number of points located within a certain distance from each reference 

point. Analysis is performed at each location of reference point, and points are equally evaluated 

independent of the distance from the reference point. 
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This paper evaluates, at present, a point distribution at every location and treats all points 

equally within a given distance hC from the location. This is equivalent to the cross K-function except that 

we evaluate the distribution at every location. Suppose N types of point distributions denoted by Γ={Γ1, 

Γ2, ..., ΓN}. Point distribution Γi consists of ni points (i=1, ..., N). Let Pij and zij be the jth point and its 

location in set Γi, respectively. Standing at location x, we see points in the circle of radius hC centered at 

x and treat them equally independent of the distance from x. This implies, in other words, that we interpret 

the point distribution at each location by the number of points within distance hC. This view on point 

distribution Γi is mathematically represented as a function of location x: 

 ( ) ( ), ; , ,i C C C ij C
j

F h hδ δ= ∑x zx , 

(1) 

where δC(x, zij, hC) is an indicator function: 

 ( ) 1 if
, ,

0 otherwise
ij C

C ij C

h
hδ

 ≤= 


−x z
zx . 

(2) 

 We call Fi(x, hC; δC) the interpreted surface of points Γi, because it represents our analytical 

interpretation of point distribution, i.e., the way of treating the distribution in analysis. Figure 2 shows 

some examples of Fi(x, hC; δC) calculated based on distributions Γ1, Γ4, Γ6 and Γ9 in Figure 1. As seen in 

the figure, Equation (1) transforms point distributions into stepwise functions that indicate the number of 

points within distance hC at each location. Parameter hC defines the spatial extent of view at each location; 

a large hC implies the consideration of a wide area while a small hC provides a narrow view. Since hC 

works as an indicator of analytical resolution, we call hC a resolution parameter, hereafter. 

The role of hC emerges in the smoothness of obtained surface, i.e., a small hC converts a point 

distribution into a rough surface with many peaks (Figure 2a) while a large hC decreases the peaks of the 

surface (Figure 2b). The former is more similar to the original distribution because it evaluates the location 

of each point more accurately. A surface based on a large hC implies that we only consider the rough 

distribution of points based on their approximate location. Interpreted surface Fi(x, hC; δC) approaches a 

uniform surface in any distribution of points when hC→∞ and hence the obtained surfaces look quite 

similar. This is because the difference between point distributions interpreted at finer higher resolutions 

is concealed by the similarity between distributions observed at coarser resolutions. 

Given a certain x, interpreted surface Fi(x, hC; δC) represents the accumulation of spatial 

phenomena interpreted at resolutions finer than hC. Consequently, Fi(x, hC; δC) as a function of hC 

increases monotonically with hC. The change in value of Fi(x, hC; δC), on the other hand, indicates the 

point distribution interpreted exactly at hC. Fi(x, hC; δC) is a stepwise function that increases only when a 

point is on the ring of radius hC centered at x (a similar discussion can be found in Kiskowski et al. (2009)). 
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Figure 2 Interpreted surfaces calculated based on the point distributions in Figure 1. (a) Interpreted 

surfaces with a small hC. (b) Interpreted surfaces with a large hC. Points in each distribution are labelled 

in ascending order from left to right. 

 

 Given that Fi(x, hC; δC) is a stepwise function, its value can increase or decrease rapidly at the 

boundary of the circle of radius hC centered at each point. This property is not desirable in analyzing 

spatial data since the result of analysis based on such functions can change drastically by even a slight 

error, which is often included in positional information of spatial data. To assure the robustness against 

such data errors, we introduce a different representation of point distribution. Standing at location x, we 

evaluate the spatial phenomena with a distance-decaying weight defined over an infinite space, i.e., we 
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interpret the spatial phenomena in the near neighborhood of x with more weight than those in distant 

places. We count the number of points with a distance-decaying weight defined by a function δ(|x-zij|, h). 

This gives another definition of the interpreted surface: 

 ( ) ( ), ; ,i ij
j

F h hδ δ= −∑x x z . 

(3) 

Similar to hC, h in Equation (3) determines the resolution of the analysis; a small h represents a fine 

resolution that gives a more detailed view of the point distribution while a large h represents a coarse 

resolution. 

 The interpreted surface Fi(x, h; δ) is equivalent to kernel smoothing (Silverman 1986). Kernel 

smoothing puts a small bump called a kernel at each observation and sums the kernels up to obtain a 

surface function. Each kernel and its summation corresponds to δ(|x-zij|, h) and Fi(x, h; δ), respectively. 

This paper adopts the Gaussian kernel as δ(|x-zij|, h) that is most frequently used in kernel smoothing: 

( )
2

22,
ij

ij
hh eδ

−
−

− =
zx

zx . 

(4) 

The interpreted surface becomes 

( )
2

22, ;
ij

i
j

heF h δ
−

−

= ∑
x z

x . 

(5) 

Figure 3 shows the interpreted surfaces Fi(x, h; δ) from the point distributions in Figure 1. Unlike surfaces 

in Figure 2, those in Figure 3 are continuous, and their shapes do not change drastically due to possible 

positional errors in the points data. The results of analysis based on surfaces Fi(x, h; δ) are more stable 

than those on Fi(x, hC; δC), which assures the robustness of our method. A small h generates rough surfaces 

in Figure 3a while a large h yields smooth surfaces (Figure 3b). The roughness in surfaces F1-F3 observed 

in Figure 3a disappears in Figure 3b, and hence all the surfaces look similarly uniform. This is because 

the coarse resolution conceals the local variation between the distributions in Figure 3b, which supports 

our earlier observation that the distributions are similarly uniform on a global scale with a slight variation 

on a local scale. 
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Figure 3 Interpreted surfaces calculated based on the point distributions in Figure 1. (a) Interpreted 

surfaces with a small resolution parameter h. (b) Interpreted surfaces with a large resolution parameter 

h. 

