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Abstract: We propose a new method to perturb a major variable by
adding noise, so that the result of regression analysis is not affected by
the noise addition. The extent of the perturbation can be controlled by a
single parameter, which will ease the perturbation operation in the actual
application. Through a numerical experiment, we recommend an appropri-
ate value of the parameter to achieve both the sufficient perturbation to
mask the original values and the sufficient coherence between the perturbed
data and the original data.

1. Introduction

More and more detailed information becomes circulated thanks to the recent
advancement of digitalization. Personal information protection also becomes im-
portant. Personal information, which can identify the person, cannot be publi-
cized nor utilized without the person’s consent. In case of information regarding
real estates, the correct position can be identified by combining several sources
of information, which in turn may be used to identify the person, such as owners
or residents. Spatial information such as information on real estates can be said
to be information such that special attention is necessary to protect personal
information.

In dealing with privacy sensitive information, the following two aspects are
important. First, if the information is leaked, then the organization who is re-
sponsible for the information may have risk of claim for compensation due to
privacy protection failure. Second, due to this fact, publicized data tend to be-
come very rough or vague to avoid possible troubles, which often hinders the
usefulness of analyses in real estate to understand the market.

To deal with this situation, one promising way will be to add noise to the ac-
quired data, so that the personal information is protected. One typical example
of sensitive information is the transaction data. The transaction data may in-
clude transacted price, characteristics of the real estate, characteristics of trans-
acting persons, and information of the condition of the transaction. Publicized
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data tend to omit the information on characteristics of transacting persons, and
hence such contents are not assumed to be included in the database. In this
case, one of the most sensitive data will be the transacted price. If we add noise
on the price data, then the private information will be protected. However, if
the noise is added tactlessly, the results of the analysis of the data will be seri-
ously distorted. Therefore, a way to add noise, achieving that the analyses of the
data are not distorted and that the privacy is protected, is very important. This
paper is devoted to propose such a method as well as its application assuming
that the main concern of the analyses is the hedonic analysis, i.e., regression
analysis with the transacted price being the response variable.

Takemura (2003) reviewed statistical issues in publicizing individual data.
To protect personal information, he lists up several methods, such as (1) direct
hiding by making the information secrete, (2) global categorization by classifying
the values into several coarse classes, (3) disturbance by replacing with different
values (such as swapping by exchanging individual values, post randomization
method (PRAM), addition of noise). Direct hiding and global categorization are
not appropriate for releasing the data for detailed analyses, for the resolution of
the information becomes too coarse sometimes. Disturbance method is superior
in this aspect, but usually it brings some errors into analyses, and such effects
have to be carefully examined.

One famous method to protect the personal information is the statistical
disclosure limitation (SDL) method. SDL method is a general term for methods
to protect identification of personal data by adding perturbation, modification
or summarization (Shlomo (2010)). The main concern is to reduce the risk of
identification as well as to keep the usability of the data.

Typically, to reduce the risk of identification, three kinds of methods are
often utilized, namely, (1) method to make coarse categorization, (2) method to
generate new data such that statistical characteristics are similar to the original
data, and (3) method to add noise to the original data (Karr et al. (2006);
Oganian and Karr (2011)).

Lots of research are done regarding the method to make coarse categorization.
In particular, population uniqueness is extensively studied, which is the feature
that a combination of attributes becomes unique in the parent population. For
example, Manrique-Vallier and Reiter (2012) estimates the risk of suffering from
the population uniqueness for discrete data.

Regarding the method to generate new data, swapping method is well known,
in which categorical data are probabilistically exchanged. This is called PRAM
(post-randomization method) by perturbing the exchanging categorical data
(Gouweleeuw et al. (1998); Willenborg and Waal (2001)). In this method, tran-
sition probability matrix is first determined, and the categorical data are ex-
changed based on the matrix, so that the proportion of each category remains
the same.

A variety of methods to add noise are proposed, such that the qualitative
feature is carefully maintained. For example, Oganian and Karr (2011) focuses
on features such as the positivity of values and magnitude relation between two
values. They propose a method to add noise such that the positivity of values,
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mean values and variance-covariance matrix remain the same. One remarkable
idea is to use multiplicative noise addition to avoid getting the negative val-
ues. Moreover, they show the stability of results after the regression analyses. A
similar method to maintain characteristics of attributes is proposed by Abowd
and Woodcock (2001). Another method to add noise avoiding the risk of identi-
fication is to introduce random noise, which is distributed following a peculiar
symmetric distribution with a hole in the central part. With this method, the
perturbed value is never close to the original value, and therefore the risk of
identification is drastically reduced. In the actual application of this method,
the noise distribution is not publicized, which hinders the analyses using the
distribution (Reiter (2012)).

