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Abstract 

 

Regression models often suffer from multicollinearity that greatly reduces the reliability of estimated 

coefficients and hinders an appropriate understanding of the role of independent variables. It occurs in 

regional science especially when independent variables include the distances from urban facilities. This 

paper discusses the linear transformation of distance variables as a solution for multicollinearity. A general 

linear transformation including principal component analysis is considered. 

  



1. Method and applications 

 Suppose a spatial phenomenon represented as a continuous function f(x) defined on a two-

dimensional plane Ξ. The function is measured at M sample points. Let Pi, pi, and fi be ith sample point, 

its location, and the function value observed at Pi, respectively, where i∈M ={1, 2, ..., M}. Function y(x) 

is determined by both spatial and aspatial factors, the former of which include the distance to urban 

facilities such as schools, railway stations, and urban parks, which we call landmarks. Let Lj and zj be jth 

landmark and its location, respectively (j∈N ={1, 2, ..., N}). The coordinates of Pj and Lj are represented 

as (xj, yj) and (uj, vj), respectively. The distance between location p and zj is denoted by d(p, zj).  

We build a regression model that explains f(x) by its determinants based on the data observed 

at sample points. We omit aspatial factors in the model for the present to focus on the multicollinearity 

among distance variables: 

 ( ) ( ) ( ) ( )0 1 1 2 2, , ... ,i i i N i Nf d d dβ β β β= + + + +p p z p z p z , 

(1) 

where βk's are the parameters to be estimated (k∈N). The multicollinearity among distance variables is 

unavoidable since the landmarks are distributed on the same two-dimensional space. Let rjk be the absolute 

correlation coefficient between Dj' and Dk' (j≠k). The correlation coefficients are an indicator of 

multicollinearity that can be easily calculated and interpreted. 

 

2. Two landmarks 

This section considers the case of two landmarks. We employ a simplified representation of 

Equation (17): 

 0 1 1 2 2f d dβ β β= + + . 

(2) 

To consider the relationship between d1 and d2, let us suppose XY-coordinate system as shown 

in Figure 1a, where the location of two landmarks L1 and L2 are denoted as z1=(-c, 0) and z2=(c, 0), 

respectively. We also consider another space whose XY axes indicate d1 and d2 as shown in Figure 1b. 

We call the latter d1d2-space to distinguish from real space shown in Figure 1a. Any location in the real 

space is projected in light and dark gray regions in Figure 1b, which we call possible sample region. It is 

bounded by three lines d1-d2=-2c, d1-d2=2c, and d1+d2=2c. 

 



 

 

Figure 1 The relationship between the location of sample points in the real space and that in the 

distance spaces. The same symbols in the two figures indicate the same objects. (a) The real space. 

Landmarks L1 and L2, ellipses and hyperbolas whose foci are L1 and L2 are drawn. (b) The possible 

sample region in the d1d2-space. 

 

The lines shown in Figure 1b are represented mathematically as 
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(4) 

Figure 1b clearly indicates that a serious correlation occurs when sample points are distributed randomly 

over plane Ξ. They are densely clustered in the gray-shaded in the figure, which leads to a high positive 

correlation between d1 and d2. One method to avoid this is to locate sample points are distributed 

symmetrically in either vertical or horizontal direction in the distance space (Sadahiro and Wang 2015). 

This, however, limits the sample region to a relatively small area. For instance, if we locate sample points 

in rectangle bounded by 
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(5) 

the corresponding sample region in the real space is the outermost ellipse in Figure 1a defined by 
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(6) 

 We can avoid this problem is to apply a linear transformation to the distance variables in such 

a way that the possible sample region extends in parallel with either the vertical or horizontal axis. Let A 

be a matrix that represents a linear transformation: 

  11 12

21 21

a a
a a

 
=  

 
A . 

(7) 

The distance variables are transformed as 
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(8) 

Since-2c≤ d1-d2≤2c, necessary condition that the possible sample region extends in parallel with the 

vertical axis is 

 11 12 0a a+ = , 

(9) 

which implies 

 ( )1 1 2D k d d= + . 

(10) 

Condition for the horizontal direction is 

 21 22 0a a+ = . 

(11) 

Both cases consider the difference between d1 and d2. 