 

 Similar to the interpreted surface Fi(x, hC; δC), Fi(x, h; δ) represents the accumulation of spatial 

phenomena interpreted at resolutions finer than h, and the change in value indicates the point distribution 

interpreted exactly at h. The latter is mathematically represented as 

 

( ) ( )
2

2

2

2

2

2

2
3

d ;
d

, ;

d
d

,

ij

ij

h

i i

j

ij

j

h

F h F
h

e
h

e
h

hδ δ

−

−

−

−

′ =

=

−
=

∑

∑

z

z

x

x

x x

x z

. 

(6) 

F'i(x, h; δ) is the derivative of Fi(x, h; δ) with respect to h, which we call the interpreted density of points 

Γi at resolution h. It represents the point distribution interpreted exactly at resolution h, i.e., the distribution 

interpreted on the ring of radius h centered at x. Thus, the interpreted surface Fi(x, hC; δC) can be obtained 
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as: 

 ( ) ( )
0

0 00
, ; , ; d

h

i ih
F h F h hδ δ

=
′= ∫x x . 

(7) 

 Figure 4 shows the interpreted densities F'i(x, h; δ) calculated based on distributions Γ1, Γ4, Γ6 

and Γ9 in Figure 1. F'i(x, h; δ) increases around points, the degree of which depends on the distance from 

the origin and that from points. F'i(x, h; δ) increases drastically near the origin when the both distances 

are small as seen in F'1(x, h; δ) and F'4(x, h; δ) in Figure 4. F'i(x, h; δ) becomes long-tailed in Γ4, Γ6 and 

Γ9 that contain point clusters located far from the origin. 

 

 
 

Figure 4 Interpreted density F'i(0, h; δ) as a function of h calculated based on the point distributions in 

Figure 1, where x=0 is the starting point of the horizontal axis on which points are distributed. 

 

2.2 Comparison of point distributions 

 Using the interpreted surface, we evaluate the similarity between point distributions. The 
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similarity measure between Γi and Γk is defined as 

 ( ) ( ) ( ), ; , ;11 d
2ik i kh hS f hfδ δ= − −∫ x x x , 

(8) 

where fi(x, h; δ) is a standardized form of Fi(x, h; δ): 

( )
( )

( )
2

22

,

2

1, ;
, d

1 ij

ij
i

ji ij

ji

h

h
f h

n h

e
n hπ

δ
δ

δ

−
−

−
=

−

=

∑
∫

∑
x z

z

z

x
x

x x
, 

(9) 

(k=1, …, N, but k≠i). We use h in logarithmic form Sik(h) in the following since Sik(h) increases very 

rapidly when h is small. The measure Sik(h) reaches its minimum and maximum values when h=0 and 

h→∞, respectively. The maximum value of Sik(h) is 1 while its minimum value is 

 

11
2

2

MIN i ik k ik
ik

i k

i k
ik

i k

n m n mS
n n

n n m
n n

 − −
= − + 

 
+

=
, 

(10) 

where mik is the number of points in Γi that shares the same location with a point in Γk. If the locations of 

all the points in Γi and Γk are different, mik=0; therefore, Sik(h) ranges from zero to one. 

The measure Sik(h) permits us to evaluate the similarity between Γi and Γk with an explicit 

consideration of spatial resolution. The measure Sik(h) evaluates the accumulation of similarity between 

Fi(x, h; δ) and Fk(x, h; δ) at resolutions finer than h, and the change of Sik(h) indicates the similarity 

exactly at resolution h. The latter is mathematically represented as 

 
( ) ( )

( ) ( )

d
d

1 d , d,
2 d

i

i

kik

k

S h
h

f f
h

h S

h h

=

= −

′

−∫ x x x
, 

(11) 

which we call differential similarity measure. 

Figure 5a and Figure 5b illustrate the changing patterns of Sik(h) and S'ik(h) between distribution 

Γ1 and all other distributions (Γ2-Γ9), respectively. Figure 5c also shows S'ik(h) between h=0.01 and h=10, 

where S'ik(h) has very low peaks. The peaks are critical, however, since S'ik(h) at large h occupies a 
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considerable portion of Sik(h) (recall h is shown in logarithmic scale). The resolution of observation 

gradually changes from high to low with an increase in h and thus the difference between distributions 

vanishes. Consequently, Sik(h) is an increasing function of h, and S'ik(h) is non-negative for any h with 

multiple peaks of different height. 

Figure 1 shows that distributions Γ2 and Γ3 are similar to Γ1 on a global scale, while Γ4 to Γ9 

are different since they contain point clusters. Measures S'12(h) and S'13(h) are characterized by their 

significant peaks at small h, which are much higher than their lower peaks observed in Figure 5c. 

Measures from S'14(h) to S'19(h) have multiple peaks, those of which at large h are not negligible as shown 

in Figure 5c. This implies that the similarity on a global scale emerges as a significant peak at a fine 

resolution. It is consistent with our earlier discussion, i.e., a slight difference vanishes at a fine resolution 

when point distributions are similar on a global scale. When point distributions are not similar on a global 

scale, a coarse resolution is necessary to regard the distributions similar with each other. 

Distributions Γ4, Γ6 and Γ7 are similar to Γ1 on a local scale because they contain several points 

that are closely located to those in Γ1. This results in peaks of S'ik(h) at a small h as seen in Figure 5b. 

These distributions also have peaks at large h (Figure 5c), which implies that a coarse resolution is 

necessary to recognize the similarity on a global scale between these distributions and Γ1. From this we 

can say that multiple peaks containing peaks at a fine resolution indicate the similarity only on a local 

scale between point distributions. 

The highest peaks of Γ4, Γ6 and Γ7 are observed at h=0.005, which is the half of the distance 

between some points in Γ4, Γ6, and Γ7 and their nearest points in Γ1. For instance, the distance between 

four points on the left in Γ4 and their nearest points in Γ1 is 0.01 as seen in Figure 1. Similarly, distributions 

Γ3, Γ5 and Γ8 have peaks at h=0.025, which is also the half the distance between some points in Γ3, Γ5 

and Γ8 and their nearest points in Γ1. The value of h of the highest peaks contains the information on the 

distance between neighboring points in different distributions. Appendices A1 and A2 discuss this 

relationship in detail with a theoretical support. 

Distribution Γ9 is totally different from Γ1. Measure S'19(h) stays zero where h≤0.05, and reaches 

its maximum at h=0.115. Lack of peaks at a fine resolution and a significant peak at a coarse resolution 

indicate that point distributions are different on both global and local scales. 