In general, addition of noise may influence the quality of subsequent analyses.
Fuller (1993) points out that the addition of noise has similar influence as intro-
ducing measurement errors to explanatory variables. To minimize the influence
in particular analyses, several methods are devised. For example, some meth-
ods maintain the original mean values and variance-covariance matrix (Ting,
Fienberg and Trottini (2008); Shlomo and De Waal (2008)). In our paper, by
focusing on the regression analysis, a method is proposed so that the results are
robust by adding noise.

The paper is organized as follows. In Section 2, a method is proposed to add
noise to response variable, and show some important statistics do not change
with the addition of noise. In Section 3, numerical experiments are conducted
to examine how the results of multivariate analyses, apart from the assumed
regression analysis, may change. Finally, Section 4 concludes with the summary
and possible extension of method.

2. Theoretical results

We assume that the n × (p + 1) design matrix X is given by (1n,x1, . . . ,xp),
where 1n is n-dimensional vector of ones, and the n-dimensional response vector
is y. We also assume that n is sufficiently larger than p and that the rank of X
is p+ 1. Then the OLS estimator is

β̂ = (β̂0, β̂1, . . . , β̂p)
′ = (X ′X)

−1
X ′y.

A decomposition of y based on the OLS estimator β̂ is y = ŷ + e where

ŷ = Xβ̂ = X (X ′X)
−1
X ′y

is the predictive vector and

e = y − ŷ = (In −X (X ′X)
−1
X ′)y

is the residual vector. Then the coefficient of determination defined by

R2 = 1− ‖e‖2

‖y − ȳ1n‖2
(2.1)
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where ȳ is the sample mean of y, measures the goodness of the fit under the use
of the OLS estimator β̂. The coefficient of determination, R2, is hence regarded
as a key quantity of regression analysis. The t-value of regression coefficient βj
for j = 0, 1, . . . , p, is another key quantity, which is defined by

tj =

√
n− p− 1

dj

β̂j
‖e‖

(2.2)

where dj is the (j + 1)-th diagonal component of (X ′X)
−1

. Under Gaussian
linear regression setting, tj has Student’s t-distribution with n − p − 1 degrees
of freedom under the null hypothesis βj = 0.

In this paper, we are interested in adding perturbation to the original response
vector together with tractable tuning of R2 and t-values. We start with any n-
dimensional random vector

v = (v1, . . . , vn)′.

Since n is sufficiently larger than p, v cannot be expressed by a linear combina-
tion of e,1n,x1, . . . ,xp with probability 1. In other words,

u =
(
In −X(X ′X)−1X ′ − ee′/‖e‖2

)
v, (2.3)

cannot be the zero vector. The noise vector we consider in this paper is a linear
combination of e and u, given by

ε =
a‖e‖
1 + b

{
e

‖e‖
+
√
b
u

‖u‖

}
, (2.4)

where a 6= 0 and b ≥ 0.
When y + ε is used instead of the original response vector y, we have a

following result.

Theorem 2.1. 1. The sample mean of y + ε is ȳ for any a and b.
2. The OLS estimator for the response vector y + ε keeps the same for any

a and b, that is,

(X ′X)−1X ′(y + ε) = (X ′X)−1X ′y.

3. The t-values for the response vector y + ε are given by

t̃j =

{
1 + b

1 + b+ a(a+ 2)

}1/2

tj ,

for j = 0, . . . , p.
4. The coefficient of determination for the response vector y + ε is

R̃2 =

{
1 + b

1 + b+ a(a+ 2)(1−R2)

}
R2.
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5. The correlation coefficient of y and y + ε is

ry,y+ε =
1 + b+ a(1−R2)

(1 + b)1/2{1 + b+ a(a+ 2)(1−R2)}1/2
.

Proof. By Part 3 of Lemma 2.1, we have X ′ε = 0, the first component of which
is 1′nε = 0. Hence Part 1 follows.

