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Abstract 
In recent years, multiple regression models have been developed and are 

becoming broadly applicable for us. However, there are not many options for comparing 

the model qualities based on the same standard. This paper suggests a simple way for 

evaluating the different types of regression models from two points of view: the ‘data 

fitting’ and the ‘model stability’. 
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1. Introduction  

In recent years, multiple regression models have been developed and are 

becoming broadly applicable for us. However, it is not a simple issue comparing the 

model qualities to the same standard. Because of the diversity of the models that are 

available, it is becoming inappropriate to apply just a single criterion such as Akaike 

information criterion (AIC). There are models that estimate a number of parameters; in 

some cases, the number of parameters exceeds the number of independent variables. 

Criteria such as GCV, namely generalized cross-validation (Craven & Wahba, 1978), are 

used to compare the model quality. However, in practical use, we sometimes need to select 

models by understanding the characteristic of the models from two points of view. First, 

how much the model fits the observation. Secondly, how stable the model can make the 

estimation. For standardizing the balance between these two points of view, this paper 

suggests a simple way for evaluating the different types of models based on the relative 

positions among models that are coordinated by two criteria. We call the first criterion the 

‘data fitting criterion’ and the second the ‘model stability criterion’ hereafter. 

 

2. Methods 

2-1 Data set 

Table  1 shows the descriptive statistics for the data set we apply, and Figure 

1displays a scatter diagram of them. 

For obtaining two variables that have a non-linear relation in an unintended 

manner, we applied a sequence of ࢞	from -100–100 by 1 as an independent variable, 

while the dependent variable ܡ was provided by Equation (1): 

࢟ ൌ ሺ࢞ହ ൅ ସ࢞ ൅ ଷ࢞ ൅ ଶ࢞ ൅ ଵሻ/10000࢞ ൅  (1)･･･   ࢛

 is random error term generated from the uniform distribution with a lower limit ࢛

of 0 and an upper limit of 1,010,101 which is the value of the first term	ሺ࢞ହ ൅ ସ࢞ ൅ ଷ࢞ ൅

ଶ࢞ ൅  .equals 100 ࢞ ଵሻ/10000 when࢞
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Table  1.  Descriptive statistics for the employed data set   
 

 

 

 

 

 

 

 

Figure 1. Scatter diagram of the employed data set 
                      

  

 ܠ ܡ 

Min. -590811 -100

1st quantile 179671 -50

Median 505674 0

Mean 489201 0

3rd quantile 749369 50

Max. 1665768 100

Standard 

deviation 
407724 58
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2-2 ‘Data fitting criterion’ and ‘model stability criterion’ 

We applied the method based on bootstrap sampling. First, permitting replacement, 

we randomly sampled the data from the original data set (called the ‘Original Sample’ 

hereafter), and obtained 100 sets of the data (called ‘Bootstrap Samples’ hereafter). Each 

‘Bootstrap Sample’ has a sample size 201, the same as the ‘Original Sample’. Secondly, 

we built the models (called ‘Bootstrap Models’ hereafter) using each of all the 100 

‘Bootstrap Samples’, while the models (called ‘Original Models’ hereafter) were also 

built using the ‘Original Sample’. Thirdly, two criteria for all models were acquired. One 

is called the ‘data fitting criterion,’ which is the total of the squared residuals of all 

‘Bootstrap Models’. The other is called the ‘model stability criterion’, which is the total 

value of the difference between the fitted value of the ‘BootstrapModels’ and that of the 

‘Original Models’. Finally, relative positions among models that are coordinated by these 

two criteria are represented in a diagram. 

 

2-3 Models 

Some of the models have a smoothing or complexity parameter. In such models 

we can control the complexity of the model fitness by controlling the value of the 

smoothing or complexity parameter. It is known that there is a tradeoff; the complex 

models tend to fit the observations well but the estimation is not stable; the smooth models 

tend to be stable but do not fit the observations well. By controlling the smoothing or 

complexity parameter, we can also control such a tradeoff (Hastie et al., 2001). 

To figure out whether the relative positions among models coordinated by two 

criteria (‘data fitting criterion’ and ‘model stability criterion’) are reasonable enough or 

not, we used the models that have a smoothing or complexity parameter, and confirmed 

whether the two criteria are able to represent such tradeoffs. 