 We may summarize the above observation as follows. Given two distributions, we say that they 

are similar on a global scale when S'ik(h) has a significant peak at a small h. If S'ik(h) has a low peak at a 

small h, the distributions are similar on a local scale but different on a global scale. If S'ik(h) does not have 

any peak at a small h, the distributions are different on both global and local scales. 
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Figure 5 The relationship between scale parameter h and (a), similarity measure Sik(h) (b)(c), and 

differential similarity measure S'ik(h). Examples of ηik(0.9) are also shown in (a). 

 

The measures Sik(h) and S'ik(h) take into account the spatial resolution explicitly, and thus are 

useful for evaluating the similarity between Γi and Γk by resolutions. These measures, however, are not 

directly applicable to the classification of point distributions since most classification methods prefers to 

use one measure to quantify the similarity between each pair of distributions. In addition, Sik(h) and S'ik(h) 

are rather inconvenient to capture the entire similarity between point distributions. A single measure is 

useful and easy to understand the overall properties of distributions especially when we treat numerous 

types of points. We thus propose a single measure based on Sik(h) that represents the overall similarity 

between point distributions. 

The similarity between point distributions monotonically increases by accumulating the 

similarity at increasing resolutions. The measure Sik(h) increases very rapidly when Γi and Γk are globally 

similar while it increases slowly when Γi and Γk are dissimilar globally. This permits us to evaluate the 

overall similarity of distributions by how fast they become similar with the increase in h. We propose a 

measure ηik(α) defined by 

 
( )( )

( )( )
0

dik

ikh

ik ik

S h

S

h
η α

η

α

α
=

=

′= ∫
. 

(12) 

The right side of the equation represents the accumulation of similarity at resolutions from h=0 to ηik(α).  

ηik(α) equals to h when the accumulation reaches α. This measure enables us to evaluate the overall 

similarity between distributions Γi and Γk. When Γi and Γk are highly similar on a global scale, Sik(h) 

increases rapidly and the accumulation reaches α at a small h. On the other hand, if Γi and Γk are not so 

similar, Sik(h) increases slowly and hence ηik(α) becomes large. Therefore, ηik(α) serves as a distance 

measure between Γi and Γj. 

 Parameter α can take any value. However, the comparison of more than two distributions 

requires a consistent value. The overall similarity is evaluated by considering the point distributions at 

various resolutions using a large α, as a small α implies that the comparison of distributions is only at 

fine resolutions. On the other hand, α=1 is meaningless as ηik(1)=∞ in any case. We thus recommend 

using a large α value such as α=0.9 or α=0.95 as is often adopted as the level of significance in statistical 

tests. 

 Figure 5a shows examples of ηik(α) where α=0.9. The values of ηik(α) reveal that distribution 

Γ1 is most similar to Γ2 but least similar to Γ9. The values also indicate that distributions Γ2 and Γ3 are 

even more similar to Γ1 than to Γ4-Γ9, which is consistent with our intuition mentioned earlier. 

 ηik(α) works as a distance measure between Γi and Γk, and forms a distance matrix that 
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represents the similarity between the point distributions. The matrix gives a basis of classifying the 

distributions using existing cluster analysis methods (Everitt et al. (2011); Hennig et al. (2015)). Cluster 

analysis include both hierarchical methods such as the single-linkage, complete linkage and Ward’s 

method, and non-hierarchical methods such as K-means and K-medoids method. The non-hierarchical 

methods are popular especially in data mining because these methods run faster than the hierarchical 

clustering methods. While K-means method is most popular in non-hierarchical cluster analysis, it 

requires the attribute data of elements to calculate the distance between groups repeatedly in the clustering 

process. In contrast, the K-medoids method is based only on a distance matrix of elements, that is, by 

choosing an initial set of medoids from the elements, the K-medoids method assigns each element to its 

nearest medoid. This method recomposes the set of medoids step by step until the summation of the 

distance within each medoid is minimized. The K-medoids method is more appropriate to use when 

dealing with large number of point types, hence, this approach is adopted for our purpose. 

 

3. Empirical study 

3.1 Study area and data 

The method proposed in Section 2 is applied to the analysis of trip patterns of the public 

transport users travelling on go card in South East Queensland (SEQ), Australia (Figure 6). go card is a 

transport smart card whose owners can travel on bus, train, ferry and tram services by tapping on and off 

when they board and alight a service. We collected all trip transaction data made by Pensioner Concession 

Card (PCC) holders for one week, from 9th to 15th in March, 2015 and randomly sampled 3026 PCC 

holders (which is just under 10% of all users of this card type) for analysis of their travel patterns. The 

PCC is one type of concession cards issued by Australian government, where the card holders are entitled 

to travel at concession fares. This sampling approach is necessary to reduce the data processing time when 

testing the proposed method, given that there were 32,970 PCC users in the week with over 200,000 

transaction records. Each trip record consists of boarding and alighting times, bus route number, and the 

identification number of bus/train/ferry stops where each trip commences and ends. The trip transaction 

data were mapped to the spatial data of road service network using the alighting locations for visualization 

and spatial analysis. 
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Figure 6 South East Queensland consisting Brisbane and its surrounding local government areas. 

 

The first boarding and last alighting bus stops in a day by each PCC holder are identical in most 

cases. This permits us to infer the home locations of the card holders. Some card holders make no trip in 

one day while others make multiple trips. In the latter case each card holder’s transaction records compose 

a sequence of trips in a day. This results in temporal gaps between trips, i.e., the gap between the alighting 

time of a trip and the boarding time of its subsequent trip. Card holders may stay at a location (i.e., end 

of a journey) or walk for a short distance to another stop to continue a journey. This paper distinguishes 

the gap between trips as transits and stays based on the duration of the gap time. Transits are the gaps 

shorter than 30 minutes while stays are gaps longer than transits. 

 Some card holders make stays many times in one day. We define a card holder who makes four 

stays or more in at least one day during a week a frequent commuter. This section focuses on the trip 

patterns of the frequent commuters of the PCC holders in SEQ. We extracted 257 frequent commuters 
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from the 3026 card holders we initially sampled. 