Since X ′ε = 0, we have

(X ′X)−1X ′(y + ε) = (X ′X)−1X ′y + (X ′X)−1X ′ε = (X ′X)−1X ′y (2.5)

which completes the proof of Part 2.
Note that the t-values are defined by (2.2). By (2.5), any component of the

OLS estimator keeps the same. Further
√
n− p− 1/dj does not depend on the

response vector. Hence Part 3 follows from Part 6 of Lemma 2.1.
Note the coefficient of determination is defined by (2.1). Since the sample

mean of y + ε is also ȳ as in Part 1 of this theorem, the coefficient of determi-
nation for the response vector y + ε is

1− ‖(In −X(X ′X)−1X ′)(y + ε)‖2

‖y + ε− ȳ1n‖2
,

which is rewritten as

1− {1 + a(a+ 2)/(1 + b)} ‖e‖2

‖y − ȳ1n‖2 + {a(a+ 2)/(1 + b)} ‖e‖2

by Parts 5 and 6 of Lemma 2.1. By the definition of R2, we have

1−R2 = ‖e‖2/‖y − ȳ1n‖2, (2.6)

which completes the proof of Part 4.
The correlation coefficient of y and y + ε is

(y − ȳ1n)′(y + ε− ȳ1n)

‖y − ȳ1n‖‖y + ε− ȳ1n‖
.

By Parts 3 and 4 of Lemma 2.1 as well as (2.6), we have

(y − ȳ1n)′(y + ε− ȳ1n) = ‖y − ȳ1n‖2 + (y − ȳ1n)′ε

= ‖y − ȳ1n‖2 + (ŷ + e− ȳ1n)′ε

= ‖y − ȳ1n‖2 + (Xβ̂ − ȳ1n)′ε+ e′ε

= ‖y − ȳ1n‖2 + e′ε

= ‖y − ȳ1n‖2
[
1 + {a/(1 + b)}(1−R2)

]
.

Further, by Part 5 of Lemma 2.1, we have

‖y − ȳ1n + ε‖2 = ‖y − ȳ1n‖2
[
1 + {a(a+ 2)/(1 + b)}(1−R2)

]
,

which completes the proof of Part 5.
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The lemma below summarizes fundamental properties related to e and ε,
which are needed in the proof of Theorem 2.1.

Lemma 2.1. 1. e is orthogonal to 1n,x1, . . . ,xp or equivalently X ′e = 0.
2. u is orthogonal to e,1n,x1, . . . ,xp or equivalently X ′u = 0 and e′u = 0.
3. X ′ε = 0.
4. e′ε = a‖e‖2/(1 + b) and ‖ε‖2 = a2‖e‖2/(1 + b).
5. The sum of squared deviation of y + ε is

‖y + ε− ȳ1n‖2 = ‖y − ȳ1n‖2 + {a(a+ 2)/(1 + b)} ‖e‖2.

6. The residual sum of squares for y + ε is

‖(In −X(X ′X)−1X ′)(y + ε)‖2 = {1 + a(a+ 2)/(1 + b)} ‖e‖2.

Proof. Since X ′X(X ′X)−1X ′ = X ′, we have(
1′ne x

′
1e · · · x′pe

)′
= X ′e

= X ′
(
In −X(X ′X)−1X ′

)
y

=
(
X ′ −X ′X(X ′X)−1X ′

)
y

= 0,

which completes the proof of Part 1. In the same way, Part 2 can be proved.
Recall ε is given by a linear combination of e and u,

ε =
a‖e‖
1 + b

{
e

‖e‖
+
√
b
u

‖u‖

}
. (2.7)

Then Part 3 follows from Parts 1 and 2. Part 4 follows from the orthogonality
of e and u together with (2.7).

Since the sample mean of y + ε is ȳ by Part 1 of Theorem 2.1, the sum of
squared deviation of y + ε, ‖y + ε− ȳ1n‖2, is expanded as

‖y − ȳ1n‖2 + 2(y − ȳ1n)′ε+ ‖ε‖2.

By Part 3, we have

(y − ȳ1n)′ε = (ŷ + e− ȳ1n)′ε = (Xβ̂ + e− ȳ1n)′ε = e′ε = a‖e‖2/(1 + b).