Numerous transformations satisfy the above conditions. We thus should choose an appropriate 

one that yields an interpretable result. This paper proposes two methods, one is we call average distance 

method, and the other is incremental distance method developed by Partridge, Olfert, and Alasia (2007), 

Partridge et al. (2008), and Partridge et al. (2008). 

The average distance method rotates d1 and d2 by π/4 around the origin either clockwise or 

counterclockwise so that the possible sample region is in parallel with either the horizontal or vertical 

axis. The clockwise rotation is 
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(12) 

which yields 
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(13) 

It is an orthogonal transformation that keeps the vector length in the d1d2-space. Figure 2a shows the result 

of this transformation. We can easily locate sample points symmetrically with respect to the δ1-axis in the 

possible sample region. This implies that sample points can be located far away from the landmarks 

without high correlation. The figure even suggests that no serious correlation would occur even if we 

randomly distribute sample points over plane Ξ. 

 The incremental distance method assumes a regression model incorporating the distance to 

urban facilities that provide different levels of services. Assume that the ith level tier provides services of 

levels from 1 to i. The incremental distance first calculate the distance to the lowest tier that provides and 

then calculate the additional distance to the tire of the next higher level. This process is repeated until the 

incremental distance to the highest tier is obtained. In the case of two facilities, distance variables are 

defined as 
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(14) 

and thus 
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(15) 

Unlike the average distance, the incremental distance method is not an orthogonal transformation. It 

changes the shape of possible sample region as shown in Figure 2b. However, we can still easily locate 

sample points symmetrically with respect to line ϕ2=c by avoiding only the close neighborhood of F1. We 

should note, however, that random distribution of sample points is not symmetrical in the ϕ1-axis. Figure 

2b shows the distribution of 2000 sample points in circle of radius 20c centered at the origin in ϕ1ϕ2-

space. Point density is higher on the positive side of ϕ2 than its negative side at each section of ϕ1. This 

result in the correlation coefficient -0.118 while that of δ1 and δ2 of the same distribution is -0.012. 

 



 
 

Figure 2 The average distance and incremental distance methods. (a) The possible sample region in the 

δ1δ2-space. (a) The possible sample region in the ϕ1ϕ2-space. (c) Sample points randomly distributed of 

radius 20c centered at the origin. 

 

 Each method has its own strengths. The average distance method has no limitation in the 

location of sample points while the incremental distance avoids the neighborhood of one of the two 

facilities. Random distribution of sample points cause a slight correlation between distance variables in 

the incremental distance method, though it is not serious as seen in the above example. One important 

strength of the incremental distance method is an integrated framework for the interpretation of results 

that is based on econometrics. Though each distance in the average distance method is interpretable 

separately, the significance of using them simultaneously is not clear. Distance δ1 represents the average 

distance to the two facilities, which is interpretable as it is, while the meaning of δ2 in relation to δ1 is 

rather ambiguous. 

 

3. Three landmarks 

This section considers the case of three landmarks. We employ a simplified representation of 

Equation (17): 
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 0 1 1 2 2 3 3f d d dβ β β β= + + + . 

(16) 

3.1 Relationship between distance variables 

This subsection discusses the relationship between distance variables. The distance from sample 

point P at (x, y) to Lj is 

( ) ( )2 2
i i id x u y v= − + −

.
 

(17) 

Figure 3 illustrates the function representing the relationship between distance variables d1, d2 and d3. As 

seen in the figure, a high correlation often exists between distance variables. It appears especially when 

landmarks are located away from sample points. 

 

 

 

Figure 3 The relationship between distance variables d1, d2, and d3. 

 

One method to reduce the correlation is to apply a linear transformation including principal 

component analysis to distance variables. Let A be a transformation matrix defined by 
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(19) 

We assume that sample point P is located far from the landmarks permits us to approximate distances di 

as 

( ) ( )2 2

2 2
2 2

2 2

2 2
2 2

2 2

2 2

2 21

1

i i i

i i i i

i i

i i

d x u y v

u x v y u vx y
x y

u x v yx y
x y

u x v yx y
x y

= − + −

− − + +
= + +

+

 +
≈ + − + 

+
= + −

+

. 

(20) 

Then we have 
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(21) 

Let R be the distance from the origin to P, i.e., 

2 2R x y= + . 

(22) 

Equation (21) then becomes 
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(23) 

The above equation can be rewritten as 
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where 
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 Let us consider the conditions to avoid a serious correlation between the distance variables. 