 

3.2 Classification results of commuter groups at global scale 

All transaction data by the frequent commuters were classified into three to seven groups based 

on the location of their stays using the K-medoids method. The threshold α was set to 0.9. Table 1 shows 

the distances between groups when we classified the data into seven groups (G01-G07). Other number of 

groups (ranging from three to six) show similar classification results.  γ in Table 1 represents the average 

distance between commuters and the medoid of their group and ρ is the average distance between 

commuters within each group, both of which indicate the variation in the location of stays in each group. 

The 7 by 7 matrix on the right in Table 1 is the distance matrix between the medoids of groups. 

G01-G03 are larger in size than other groups, accounting for 75.9% of all the frequent 

commuters sampled. Group G02 shows small γ and ρ values despite the largest number of commuters, 

which implies that commuters in this group made stays at very similar locations. On the other hand, the 

large γ and ρ values in G06 indicate a wide spread in the location of stays by this group. The distance 

matrix also shows that there is a large distance between Groups G01-G03 and Groups G05-G07 (i.e., all 

over 400m). Groups G01-G03 are relatively closer to each other; G06 is separated from G05 and G07 

(1000m) while G05 and G07 are rather close (128.9m). Group G04 sits in between G01-G03 and G05-

G07; G04 is close to G02, G03 and G05 while separated from G01, G06, and G07. 

 

Table 1 Distances between commuters and groups. γ is the average distance between commuters and the 

medoid of their group, while ρ is the average distance between commuters within each group. The 7 by 

7 matrix on the right is the distance matrix between groups, i.e., the distances between the medoids of 

groups. All distances are measured in meters. 

 

 
 

 Figure 7 shows the location of homes and stays of the frequent commuters, demonstrating a 

spatial closeness between the home locations and the locations they travelled to. Commuters in general 

made stays in the same area of their residence. For instance, commuters in group G01 primarily live and 
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made stays in the Moreton Bay region, while G05 in the Sunshine Coast and G06 and G07 in the Gold 

Coast regions. Groups G01-G04 made stays in and around the Brisbane area, which are rather separated 

from G05-G07. This is consistent with our observation in Table 1, i.e., groups G01-G04 share similar 

pattern of stays that yield small between-group distances. Stays of G02 and G07 are tightly clustered 

(Figure 7c and h), while those of G01, G04 and G06 are rather scattered (Figure 7b, e and g), which is 

also confirmed by the small ρ value in G02 (19.07m) and G07 (12.91m) but rather large ρ value in G01 

(77.76m), G04 (52.65m) and G06 (87.10m) (Table 1). It is speculated that the former groups (G02 and 

G07) made trips for working and shopping around their homes, while commuters in the latter (G01, G04 

and G06) travelled within their home area as well as to distant places for work or other purposes. 
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Figure 7 The location of homes (a) and stays (b-h) of the frequent commuters classified into seven 

groups. Color of points in G01 to G07 indicates the relative number of stays made by the frequent 
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commuters at each stop, which ranges from 0 to 3 or more stays, with the reddish points indicating more 

frequent while greenish less frequent stay locations. Numbers in parentheses are the number of frequent 

commuters in each group. 

 

 Commuters can be broadly classified into two groups, i.e., one in G01-G04 and the other in 

G05-G07. Members in the latter broad group are distinctive to each other with each group sharing similar 

travel features, that is, the commuters mostly travel within their respective local areas. Groups G01-G04, 

on the other hand, share a common feature of less number of stays and smaller between-group distances, 

as shown in Table 1 and Figure 7, however, it is difficult to uncover other differences or similarities 

amongst these groups. 

 

3.3 Reclassification at local scale 

We thus regrouped the 214 commuters in G01-G04 together and reclassified them into seven 

subgroups (G11 to G17) using the same approach described in Section 2. The result is shown in Table 2 

and Figure 8. Again, commuters made stays in and around the area of their residence. G12 and G13 consist 

of commuters living in the Moreton Bay region (Figure 8a), and their stay locations were also largely in 

this region (Figure 8c and d). These two subgroups have similar distribution of stays featured by a small 

distance between these groups in the distance matrix (Table 2). G15 and G16 consists of commuters living 

in the Ipswich and the Logan-Gold Coast regions, respectively; their travel stays were also mainly 

clustered within their own regions, with some living in Logan but travelling to Brisbane (Figure 8f and 

g). For G11, G14, and G17, commuters made stays in their home region as well as the surrounding areas. 

Commuters of G11 and G14 live in the south and north suburbs in Brisbane, respectively, and they made 

stays in their residential area as well as commuting to the inner city of Brisbane (Figure 8b and e). 

Commuters of G17 live in the inner city of Brisbane but travel to all parts in Brisbane as well as to the 

coastal area in the Redlands (Figure 8h). Clearly, Brisbane is a central location that is attractive to many 

commuters in the surrounding regions. These three subgroups (G11, G14 and G17) form the majority of 

the frequent commuters, i.e., 63.8% of all the commuters, with similar pattern of stays featured by the 

small values in the distance matrix (Table 2). 

 

Table 2 Distances between commuters and groups. γ is the average distance between commuters and the 

medoid of their group, while ρ is the average distance between commuters within each group. The 7 by 

7 matrix on the right is the distance matrix between groups, i.e., the distances between the medoids of 

groups. All distances are measured in meters. 

 



20 
 

 

G11 G12 G13 G14 G15 G16γ ρNumber of
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Figure 8 The location of homes (a) and stays (b-h) of frequent commuters living in and around Brisbane 

area. Colors of points in the maps of stays indicate the relative number of stays made by the frequent 
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commuters at each stop. Numbers in parentheses are the number of frequent commuters in each group. 

 

We then review in a more local scale the distribution of stays in the seven subgroups. Figure 9 

illustrates the average differential similarity measures between the frequent commuters in each group. 

Groups G11, G12, G14, G15, and G17 have single peaks at h=288.4, 416.9, 426.6, 478.6, and 631.0, 

respectively. These relatively smaller values imply that the distributions of stays are similar on a global 

scale as discussed in the Section 2, which can also be confirmed by the relatively smaller γ and ρ values. 