Then Part 5 follows from Part 4.
Since X ′ε = 0 by Part 3, we have

(In −X(X ′X)−1X ′)(y + ε) = e+ ε.

From Part 4, the residual sum of squares is

‖e+ ε‖2 = ‖e‖2 + 2e′ε+ ‖ε‖2 = ‖e‖2 + 2a‖e‖2/(1 + b) + a2‖e‖2/(1 + b),

which completes the proof of Part 6.
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By Theorem 2.1, we see that a = −2 is a special case as follows.

Theorem 2.2. Assume a = −2. Then, we have the followings.

1. For any b > 0, the coefficient of determination for y + ε is equal to R2,
the coefficient of determination for the original y.

2. For any b > 0, the t-value of βj (j = 0, 1, . . . , p) for the response vector
y + ε is equal to tj.

3. The correlation coefficient of y and y + ε is

ry,y+ε = 1− 2(1−R2)

1 + b
. (2.8)

Recall that ε is a function of v, any random n-dimensional vector, through
the relationship, (2.3) and (2.4), that is,

u =

(
In −X(X ′X)−1X ′ − ee′

‖e‖2

)
v, ε =

a‖e‖
1 + b

{
e

‖e‖
+
√
b
u

‖u‖

}
.

In Parts 1 and 2 of Theorem 2.2, the choice a = −2 guarantees that the co-
efficient of determination and t-value remain the same regardless of random
v.

By Part 3 of Theorem 2.2, ry,y+ε is increasing in b for fixed R2. The coefficient
of correlation between the original response y and the perturbed response y+ ε
with a = −2, some b ≥ 0 and R2, is illustrated in Table 1. In the actual
application, it is desirable to have relatively high correlation, because the users
of the data may assume that the perturbed response are close to the original
response. But if the correlation is very high, then the perturbed response is very
close to the original response, and the aim to conceal the actual response cannot
be achieved. Thus we need to determine the value of b, so that the perturbed
response is not too close, which we will discuss through the analysis of real data
in the next section.

Remark 2.1. When a = −2 and b = 0, we have ε = −2e as the noise or
equivalently

y − 2e = ŷ − e (2.9)

as the perturbed response. In this particular case, it is clear that the coefficient of
determination and t-value remains the same since yi and yi−2ei for i = 1, . . . , n
are symmetric with respect to the point ŷi = yi − ei. Needless to say, the
noise ε = −2e does not depend on v and hence there is no randomness on the
noise. Theorem 2.2 ensures that with randomness through v as in (2.4), we can
construct the noise ε so that the coefficient of determination and t-value remains
the same.

Remark 2.2. As in Theorem 2.2, we found that the choice a = −2 with random v
surprisingly keeps R2 and t values. Here are some remarks for the other choices.
For a ∈ (−∞,−2) ∪ (0,∞), both R2 and the absolute value of t values are
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Table 1
Correlation coefficient of y and y + ε with a = −2

R2\b 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

0.4 -0.2 0.04 0.2 0.31 0.4 0.47 0.52 0.56 0.6
0.6 0.2 0.36 0.47 0.54 0.6 0.64 0.68 0.71 0.73
0.8 0.6 0.68 0.73 0.77 0.8 0.82 0.84 0.85 0.87

reduced. For example, b > 0 and a = −1±
√
b+ 2 ∈ (−∞,−2) ∪ (0,∞) give

t̃j =
1√
2
tj , R̃

2 =
R2

2−R2
< R2. (2.10)

Note that R2 and t values can be completely controlled. The data provider safely
provide the data with the relation between {tj , R2} and {t̃j , R̃2} described by
(2.10) and practitioners can restore the original R2 and t-value by themselves.
An efficient way to open data with reduced accuracy will be reported elsewhere.

3. Numerical experiment

In the previous section, a method is proposed to add noise on the response
variable. This method can be applied when real estate database is released into
the public domain, by adding noise to the transacted price, which is supposed
to be a sensitive information in Japan. As Theorem 2.2 in the previous section
ensure, the result of regression analysis using the perturbed data will not change.
However, in the actual application, a variety of analyses will be devised and the
theorems do not apply for cases with unexpected applications. Thus we need
to confirm if the proposed method remains appropriate even in unexpected
applications.