We employed four types of models that have a smoothing or complexity 

parameter: namely, GAM, SVM, Regression Tree and MARS. We used a sequence of a 

smoothing or complexity parameter to build the models that have different complexities. 

The settings and explanations about the models are shown in Table 2. 
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Table 2. Multiple Regression models applied 

 
Name of the Models 

(abbr. ) 
Explanations Parameters applied 

1 Generalized Additive 
Models  
(GAM) 

Described in Wood, 
(2004); and Wood 
( 2006) 

The degree of model 
smoothness is controlled by the 
smoothing parameter ‘sp’, 
larger sp leads to a straight line 
estimate, while sp=0 results in 
an un-penalized regression 
spline estimate. 
A sequence of the ‘sp’ from 2ଶ଴ 
to 2ିଶ଴ by 2 ଵ was applied. 

2 Support vector machine  
(SVM) 

Described in 
Meyer, et al. 
(2015) 

The degree of model complexity 
is controlled by the combination 
of the parameters ‘C’ and ‘γ’. ‘C’ 
is the constant of the 
regularization term in the 
Lagrange formulation. ‘γ’ is a 
parameter needed for all 
kernels. 
A sequence of C from 2ିଵ଻ 
to2ଵ଻ by 2ଵ was applied while 
‘γ’ is fixed to 1. 

3 Multivariate adaptive 
regression splines  
(MARS) 

Described in 
Friedman, (1991); 
and Milborrow, 
(2015) 

The degree of model complexity 
is controlled by the maximum 
number of model terms ‘nk’. 
A sequence of ‘nk’ from 1 to 60 
by 2 was applied. 

4 Regression Tree 
 

Described in 
Therneau et al. 
(2015) 
 

The size of regression trees is 
controlled by the parameter 
‘cp’. 
Larger ‘cp’ indicate the complex 
model with many branches, and 
smaller ‘cp’ indicate simple 
model with less branches. 
A sequence of ‘cp’ from 2ିଵ଴ to 
2ିଵ by  2଴.ହ was applied. 
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3. Results 

3-1 Simulations 

 We observed the trade-off: the flexible models fit the data well but their 

estimations are not stable, and smooth models do not fit the data well but their estimations 

are stable, by the test under taken by GAM and SVM. MARS and Regression Tree 

showed a volatile result but it was assumed reasonable. 

 

(1) GAM 

In Figure 2, GAMs with different parameters were plotted based on the 

coordination by ‘data fitting criterion’ and ‘model stability criterion’. The horizontal axis 

shows the degree of the ‘data fitting criterion’, while the vertical axis shows the degree 

of the ‘model stability criterion’. The smaller ‘data fitting criterion’ indicates that the 

estimation by the model fits the data well. The smaller ‘model stability criterion’ indicates 

that the estimation by the model is stable. 

Corresponding to the increase of the smoothing parameter ‘sp’, the degree of ‘data 

fitting criterion’ continuously increased with the decrease of the degree of ‘model stability 

criterion’. This result corresponds to the trade-off. 

 

(2) SVM  

We implemented the same test for SVM as represented in Figure 3. SVM has two 

parameters that relate to complexity: ‘C’ and ‘γ’. In advance, we tuned the model to 

acquire the parameters for the best fit using ‘Original Sample’. We implemented the same 

test by shifting the parameter ‘C’ while ‘γ’ was fixed as 1. As same as the results of GAMs, 

the results shown in Figure 3 corresponded to the trade-off. 
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(3) MARS 

The same test was implemented for MARS as shown in Figure 4. Corresponding 

to the decrease of the parameter ‘nk’, the degree of ‘data fitting criterion’ increased 

continuously with the decrease of the degree of ‘model stability criterion’ as whole. 

However, we can recognize that only the model with 3 in ‘nk’ shows a higher ‘model 

stability criterion’ against the trade-off among other models. The observations were 

scattered with almost rotational symmetry with the three parts. It looks reasonable that 

the estimation cannot be stable if the model tries to fit such a rotational symmetry by two 

pieces of a piecewise function. It is also reasonable that the model with 1 in ‘nk’, which 

is the model of a single horizontal line, shows the highest degree of ‘data fitting criterion’ 

(i.e. it does not fit the data well) but the lowest ‘model stability criterion’ (i.e. stable); 

other estimations are unlikely to be made by a single horizontal line based on similar 

observations.  