Figure 3 suggests that if the location of sample points is not limited to a small region, a correlation occurs 

if two or more variables increases similarly with R. We can avoid this problem by transforming the 

distances in such a way that the possible sample region is parallel with one of the distance axes. This 

implies that only one distance increases with R while the other two are approximately stable against R. 

Assuming that only D1 increase with R, a condition to avoid correlation is 

11 12 13 0a a a+ + ≠  

(26) 



and 
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(27) 

In this case, since the second and third terms in Equation (24) are negligible compared with the 

first term, we obtain 
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Unlike the two-facility case discussed in the previous section, the three-facility case requires us 

to consider the three correlations between distance variables, i.e., r12, r13, and r23. Since the above 

condition provides us a means of reducing r12 and r13, we now consider the reduction of r23. To this end, 

let us consider the section of possible sample region along the D1-axis. Assuming b2C3-b3C2≠0, we obtain 
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Substitution of the above equation into Equation (22) yields 
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and consequently, 
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(32) 

The above equation indicates that D2 and D3 form an ellipse centered at the origin. This paper 

calls this function D2D3-function hereafter. It depends only on the location of landmarks and matrix A, 

i.e., is independent the distance from the origin. Figure 4 shows the relationship between the sample points 

in the real space and those in the D2D3-space, where 
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(33) 

The figure clearly indicates that the location of sample points in the D2D3-space only depends on the 

direction in the real space. A one-to-one correspondence exists between the direction in the real space and 

that in the D2D3-space. 
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Figure 4 The relationship between the sample points in the real space and those in the distance 

space. (a) The real space, (b) the D2D3-space. 

 

The length of the major and minor axes of the ellipse is represented as 

( ) ( )

( ) ( )

2 22 2 2 2 2 2 2 2
2 3 2 3 2 3 2 3 2 3 2 3

1
2 3 3 2

2

2 22 2 2 2 2 2 2 2
2 3 2 3 2 3 2 3 2 3 2 3

1

4
2

1

4

b b c c b b c c b b c cE
b c b c R

E

b b c c b b c c b b c c

 
 
 + + + − − + − + +   = −      
 + + + + − + − + +
 

. 

(34) 

The rotation angle is 
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Figure 5 illustrates the relationship between D1, D2, and D3 in the distance space. 



 

 

Figure 5 The relationship between D1, D2, and D3 in the distance space. (a) Three dimensional 

representation, (b) sections along the D1-axis, (c) Projection onto the D2-D3 plane. 
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3.2 Transformation methods 

This subsection discusses the properties of the two transformations mentioned in the previous 

sections. 

The average distance method transforms the distance variables in such a way that D1 represents 

the average distance to the three facilities while the D2D3-function is symmetrical with respect to the D2- 

and D3-axes. This allows us to locate sample points symmetrical with respect to the D2- and D3-axes, 

which does not cause a serious correlation. To derive such a transformation, we first consider the rotation 

that makes the line d1=d2=d3 coincide with the D1-axis. The rotation matrices are given by 
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We can confirm 
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Point at (d1, d2, d3) is then converted into 
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The final result is thus given by 
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Since 
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(43) 

we substitute these equations into Equation (35) to calculate the rotation angle ϑ. We then substitute it 

into Equation (48), we can calculate the transformation matrix of the average distance method AA that 

makes the D2D3-function is symmetrical with respect to the D2- and D3-axes. 

 

We then discuss the incremental distance method. Since it is defined as 
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transformation matrix is represented as 
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A . 

(45) 

Figure 6 illustrates the relationship between ϕ1, ϕ2, and ϕ3 in the distance space when the location of 

landmarks is given by Equation (33). 

 



 

 

Figure 6 The relationship between ϕ1, ϕ2, and ϕ3 in the distance space. (a) Three dimensional 

representation, (b) sections along the ϕ1-axis, (c) Projection onto the ϕ2ϕ3-plane. 
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Since 
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is not always equal to zero, the obtained D2D3-function is not symmetrical with respect to the D2- and D3- 

axes. Random distribution of sample points over plane Ξ causes a correlation between ϕ2 and ϕ3 due to 

the concentration of sample points along the direction of the major axis of D2D3-function. A careful 

consideration is necessary to choose the location of sample points in the incremental distance method. 