On the other hand, large γ and ρ values are observed in G13 and G16; the spatial distribution of stays for 

these two subgroups are shown in Figure 10 (a and b). G13 has a single peak at h=741.3, indicating a 

great variation in the distribution of stays in the group shown in Figure 10a. Group G16 has two peaks 

(Figure 9), one at h=275.4 and the other at h=776.2. Multiple peaks suggest that the point distributions 

within this group are globally different but partially similar as seen in Section 2 (S'17-S'19 in Figure 5). 

Figure 10c shows a zoom-in view of the locations of stays of four commuters within the dotted elliptic 

area in Figure 10b at a large scale, illustrating such partial similarity at different locations. All four 

commuters made stays at the center of the elliptic area, while each commuter made its own stays 

separately in other locations. The distribution of stays are partially similar at the center but rather different 

globally, which yields two peaks (Figure 9, G16). Such partial similarity between point distributions 

cannot be easily detected by visual analysis, confirming the effectiveness of differential similarity 

measure. 

 

 
 

Figure 9 Average differential similarity measures between frequent commuters in each group. 
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Figure 10 The location of stays of frequent commuters of (a) G13 and (b)(c) G16. (c) Stays of four 

commuters within the dotted elliptic area in Figure 10b at a large scale. Different colors of points 

indicate different commuters. 

 

3. Concluding discussion 

This paper presents a new method of analyzing point distributions. The method considers the 

spatial scale explicitly, and applicable to both comparison and classification of point distributions. The 

method is more robust to positional errors that are inevitable in spatial data. The robustness is assured by 
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(c)



24 
 

the conversion of point distributions into continuous surfaces as discussed in Section 2. To test the validity 

of the proposed method, we applied the method to the analysis of trip data of the public transport users in 

Southeast Queensland, Australia. The results support the technical soundness of the method, and provided 

meaningful insights on the travel patterns of the Pensioner Concession Card holders that may not be easily 

observable by visual analysis and other existing methods. 

The proposed approach is not without limitations. First, this proposed data clustering method is 

based on exploratory spatial analysis rather than statistical analysis. Though measures S'ik(h) and ηik(α) 

are useful for comparing the similarity between point distributions, their statistical significance is not 

tested. As such, the classification of distributions is not statistically validated. Nevertheless, this 

exploratory spatial analysis is necessary since a strict view of statistics often conceals subtle but 

interesting patterns in spatial phenomena. Cluster analysis and spatial data mining are often not 

accompanied with statistical discussion to avoid overlooking such hidden patterns. However, statistical 

analysis permits us to reach more objective and persuasive results. Incorporation of statistical perspective 

into the proposed method should be considered in future research. 

 Second, the choice of parameter α needs further consideration. Though a large value is clearly 

necessary for the evaluation of overall similarity between point distributions, it is still unknown how large 

α should be. Theoretical approach in general statistics seems difficult to derive a unique value of α. One 

promising option in search of a suitable α value might be to apply the proposed method by varying the α 

value in a wide variety of situations. This will enable further investigation on the relationship between α 

values and the effectiveness of the results obtained. 

 Future research should also consider incorporating the temporal dimension in the analysis of 

the point distributions. An extension of the spatial dimension from two to three is rather straightforward 

since it is possible to redefine the kernel function in the three-dimensional space. The addition of the 

temporal dimension, on the other hand, requires the comparison of two different types of dimensions, i.e., 

the spatial and temporal dimensions, in the evaluation of similarity between point distributions. This is an 

important extension since spatial data are often accompanied with temporal information, as seen in the 

empirical study in Section 3. The proposed method should be extended to treat temporal dimension 

appropriately. 

 

References 

Cressie N (2015) Statistics for spatial data. John Wiley & Sons,  

Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic press,  

Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edition. Wiley,  

Hennig C, Meila M, Murtagh F, Rocci R (2015) Handbook of cluster analysis. Chapman and Hall/CRC,  

Kiskowski MA, Hancock JF, Kenworthy AK (2009) On the use of ripley's k-function and its derivatives to 

analyze domain size. Biophysical Journal 97: 1095-1103 



25 
 

Lam NS-N, Quattrochi DA (1992) On the issues of scale, resolution, and fractal analysis in the mapping 

sciences*. The Professional Geographer 44: 88-98 

Lee Y (1979) A nearest-neighbor spatial-association measure for the analysis of firm interdependence. 

Environment and Planning A 11: 169-176 

Okabe A, Miki F (1984) A conditional nearest-neighbor spatial-association measure for the analysis of 

conditional locational interdependence. Environment and Planning A 16: 163-171 

Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and gis. CRC press,  

Ripley BD (1976) The second-order analysis of stationary point processes. Journal of applied probability: 255-

266 

Ripley BD (1977) Modelling spatial patterns. Journal of the Royal Statistical Society. Series B 

(Methodological) 39: 172-212 

Ripley BD (2005) Spatial statistics. John Wiley & Sons, New York 

Silverman BW (1986) Density estimation for statistics and data analysis. CRC Press, Boca Raton 

Upton G, Fingleton B (1985) Spatial data analysis by example. Volume 1: Point pattern and quantitative data. 

John Wiley & Sons Ltd.,  

Wu H, Li Z-L (2009) Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 

9: 1768-1793 

Zhang J, Atkinson P, Goodchild MF (2014) Scale in spatial information and analysis. CRC Press,  

 

Appendix A1 

 This appendix discusses in detail the similarity measure Sik(h) and the differential similarity 

measure S'ik(h) through numerical experiments. The experiments employ eleven sets of point distributions 

Ψ1-Ψ11 on a one-dimensional space. Every set consists of multiple distributions {Γ1, Γ2, ..., ΓN}, in which 

we compare distribution Γ1 with other distributions in the same set. We move every point in Γ1 by distance 

∆ to generate other distributions in sets from Ψ1 to Ψ9, where ∆ may vary across points in each distribution. 

Let hmax and h'max be the values of h that gives the highest and the second highest peaks of S'1k(h), 

respectively. This appendix omits (h) in S1k(h) and S'1k(h) for simplicity. 