 

(4) Regression Tree 

The same test was implemented for Regression Tree as shown in Figure 5. 

Although the degree of ‘data fitting criterion’ increased continuously corresponding to 

the increase of the parameter ‘cp’, ‘model stability criterion’ shows a volatile trace. In the 

range ‘cp’ translated from 2ି଺ to 2ିଶ, ‘model stability criterion’ sharply increased 

against the trade-off among the models. Similar to MARS, Regression Tree is a model of 

piecewise functions and is a floor function. It seems reasonable that the estimation 

becomes unstable, because many patterns are possible if we try to fit the observations by 

a small number of ‘floors’. In addition, as the same as MARS, it is reasonable that the 

model with 2ିଵ in ‘cp’, which is the model of a single horizontal line, shows the 

highest degree of ‘data fitting criterion’ (i.e. it does not fit data well) but the lowest ‘model 

stability criterion’ (i.e. stable). 
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Summarizing the results, models that smoothly change their flexibility by 

transition of the smoothing or complexity parameter such as GAMs and SVMs, showed 

the trade-off relation well.  

On the other hand, models with piecewise functions such as MARS and 

Regression Tree, although the degree of ‘data fitting criterion’ decreased (i.e. it does fit 

data well) continuously corresponding to the increase of the flexibility of the models, 

‘model stability criterion’ showed volatile but reasonable responses. To the extent of these 

results acquired, ‘data fitting criterion’ and ‘model stability criterion’ reasonably reflect 

the model characteristics. 

Additionally, the tendencies of the obtained results were similar in the cases where 

we reduced the number of the samples in a phased manner down to 10. 
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  Figure 2. Evaluation on GAM    

 

 

 

  
  Figure 3. Evaluation on SVM 
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Figure 4. Evaluation on MARS 

 

 

 
  Figure 5. Evaluation on Regression Tree  
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3-2 Model comparison 

Figure 6 shows the relative positions of all models based on the coordination by 

two criteria. The figure reasonably reflects the characteristics of the models. 

In Figure 6, the smoothest models among MARSs, Regression Trees, and SVMs 

are placed very close together, and ࢟ predicted by them are uniformly distributed. The 

smoothest model among GAMs shows the same prediction as ࢟  predicted by OLS 

(ordinary least squares). Comparing the relative positions between the models that predict 

uniformly distributed ࢟ and OLS, OLS is as stable as the models that predict uniformly 

distributed ࢟, but fits better the observations.  

In contrast, the best-fit model built by Regression Tree is unstable, but fits data 

the best. ࢟ predicted by the fittest model shows a fluctuating pattern, as if the estimation 

traces the observations.  

GAM with a small smoothing parameter seems to be a good model for this sample 

dataset in terms of both model stability and data fitting. 

 

Figure 6. Model comparison  
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4. Conclusions 

This paper has suggested a way for evaluating the different types of regression 

models based on the relative positions among models, which are coordinated by two 

criteria: ‘data fitting criterion’; ‘model stability criterion’. 

It is known that complex models tend to fit observations well, but the estimation 

is not stable; smooth models tend to be stable but do not fit the observations well. To 

understand whether the criteria can properly represent the tradeoff, we used the models 

that have a parameter through which we can control model smoothness. 

As model complexities were controlled by the parameters, the models that 

smoothly change their flexibility according to the transition of the smoothing or 

complexity parameter such as GAMs and SVMs clearly demonstrated the trade-off. On 

the other hand, models with piecewise functions such as MARSs and Regression Trees 

showed volatile but reasonable responses. 

It is considered that two criteria represent the model characteristic property in 

terms of data fitting and model stability. Since only the observed values and the predicted 

values of each model are necessary for these criteria, the suggested criteria are very simple. 

We are able to calculate these criteria for multiple types of models, from the simplest OLS 

to machine learning algorithms, and to compare them to the same standard. By visualizing 

the positions coordinated by two criteria, we can understand the characteristics of multiple 

models as considering the balance between data fitting and model stability. It is 

considered this method can be one of the reliable options for selecting the appropriate 

model that meets the purpose of the modeling. 

As a next step, by applying other data sets with known expected values, we will 

examine the substitutability between ‘data fitting criterion’ and the bias of the models, as 

well as ‘model stability criterion’ and the variance of the models. We will also examine 

applicability of the method by comparing the two indicators we suggested to the existing 

criteria such as GCV.  
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