The precision of the results may be degraded, if analytical operations are
applied, which are not assumed in the theory. In such cases, acceptable levels
should be decided upon which the error due to the perturbation is permitted.
In the following, to know the relationship between the perturbation and the
precision level, a numerical experiment is conducted.

3.1. The data used in the experiment

The data source used for the numerical experiment is provided by At Home
Co., Ltd.. This data contains real estate advertisement information in 2008. By
supplementing some spatial variables, the database for the experiment is created.
The database contains 1320 cases for newly built detached houses in Setagaya
Ward in Tokyo Prefecture1. The variables include price of the property (yen),

1We selected data which have information on designated floor area ratio and designated
building coverage ratio. These elements are thought to be important in real estate analysis in
Japan. In the original database, when a property owner changes its price in the advertisement,
then a new record is added. In this situation, we selected only the newest record.
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time to (nearest) railway station (minute), dummy variable to use bus, area of
the site (square meter), floor area (square meter), dummy variable to signify
leased land, designated building coverage ratio, designated floor area ratio, time
to Shinjuku by railway (from the nearest station) (minute), time to Shibuya
by railway (minute), time to Yokohama by railway (minute), time to Tokyo by
railway (minute), width of the nearest road (meter), dummy variable to signify
the nearest road in south. Note that Shinjuku, Shibuya, Yokohama and Tokyo
are four major railway stations in the study region. Among these variables,
time to railway stations, width of nearest road (meter) and dummy variable to
signify the nearest road in south are spatial variables, as are described in the
next subsection.

3.2. Creation of spatial variables

As variables to signify spatial relationship, time to major railway stations from
the nearest station (minute), width of road which is the nearest from the rep-
resentative point of the property (meter), and dummy variable signifying if the
nearest road is located to the south of the property are added to the original
database. The width of road which is the nearest from the representative point
of the property is regarded as the width of adjacent road. This is because the
precise digital data for lots are not available. Accordingly, the dummy variable
signifying if the nearest road is located to the south of the property is regarded
as the dummy variable to signify adjacency to road in south.

The time to major railway stations from the nearest station is calculated
with the search system for guiding transferring railways provided by NAVITIME
Japan, Co. Ltd.. This system automatically calculates the time required to go
to the major railway stations, i.e., Shinjuku station, Shibuya station, Yokohama
station and Tokyo station, from the nearest railway station from the property.
In searching the time required, the departing time is set to be at 12 : 00 (noon)
on August 2nd in 2010.

The width of road which is the nearest from the representative point of
the property is calculated as follows. Mapple 10000 digital data produced by
Shobunsha, Publications, Inc. have digital road data classified by the road width
in the categories, such as 4 to 5 meters, 5 to 6 meters, etc.. The median of each
class is assigned as the width of the road. For example, the width is 4.5 meters
for the class from 4 to 5 meters. With ArcGIS 10, a GIS software, the nearest
road is assigned for each property, and the width of the road calculated as the
above is set to be the width of road which is the nearest from the representative
point of the property.

In real estate market in Japan, if the residential lot is adjacent to road in
south, then the lot tends to be evaluated highly. This is because getting much
sunlight is preferred in Tokyo. For example, The Real Estate Transaction Mod-
ernization Center (1986) deals with the properties adjacent to road in south
as a favorable merit in appraising properties. With this in mind, the dummy
variable signifying if the nearest road is located to the south of the property is
also added to the database.
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Table 2
Summary statistics of variables

min max mean s.d.

price of the property (yen) 34800000 330000000 72431491 25539447
time to (nearest) railway station (minute) 0 25 10.60 4.83

d.v.a to use bus 0 1 0.07 0.26
area of the site (square meter) 29.53 211.49 88.56 25.48

floor area (square meter) 47.07 228.48 98.94 20.06
d.v.a to signify leased land 0 1 0.03 0.17

designated building coverage ratio 40 80 54.18 7.70
designated floor area ratio 80 300 141.43 47.10

time to Shinjuku by railway (minute) 5 32 18.72 5.29
time to Shibuya by railway (minute) 3 29 14.86 6.01

time to Yokohama by railway (minute) 17 64 44.30 10.99
time to Tokyo by railway (minute) 23 48 34.09 4.90

width of adjacent road (meter) 4.5 35 5.80 2.25
d.v.a to signify adjacency to road in south 0 1 0.28 0.45

a d.v. stands for “dummy variable”.