  

3.3 Location of sample points 

This subsection discusses the location of sample points in the two transformation methods. We 

consider two situations, one where we can locate sample points anywhere over plane Ξ, and the other 

where the location of sample points is limited to a certain sample region. 

 

1) Sample points without locational limitation 

The average distance method permits us to locate sample points easily in which distance 

variables do not highly correlated with each other. For instance, a random distribution is expected to cause 

no serious correlation as mentioned in the previous section. In reality, however, this ignores the 

approximation error in the D2D3-function, which might be not negligibly small especially in sample points 

close around the landmarks. We need to calculate the correlation coefficient between δ1, δ2, and δ3 in 

applications. 

To test the validity of the above procedure, we performed a numerical experiment. Three 

landmarks L1, L2, and L3 are located as defined by Equation (33). We locate 1000 sample points randomly 

within the distance of radius 20 from the origin, and calculate the absolute correlation coefficients between 

the distance variables. The result is r12=0.112, r23=0.005, and r31=0.192. Though they are not very close 

to zero due to the approximation error mentioned earlier, the values are small enough to avoid a serious 

multicollinearity. 



In the incremental distance method, it is not straightforward to avoid the correlation between 

ϕ1, ϕ2, and ϕ3, especially r23 because theD2D3-function is not symmetrical with respect to the ϕ2- and ϕ3-

axes. As seen in Figure 4, if we locate sample points randomly, they are clustered in the direction of the 

major axis of the D2D3-function. It causes a correlation between D2 and D3 in the direction of the major 

axis. 

To avoid this problem, we locate sample points more densely in the direction that corresponds 

to the minor axis of the D2D3-function than in the direction for the major axis (rotation angle of the the 

D2D3-function is 0.3038). More precisely, the point density of a certain direction is in proportion with the 

length of its corresponding radius of the D2D3-function. We locate 1000 points within the distance of 

radius 20 from the origin as seen in Figure 7. The result is r12=0.036, r23=0.012, and r31=0.167, which are 

all again small enough to avoid a serious multicollinearity. 

We should note that the above methods does not work successfully when the three landmarks 

form a very thin triangle, i.e., one of the interior angles is close to π. This generates a thin elliptical D2D3-

function, where reduction of r23 is quite difficult. In such a case, we should omit one of the three distance 

variables in regression analysis. 

 

 

 

Figure 7 Location of sample points. 

 

2) Sample points within a sample region 

We then consider the case where we can locate sample points only in a given sample region. 

Whether we can avoid the correlation between distance variables depends on the location of sample region. 

A correspondence exists between the direction of sample points in the real space and that in the D2D3-

space as seen in Figure 4. If the sample region is situated on either the major or minor axis, we can locate 

sample points almost symmetrically with respect to the axis, which permits to reduce the correlation by 

rotating the D2D3-function. We cannot locate sample points symmetrically if the sample region is away 
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from the axes due to the lack of symmetry in the D2D3-function. 

To evaluate the possible location of sample region, we perform a numerical experiment. Let 

rmax be the maximum correlation given by rmax=max{r12, r23, r31}. The experiment derives the minimum 

size of sample region that permits us to reduce rmax to a desirable level, as well as the minimum rmax that 

can be obtained by a sample region of appropriate size. We first locate a circular sample region of radius 

5.0 on the circle of radius 20 centered at the origin. The sample region contains 1000 sample points 

distributed randomly. We calculate r12, r23, and r31, and move the points in such a way that reduces 

rmax=max{r12, r23, r31} by the steepest descent method (Hamacher and Drezner (2002); Avriel (2003); 

Snyman (2005); Fletcher (2013)). When rmax becomes smaller than 0.5, we then shrink the sample region 

with 1000 points and move them until rmax<0.5. We repeat the same procedure for sample regions centered 

on the circle of radius 20 at π/90 interval from angle -π/18 to 17π/18 measured from the x-axis. 

Figure 8 shows the result of experiment of the average distance method. As clearly indicated in 

the figure, the method works successfully only around the area that corresponds to the major and minor 

axes of the D2D3-function. It is almost impossible to control rmax smaller than 0.5 in other area even if we 

accept sample points distributed in a circle of radius 5. In such areas rmax is close to 1.0 as seen in Figure 

8. 