Set Ψ1 consists of point distributions each of which is obtained by moving Γ1 to the right by a 

constant distance ∆. The distance ∆ varies from 0.01 to 0.05 between distributions as shown in Figure 

A1a. S1k gradually moves from left to right with ∆, implying that the global similarity decreases from Γ2 

to Γ6. The value of hmax seems almost proportional to ∆. It is close the half of ∆, which implies that hmax 

roughly tells us ∆ when ∆ is constant within the distribution. Appendix A2 gives a theoretical support of 

this relationship between hmax and ∆. 
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Figure A1 Measures S1k and S'1k in set Ψ1. 

 

Similar to the point distributions in Ψ1, those in Ψ2 are obtained by moving the points in Γ1 by 

distance ∆ varying from 0.01 to 0.05 between distributions. The direction of movement changes in turn 

from right to left in each distribution as seen in Figure A2a. Measures S1k and S'1k in set Ψ2 are very similar 
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to those in set Ψ1; S'1k has a single peak whose hmax is again almost the half of ∆. Our earlier presumption 

that hmax roughly tells us ∆ still holds when points move in different directions. A difference lies in the 

absence of the second highest peak in Ψ2. This seems relevant to the distance between points in Γk and 

their neighboring but not nearest points in Γ1. 

 



28 
 

 
 

Figure A2 Measures S1k and S'1k in set Ψ2. 

 

Set Ψ3 consists of point distributions that are partially similar to Γ1. Four points are obtained by 

moving four points on the left in Γ1 to the right by distance 0.01, while the other four are located at 
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distance 0.05 from their nearest points in Γ1. The former yields a partial similarity between Γ1 and Γ2-Γ6, 

which emerges as a gradual increase of S1k in Figure A2b. The highest peaks of S'1k are lower than those 

in Figure A1b, which is due to the difference between Γ1 and Γ2-Γ6 on a global scale. The form of S'1k in 

Figure A2c is generally similar to S'1k in Figure A1c. The value of hmax almost increases by 0.05 from 0.05 

to 0.15 in S'12-S'16, which is the same as observed in Set Ψ1. A clear difference lies in the small peak of 

S'12 at h=0.0389. This reflects the difference between Γ1 and Γ2 on a global scale caused by the four points 

on the right. 
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Figure A3 Measures S1k and S'1k in set Ψ3. 

 

Similar to Set Ψ3, Set Ψ4 contains point distributions that are partially similar to Γ1. Two points 

on the left are distributed similarly with the distributions in Ψ3, while the others are located at distance 

0.05 from their nearest points in Γ1. Distributions Γ2-Γ6 are less similar to Γ1 than Γ2-Γ6 in Set Ψ3. This 
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difference changes the form of S'1k rather drastically. Measures from S'12 to S'14 have two peaks, while S'15 

and S'16 have only a single peak. Though the highest peaks of S'12 to S'14 observed in Figure A3 still stay 

at h=0.05, 0.10, and 0.15, that of S'14 is the second highest peak in Figure A4. The highest peaks of S'14 to 

S'16 are now found around h=0.04. This reflects that distributions Γ2-Γ6 are only partially similar to Γ1. 

 

 

 

Figure A4 Measures S1k and S'1k in set Ψ4. 
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Set Ψ5 moves points in Γ1 by two different distances ∆1=0.01 and ∆2=0.05 within each 

distribution. For instance, we obtain Γ2 by moving all the points in Γ1 by distance ∆1, while we obtain Γ3 

by moving six points by ∆1 and two points by ∆2 as seen in Figure A5. Measures from S12 to S16 in Figure 

A5b looks similar with those in Figure A1b. On the other hand, S'12 to S'16 are different, i.e., they are lower 

and measures S'14 to S'16 have two peaks. Peaks at h=0.05 gradually become lower while those from 

h=0.020 to h=0.025 appear and grow higher. The latter of S'16 finally becomes the highest peak. These 

values are the half of the distance between a point in Γi and its nearest point in Γ1, indicated as ∆1 and ∆2 

in Figure A5a. Point distribution becomes less similar with Γ1 on a global scale from Γ2 to Γ6. 
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Figure A5 Measures S1k and S'1k in set Ψ5. 

 

 Set Ψ6 also moves points in Γ1 by two different distances ∆1 and ∆2 within each distribution. 
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For instance, (∆1, ∆2)=(0.01, 0.02) in Γ2 and (∆1, ∆2)=(0.01, 0.03) in Γ3 as shown in Figure A6a. We keep 

the distance values in such a way that they assure the mutual nearest relationship between the original 

points in Γ1 and those in the other distributions, i.e., the nearest point from P21 in Γ1 is P11, and that from 

P11 in Γ2 is P21. 

We newly introduce two variables ∆ave and η. The former is the average of ∆1 and ∆2, while the 

latter is the average distance from points in Γk and their nearest points in Γ1. The two variables are equal 

as long as the mutual nearest relationship holds. Figure A6a shows that hmax is between ∆1/2 and ∆2/2 in 

any case, such as 0.0050<0.0068<0.0100 in S'12, and 0.0100<0.0122<0.0150 in S16'. We also find that hmax 

is smaller than the half of ∆ave in most cases, i.e., hmax is closer to ∆1/2 than ∆2/2. hmax is exactly at ∆1/2 in 

S'13, S'14, and S'15. We may interpret these results by assuming potential peaks at both ∆1/2 and ∆2/2. When 

the similarity at h=∆1/2 is predominant, only the peak at ∆1/2 emerges while that at ∆2/2 is concealed as 

seen in S'13, S'14, and S'15. When the similarity at h=∆1/2 is significant but not predominant compared with 

the similarity at h=∆2/2, the two peaks behave as a single peak and appear at h which is closer to ∆1/2 than 

∆2/2 (S'12, S'16, and S'17). When both peaks are not significant, the peaks emerge as a single peak at h which 

is closer to ∆2/2 than ∆1/2 (S'18). 
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Figure A6 Measures S1k and S'1k in set Ψ6. 