This dummy variable is constructed as follows. By using ArcGIS 10, the
direction to the nearest road is calculated, such that 0 degree is to the east,
that the value increases up to 180 degrees counter-clockwise and that the value
decreases up to −180 degrees clockwise. If the degree is in the range from −135
to −45, then it is judged to the south, and the dummy variable is set to 1, and
otherwise it is set to 0.

The summary statistics of the variables are shown in Table 2.

3.3. Numerical experiment with perturbed property price

The perturbed property price, which is generated by adding noise to response
variable through the method described in the previous section, is numerically
tested in this subsection. The explanatory variables are the rest 13 variables in
Table 2.

3.3.1. Some statistics of the perturbed property price

Although Part 1 of Theorem 2.1 guarantees that the mean of perturbed response
variable is exactly equal to the mean of the original response, the equality or
similarity of other statistics including the minimum value, the maximum value,
the first and third quantile, and so on, cannot be theoretically controlled. In
this section, we generate four sets of quasi response variable with different v,
a = −2 and b = 1, and will see the degree of perturbation of some statistics
among five sets including the original response (original, quasi1, quasi2, quasi3,
quasi4).

First of all, Figure 1 provides the boxplot of five sets. We see that when the
original and quasi response variables are compared, the median are very similar



Y. Maruyama et al./Method for Noise Addition 11

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

orginal quasi1 quasi2 quasi3 quasi4

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

2.
5e

+0
8

3.
0e

+0
8

3.
5e

+0
8

pr
ice

Fig 1. Boxplot of 5 sets of response variable

each other, but the quantiles, minimum and maximum are quite different. We
also see that among four sets of quasi variable, all statistics are similar.

Figure 2 gives scatterplot of the original and 4 sets of quasi variables. Al-
though four plots look very similar each other, it goes without saying that
different v implies different quasi variable, as we explained in Section 2. Table
3 gives the correlation matrix of five sets of response variables. By Part 3 of
Theorem 2.2, the correlation coefficient of the original and quasi variable is the-
oretically given by 1− 2(1−R2)/(1 + b), which equals to R2 for b = 1. Among
quasi variables, the correlation in all cases is around 0.78.

Remark 3.1. In this particular data set, the response variable is property price,
which should be positive. Hence the positive perturbed price is strongly desir-
able. As we claimed in Remark 2.1, for sufficiently small b, we have

y + ε ≈ ŷ − e.

Suppose there exist individuals i with relatively expensive price yi while rela-
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Fig 2. Scatterplots of 5 sets of response variable
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Table 3
Correlation among original response and 4 sets of quasi response

orig quasi1 quasi2 quasi3 quasi4

orig 1 0.7748 0.7748 0.7748 0.7748
quasi1 0.7748 1 0.7693 0.7749 0.7814
quasi2 0.7748 0.7693 1 0.7870 0.7812
quasi3 0.7748 0.7749 0.7870 1 0.7733
quasi4 0.7748 0.7814 0.7812 0.7733 1

tively lower price ŷi is expected. Then ei becomes larger and as a result

yi + εi ≈ ŷi − ei < 0 (3.1)

can happen. In our data set, this rarely happens for b smaller than 1.2, while
it never happen for b = 1.3 or more. As far as we know, it is not theoretically
controllable through the choice of b and v. When (3.1) happens, generation of
ε with different v until min{yi + εi} > 0 is achieved, is simply recommended.

3.3.2. Regression analysis with only a part of the database

The theory assumes that all the data will be used for the analysis. If only a part
of the perturbed data are used, then the theorems do not apply exactly. In the
actual analyses for real estate data, this is the case that part of the (perturbed)
database is used for the analysis. In such a case, we need to know how the results
may differ from the genuine results and make some guidance for choosing the
appropriate value for b.

To do so, critical value for b is obtained so that the difference is not significant
statistically, between the regression model for the perturbed property price as
the response variable and that for the original property price.

3.3.3. Chow test

From 1320 cases (total database), 20% (i.e., 264 cases) are selected randomly,
and for 13 variation of b values (i.e., b = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 2.0, 2.5), the perturbed prices are generated. Chow test is applied
to test if the regression model with the original price and the regression model
with the perturbed price are regarded as the same model. For each value of b,
1000 independently chosen samples are made and analyzed.