 

 
 

Figure 8 Sample points in a limited region. (a) The minimum radius of sample region to attain rmax<0.5. 

(b) The minimum rmax 0.5<rmax by sample region of radius 5. 
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or minor axis of the D2D3-function. 

 If the sample region is on one of the axis of the D2D3-function in the D2D3-space, the average 

distance method works successfully. We performed a numerical simulation to examine this in detail. For 

the average distance method, we prepare a fan-shaped sample region bounded by two circles of radius 18 

and 22 centered at the origin, and two lines of angles -π/25.0 and π/25.0 measured from the line that 

corresponds to the minor axis of elliptical function. We initially locate sample points on concentric circles 

of interval 0.5 to obtain 116 points on a curved lattice as shown in Figure 7a. The absolute correlations 

are r12=0.650, r23=0.286, and r31=0.020. Since r12 is not small enough, we move sample points by the 

optimization method mentioned above to reduce the correlations smaller than 0.5. We limited the moving 

range of each point within distance 1.0 from its initial location to keep the uniformity of sample points. 

Figure 7b shows the result, where all the correlations are smaller than 0.5. As seen in the figure, we could 

reduce the correlations with only a slight modification of sample distribution. The incremental distance 

method also yields a similar result. 

 

 
 

Figure 9 Calculation of sample points. (a) The initial location of sample points in the limited sample 

region. (b) The final location of sample points obtained after optimization. 
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Appendix A1 

 The relationship between distance variables D2, D3, δ2, and δ3 and coordinates of sample points 

x and y is represented as a linear transformation: 

2 2 2

3 3 3
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Let us assume that ad-bc≠0. This leads to 
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This yields 
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Distance variables D2 and D3 form a quadratic function without linear terms. They form an ellipse 

centered at the origin when 
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(51) 

We can prove this as follows: 
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(52) 

if ad-bc≠0. 

The rotation angle is 
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(53) 

Rotating the ellipse ϑ counterclockwise, we obtain an ellipse that is symmetrical with respect to both the 

D2- and D3- axes: 
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Distances D2 and D3 are thus represented as 
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Substituting the above equation into Equation (49), we obtain 
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The length of axes of the ellipse is represented as 
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Appendix A2 

This appendix examines the relationship between the arrangement of landmarks and the 

distance function in detail. Let ηi be the internal angle of triangle L1L2L3 at Li. We assume that L1L2=1 

since the elliptical function is independent of the absolute size of L1L2L3. The coordinates of the landmarks 

then become 
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(58) 

Figure 10a and b show the arrangement of landmarks and the distance function, respectively. 
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Figure 10 The relationship between the arrangement of landmarks and the D2-D3 function. (a) The 

arrangement of landmarks. (b) The D2-D3 function. 

 

As seen in Figure 10, the distance function becomes elongated as the smallest interior angle of 

L1L2L3 shrinks. The orientation of the function also depends on the shape of L1L2L3. It seems closely 

related to the orientation of triangle L1L2L3. 

To clarify this relationship in more detail, we examine the correspondence between the location 

of sample points on plane Ξ and that on the distance function at a certain section along the D1'-axis. When 

sample points are distant from the landmarks, the location of sample points on the D2D3 plane depends 

only on the direction with respect to the landmarks as mentioned earlier. We thus consider sample points 

located on a large circle centered at the gravity center of the landmarks. Landmarks are arranged in ten 

among twenty-one patterns shown in Figure 10a, where 

( ) ( )1 2, , , 1,...,5,
6 6
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 
. 

(59) 

We calculate the location of end points of the major and minor axes of the ellipses in Figure 

10b on plane Ξ. Figure 11a shows the distance function rotated in such a way that the major axis is 

horizontal. Figure 11b indicates the spatial relationship between the landmarks and sample points that 

correspond to the end points of distance function. Both the landmarks and sample points are rotated in 

such a way that the diameter connecting the sample points corresponding to the end points of the major 

axis is horizontal. 

 

 
 

Figure 11 The distance function and the spatial relationship between the landmarks and the end points 
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of the distance function. (a) The distance function rotated in such a way that the major axis is horizontal. 

The elliptical function. (b) The spatial relationship between the landmarks and the end points of the 

distance function. Both the landmarks and sample points are rotated in such a way that the diameter 

connecting the sample points corresponding to the end points of the major axis is horizontal. 