 

The next three sets of distributions treat more general cases where points in Γ1 are moved by a 

variety of distances within each distribution. Distance ∆ is distributed stochastically according to a 

uniform distribution in each set. The direction of movement is determined randomly. 
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 Distance ∆ follows the uniform distribution between 0.00 and 0.04 in Set Ψ7. This assures the 

mutual nearest relationship between the points in Γ1 and those obtained by the random movement. Figure 

A7 shows the obtained distributions and their measures. Many peaks exist around h=0.0100, which is 

about the half of ∆ave in most cases. When some points in Γk are located very closely to a points in Γ1, S'1k 

may have multiple peaks one of which is observed at a small h. Red point in Γ7 causes the highest peak 

of S'17 at h=0.0007, while S'17 has the highest peak at h=0.0020 due to the three red points in Γ2. Only S'17 

has two peaks out of eight measures. Our potential peak assumption interprets this as the fusion of multiple 

peaks at various h in the absence of a predominant peak at small h. 
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Figure A7 Measures S1k and S'1k in set Ψ7. 
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more similar to those of S13 and S'13 in Set Ψ1, where ∆=0.02 for all the points (Figure A1). 

 

 

 

Figure A8 Measures S1k and S'1k in set Ψ8. 
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in Γ1 other than those at their original locations. Consequently, ∆ave is not always equal to η as shown in 

Figure A9a. Measures S'11 to S'16 and S'18 have a single peak, while S'17 has two peaks at h=0.0120 and 

0.0240. The peak at h=0.0120 is due to a red point in Γ7 that is very close to a point in Γ1. Many highest 

peaks are distributed around h=0.0250, which is closer to the half of η rather than that of ∆ave. This 

suggests that hmax reflects the distance between points in Γi and their nearest points in Γ1. 
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Figure A9 Measures S1k and S'1k in set Ψ9. 
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Set Ψ10 consists of point distributions in each of which points are clustered at intervals of 0.01. 

Distribution Γk is obtained by moving points in Γ1 to the right by (k-1)*0.1. Measure S1k gradually shifts 

from left to right with an increase in the distance between point clusters in Γk and Γ1. Measure S'1k becomes 

lower and its peak moves to the right. The value of hmax seems almost proportional to the distance between 

point clusters in Γk and Γ1. This fails in Γ8 and Γ9 probably because of the boundary effect, i.e., calculation 

is performed only in the limited range as shown in the figure. 
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Figure A10 Measures S1k and S'1k in set Ψ10. 
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Set Ψ11 analyzes the relationship between the uniformity of points and the similarity measures. 

Figure A11a shows distributions from Γ1 to Γ6. Distribution Γ1 consists of seventeen points while 

distributions from Γ2 to Γ6 consist of sixteen points. Points in Γ1 are distributed uniformly at intervals 0.1. 

Each point in Γ2 is located at the center of neighboring points in Γ1. Points become gradually clustered 

from Γ2 to Γ6, reducing the uniformity of points. 

Similarity to Γ1 decreases monotonically from Γ2 to Γ6 as shown in the figure. Measure S'1k has 

its peak around h=0.025 for all the distributions from Γ2 to Γ6, which is the half of the distance between 

a point in Γk and its nearest point in Γ1. The peak becomes lower with the reduction of uniformity. 

Measures S'14, S'15 and S'16 have another lower peaks at h=0.0780, 0.0696 and 0.0692, respectively. 
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Figure A11 Measures S1k and S'1k in set Ψ11. 
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of which consists of n points that are located at intervals 2w on a one dimensional space. The points are 

distributed almost infinitely, i.e., n is extremely large. The jth points in distributions ΓP and ΓQ are denoted 

by Pj and Qj, respectively. The distance between a point in Γ1 and its nearest points in Γ2 is ε. The locations 

of Pj and Qj are represented as 2jw-ε/2 and 2jw+ε/2, respectively, as shown in Figure A12. 

 

 
 

Figure A12 Distributions ΓP and ΓQ, and their interpreted surfaces. 
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( ) ( ) ( )
2 2

2 2

2 2
2 2

2

1

2

11 d
2

1 d
2 2

, ,

1
x

PQ P Qx

kw kwx

h
x

k

h

S f x f x x

e e x
h

h h h

n

ε ε

π

∞

=−∞

      − +      
      − −∞

− −

=−∞

∞

=

= −

 


−


= − − 

  
 

∫

∫ ∑
. 

(15) 

The measure is represented as the area of light shades in Figure A12. Since n is very large, it is enough to 

consider only the dark-shaded area in the figure. The above equation then becomes 
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To evaluate the integral term in the above equation, we employ an approximation of error function: 
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This approximation requires integration by substitution as follows. 
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Equation (16) now becomes 
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Using Approximation (17), we can rewrite each term inside the summation above as 
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Equation (22) then becomes 

( )
( )

( )

( )

( )

( )

( )

( )

( )

2 2

2 2

2 2

2 2

2 2 1 2 2
2 2

2 2

2 2 1 2 2
2 2

2

1

2

1 1

2 2 1 2 2
2 21

2
1 1

2 2 1 2 2
2 2

j k w j k w

h h

PQ
j k w j k w

h h

k

e e
j k w j k whS

e e
j k w w

h

j k

ε ε

ε ε

ε ε

π

ε ε

   − + − − −   
   − −

   − + + − +   
   − −

∞

=

 
 

− 
 − + − − −
 ≈ −  
 
 − +
 − + + − + 
 

∑

 

(27) 



49 
 

We define τk
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Equation (27) becomes 
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4 from k=j-2 to j+2 as follows: 
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(31) 

The above equations indicate 
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and similarly, 
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Using the above equations, we rewrite Equation (30) as 
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(34) 

Since variables τk
2, τk

4, and τk rapidly decrease with an increase of k, we can approximate the above 

equation as 
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282 21 h
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hS h e
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−
≈ −  

(35) 

Differentiation of SPQ(h) with respect to h yields S'(h): 
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(36) 

Measure S'PQ(h) reaches its maximum when 
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(37) 

Since ε, w, and h are all positive, the above equation holds only when 

2
h ε

=  

(38) 

This equation indicates that S'PQ(h) shows its maximum when h is the half of the distance between points 

in ΓP and their nearest points in ΓQ. 