As a result, for each value of b, 1000 values of F value from Chow test are
derived. Putting them in the order of magnitude, 5%, 10%, 50%, 90% and 95%
points (i.e., the 50th, 100th, 500th, 900th and 950th value) of F value are derived.
Figure 3 demonstrate that the larger the value of b, the smaller the variation of
F value.

From the aim to choose the appropriate value of b to generate properly per-
turbed property price, the minimum value of b, such that the null hypothesis
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Fig 3. The relation between F value and b

of Chow test, H0:“There is no statistically significant difference between two
models”, is not rejected, can be considered as the critical value for b. Note that
the F value in F distribution with degrees of freedom 14 and 500 for significance
level 0.05 is F = 1.71. Hence if F is smaller than 1.71, then the null hypothesis
cannot be rejected, and therefore two models can be regarded statistically the
same.

For each value of b, the percentage of F values among 1000 trials, which
satisfies the acceptance condition that F value is less than 1.71, is calculated. In
our numerical experiment, it is 65.0% for b = 0.5, 97.0% for b = 1.0, and 100%
for b ≥ 1.4, as are seen in Table 4.

3.3.4. Recommended standard for b value

In the numerical experiment described above, for the case that 20% is selected
randomly, Chow tests testing the identity of two models, i.e., the regression
model with the actual property price as the response variable and the regression
model with the perturbed property price as the response variable, show that F
value satisfies the acceptance condition with 97.0% probability when b = 1.0,
and 100% for b ≥ 1.4. By assuming that about 5% is the permissible level for
rejection (i.e., that two models cannot be regarded as the same), b = 1.0 will be
judged appropriate, satisfying that the perturbed price is perturbed enough and
nonetheless that the regression model with the perturbed price can be regarded
identical to the regression model with the original price.
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Table 4
Percentage of sample that accepted the null hypothesis that the perturbed sample can be

regarded statistically identical to the original sample for sample selection percentage, q, and
b value

b\q 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.5 0.591 0.576 0.650 0.728 0.827 0.918 0.969 0.992 0.996 1.000
0.6 0.686 0.670 0.744 0.808 0.903 0.947 0.988 0.997 0.999 1.000
0.7 0.729 0.764 0.808 0.873 0.943 0.976 0.994 1.000 0.999 1.000
0.8 0.815 0.845 0.858 0.928 0.966 0.988 0.996 1.000 1.000 1.000
0.9 0.867 0.867 0.931 0.966 0.989 1.000 0.998 1.000 1.000 1.000
1.0 0.930 0.925 0.970 0.987 0.995 0.998 1.000 1.000 1.000 1.000
1.1 0.960 0.968 0.983 0.998 0.997 1.000 1.000 1.000 1.000 1.000
1.2 0.978 0.987 0.994 0.999 0.999 1.000 1.000 1.000 1.000 1.000
1.3 0.994 0.994 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.4 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.5 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

For other cases of percentage in selecting the sample, appropriate value for
b changes. To see this, let q be the percentage in selecting the sample. For
example, in the above numerical experiment, q = 0.2 (20%). By assuming that
5% is the possible level for rejecting, the critical value of b, b∗, such that for
b less than b∗, the probability for the rejecting becomes larger than 5%, is
calculated by changing q. Table 4 summarizes the result. For all cases of q,
that are experimented here, b∗ = 1.0 looks a reasonable choice by balancing the
similarity and the perturbation to the original price.

4. Conclusion

This paper proposed a new method to perturb a major variable by adding noise,
so that the result of regression analysis is not affected by the noise addition. The
extent of the perturbation can be controlled by a single parameter, b, which will
ease the perturbation operation in the actual application. Moreover, b = 1.0 can
be regarded as an appropriate value to achieve both the sufficient perturbation
to mask the original values and the sufficient coherence between the perturbed
data and the original data.

The proposed method only masks one major variable. But in the actual appli-
cation, we may encounter many situations in which only one variable is critical
to put the whole dataset in the public domain. Our method will be useful in
these situations. There will be other possible uses of the perturbed data, and
appropriateness of b value should be examined by testing more variety of data
use cases. Admittedly, the application of the proposed method is limited, for
other variables are assumed to be maintained as the original values. Thus an-
other method to perturb the explanatory variables is necessary to broaden the
application of this method. Such an extension will be made in the subsequent
paper.
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