 Extending the above discussion, we can show that the value of hmax is proportional to the 

distance between points in ΓQ and their nearest points in ΓP in the case where point distributions exhibits 

a regular but non-uniform pattern such as seen in Set Ψ1. Though we omit the details of the proof due to 

space limitations, the following Appendix gives its outline in a rather simple setting. 

 

Appendix A3 

 This appendix extends the discussion in the previous appendix to a more general case. Suppose 

distributions ΓP and ΓQ, each of which consists of n points that are arranged alternately as shown in Figure 

A13. The distributions are in the mutual nearest relationship such as seen in set Ψ6 in Appendix A1, i.e., 

the nearest point in ΓQ from Pi is Qi, while the nearest point in ΓP from Qi is Pi. The locations of ith point 

in ΓP and jth point in ΓQ are denoted by pi and qj, respectively. Let Mi be the middle point between Pi and 

Qi. The middle point between Qi-1 and Pi is denoted by Mi
-, and that between Qi and Pi+1 is Mi

+. Point Mi
- 
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is equivalent to Mi-1
+, while Mi

+ is equivalent to Mi+1
- as seen in Figure A13. 

 Let Φ- and Φ+ be the interval bounded by Mi- and Mi, and that by Mi and Mi+, respectively. 

γ(h; Φ) as the difference between ΓP and ΓQ in interval Φ: 

 ( ) ( ) ( )
( )

( )1; , , d
2

U

L

x

P Qx x
h hx x hf f xγ

=

Φ

Φ
=Φ −∫ , 

(39) 

where xL(Φ) and xU(Φ) are the lower and upper bound of interval Φ. We can calculate SPQ(h) by summing 

up γ(h; Φ) for all the intervals divided by the middle points in ΓP and ΓQ, and substitute the summation 

from 1. 

 

 

 

Figure A13 Distributions ΓP and ΓQ, and their interpreted surfaces. 

 

Let us first focus on the calculation of γ(h; Φ-). The coordinates of the lower and upper 

boundaries are given by 

1

2
i i

L
p qx −+

= . 

(40) 

and 

2
i i

U
p qx +

= , 

 (41) 

respectively. 

Equations from (13) to (15) and the above simulations that the similarity between ΓP and ΓQ 

evaluated at location x is primarily based on the points in the neighborhood of x. Equation (27) calculates 

Pi-1 Pi

Φi- Φi+

Pi+1 Pi+2Qi-1 Qi Qi+1 Qi+2

Mi Mi+ = Mi-1- Mi+1 Mi+1+ = Mi+2- Mi+2Mi-1+ = Mi-

pi+qi-1

2

Mi-1

pi+1+qi

2

pi+qi

2



53 
 

the summation of τk
1, τk

2, τk
3, and τk

4, each of which is a negative exponential function of (j-k)2w. Since 

they rapidly decrease with an increase of (j-k)2, we can almost evaluate their summation from k=1 to 

infinity by the term when j-k=0. This implies that we can approximate γ(h; Φ-) by the interpreted surfaces 

generated from Pi and Qi: 
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(42) 

 Using approximation (17), we obtain 
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and 
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(44) 

Since Pi and Qi are both closer to the middle point between the boundaries of Φ than the boundaries, we 

can say 
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This yields 
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Consequently, 

( ) ( ) 2 22 2

2 2 2 2 22 2 1 1d d
i ii i

U U

L

U

L

U p qp q
x x h hh h

x xx x

U
x x

U
x x

i i

e x e x h e
x

e
p qx

   − −− −    
   

− −−

=

−

=

  − ≈ − +
− − 

  
∫ ∫ . 

(49) 

and 

( )
2 2

2 21 1
2 2

;
i iU Ux p x

i
U U

q
h h

i i

h e
pn x

e
q

h
x

γ
π

   − −   


−



−

 Φ −
 
 ≈ − +
  

− −
. 

(50) 



55 
 

Since 

iU iUp qx x= −− + , 

(51) 

We rewrite Equation (50) as 
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(52) 

where εi is the distance between Pi and Qi. 

We then turn to the calculation of γ(h; Φ+). The coordinates of the lower and upper boundaries 

are given by 
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(53) 

and 
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 (54) 

respectively. 

 We can employ Equations from (42) to (44) with a slight modification. Inequalities (45) and 

(46) now become 
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Using the above inequalities, we obtain 
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Consequently, 
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Adding Equation (52) to (60), we obtain the difference between ΓP and ΓQ in interval Φ(M(i, j-1), M(i+1, 

j)): 
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 Summing up the above equation for all the intervals, we can calculate S(h): 
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(62) 

Measure S'PQ(h) and S''PQ(h) are 
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(64) 

respectively. 

If εi is equal for any i, S''PQ(h) becomes zero when h=εi/2, i.e., a peak of S'PQ(h) is observed at 

h=εi/2. This holds not only when points in ΓP and ΓQ are both uniformly distributed but also when ΓP and 

ΓQ show a regular but non-uniform pattern such as seen in Set Ψ1. 

Using Equations from (62) to (64), we evaluate the location of peaks of S'PQ(h) when εi takes 

one of two different values as seen in Set Ψ6. We assume that εi=0.01 for half of the points while εi=ε for 

the other half. Solving S''PQ(h)=0 numerically, we obtain hmax and h'max as shown in Figure A14. The figure 

also shows two functions h=ε/2 and h=(0.01+ε)/4 for comparison purposes. The result is supportive of 

our earlier observation and presumption in Set Ψ6. The highest peak of S'PQ(h) is observed between 

h=0.005 and h=ε/2 in any case. Our presumption of potential peaks at h=0.005 and h=ε/2 still seems to 

hold since the former is represented as h'max while the latter corresponds to hmax in Figure A14. When ε is 

smaller than to 0.036, only a single peak appears at h=h'max. Two differences from the results obtained for 

Set Ψ6 are that peaks at small h found in Set Ψ6 do not appear at h=0.005 and that hmax is larger than 
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(0.01+ε)/4. Since it is not clear whether these are caused by approximation error or boundary effect, 

further numerical experiments are necessary to understand the properties of SPQ(h) and S'PQ(h) in more 

detail. 

 

 

 

Figure A14 The relationship between ε and the value of h that gives the peaks of S'PQ(h). 
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