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Abstract 
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Regression models often suffer from multicollinearity that greatly reduces the reliability of estimated 

coefficients and hinders an appropriate understanding of the role of independent variables. It occurs in 

regional science especially when independent variables include the distances from urban facilities. This 

paper proposes a new method for deriving the configuration of sample points that reduces 

multicollinearity in regression models with distance variables. Multicollinearity is evaluated by the 

maximum absolute correlation coefficient between distance variables. A spatial optimization technique is 

utilized to calculate the optimal configuration of sample points. The method permits us not only to locate 

sample points appropriately but also to evaluate the location of facilities from which the distance is 

measured in terms of the correlation between distance variables in a systematic way. Numerical 

experiments and empirical applications are performed to test the validity of the method. The results 

support the technical soundness of the proposed method, and provided some useful implications for the 

design of sample location. 

  



1. Introduction 

 Regression models often suffer from multicollinearity, a state of high correlation between two 

or more independent variables. Multicollinearity greatly reduces the reliability of estimated coefficients, 

and consequently, hinders an appropriate understanding of the role of independent variables. Spatial 

analysis often utilizes the distances from urban facilities as independent variables that can be highly 

correlated with each other. Hedonic housing price models consider the distance from housing units to 

CBD, schools, urban parks, and hazardous waste sites to evaluate the spatial environment around each 

house (Berry (1976); Li and Brown (1980); Bender and Hwang (1985); Harrison Jr and Rubinfeld (1978); 

Ihlanfeldt and Taylor (2004); Noonan, Krupka, and Baden (2007)). A close relationship between obesity 

and neighborhood shopping environment is represented as a regression model that utilizes the 

accessibility to supermarkets, farmers' markets and local food stores as independent variables (Morland, 

Diez Roux, and Wing (2006); Rundle et al. (2009); Jilcott Pitts et al. (2013)). Spatial distribution of air 

quality is often represented as a regression model that includes the distance from chemical plants, power 

plants, smelters, and airports (Gordon and Gorham (1963); Riga-Karandinos and Karandinos (1998); Yu 

et al. (2004)). This paper calls these facilities landmarks hereafter. Since distance variables are measured 

on the same two-dimensional space, they are inevitably correlated at least to some extent with each other. 

 A wide variety of methods have been developed to handle with multicollinearity in regression 

analysis (Farrar and Glauber (1967); Asteriou and Hall (2007); Chatterjee and Hadi (2013)). A simple 

method is to remove independent variables that are highly correlated with others. Numerical measures are 

available for this purpose including correlation coefficient, determinant of correlation matrix, VIF, and 

more sophisticated indices (Weissfeld and Sereika (1991); Kovàcs, Petres, and Tóth (2005); Curto and 

Pinto (2007); Dormann et al. (2013)). Ridge regression, principal component regression, and their 

extensions are also useful for mitigate the multicollinearity among distance variables (Mansfield, Webster, 

and Gunst (1977); Vigneau et al. (1997); Kashid and Kulkarni (2002); Ni (2011); Chen (2012); Miller 

(2012)).  

 The above methods implicitly assume that the observation data used in regression models have 

already been prepared. On the other hand, if data are not yet collected, or a plenty of data are available 

from which we can select a subset of observations, we can reduce the multicollinearity among distance 

variables by carefully choosing the location of sample points. The former case often happens in physical 

geography and environmental science, where analysts collect their own data on the quality of air and 

water, soil and vegetation, and the distribution of animal species by a field survey. The latter includes 

spatial data of real estate such as multiple listing system in the US, land value data in Germany, and land 

and property survey data in Japan. 

To derive an appropriate location of sample points, Heikkila (1988) evaluates the 

multicollinearity among distance variables using numerical experiments under hypothetical 

circumstances. The paper assumes a unit interval and a unit square on which either two or three landmarks 



are located. Given a population distribution from which sample data are drawn, the paper evaluates the 

location of landmarks in terms of the correlation between distance variables. The results provide useful 

implications for a desirable location of sample domain in relation to the location of landmarks. Focusing 

on the case of two landmarks on a one-dimensional unit interval, Dewhurst (1993) also discusses the 

choice of sample domain. Instead of distance correlation, the paper utilizes the variances of estimated 

parameters to evaluate the degree of multicollinearity. Numerical simulations yield the location of sample 

domain that minimizes the variances and hence maximizes the stability of model estimation. 

 Following the line of Heikkila (1988) and Dewhurst (1993), this paper discusses more 

extensively the configuration of sample points that reduces the multicollinearity among distance variables. 

Our focus is on the case of two-dimensional space where two or more landmarks are located. We propose 

a mathematical method for deriving the optimal location of sample points that minimizes the correlation 

between distance variables. The method permits us not only to locate sample points appropriately but also 

to evaluate the location of landmarks in terms of the correlation between distance variables in a systematic 

way. 

Section 2 proposes a method for locating sample points that reduces the multicollinearity among 

distance variables as small as possible. Description of the method is accompanied with numerical 

experiments and empirical applications that test the validity of the method and provide findings useful for 

the design of sample location. Section 3 summarizes the conclusions with discussion. 

  



2. Method and applications 

 Suppose a spatial phenomenon represented as a continuous function y(x) defined over a two-

dimensional space, such as land price, ground temperature, and elevation. The function is measured at N 

sample points. Let Pi, pi, and yi be ith sample point, its location, and the function value observed at Pi, 

respectively, where i∈N ={1, 2, ..., N}. Function y(x) is determined by both spatial and aspatial factors, 

the former of which include the distance to landmarks. Let Fj and zj be jth landmark and its location, 

respectively (j∈L ={1, 2, ..., L}). The distance between location p and zj is denoted by d(p, zj). Aspatial 

factors are represented by functions f1(x), ..., fM(x). 

We build a regression model that explains y(x) by its determinants based on the data observed 

at sample points: 

 ( ) ( ) ( ) ( ) ( )0 1 1 1 1... , ... ,α α α β β ε= + + + + + + +i i M M i i L i L iy f f d dp p p z p z p  

(1) 

where αk's and βk's are the parameters to be estimated (k∈L) and ε(pi) is an error term. We omit aspatial 

factors in the model for the present to focus on the multicollinearity among distance variables: 

 ( ) ( ) ( ) ( )0 1 1 2 2, , ... ,β β β β ε= + + + + +i i i N i L iy d d dp z p z p z p  

(2) 

where βk's are the parameters to be estimated (k∈L). The multicollinearity among distance variables is 

unavoidable since the landmarks are distributed on the same two-dimensional space. 

 Our objective is to locate sample points with keeping the multicollinearity among distance 

variables as small as possible. This requires us to evaluate the multicollinearity in an objective way, for 

the purpose of which various methods are available at present. A simple measure is the absolute value of 

correlation coefficient between two variables. A rule of thumb tells us that the correlation coefficient 

smaller than 0.5 is acceptable. The variance inflation factor (VIF) is another popular index that assesses 

multicollinearity in terms of the stability of model estimation. Further sophisticated approaches have also 

been developed in the literature that evaluate and mitigate the multicollinearity (Belsley, Kuh, and Welsch 

(1980); Spanos and McGuirk (2002); Kovàcs, Petres, and Tóth (2005); Curto and Pinto (2007); Dormann 

et al. (2013)). 

Among those methods, we initially choose the maximum absolute correlation coefficient 

between distance variables as the measure of multicollinearity because of its simplicity and tractability. 

We derive the optimal configuration of sample points that minimizes the maximum absolute correlation 

coefficient denoted by max{|rjk|} (j, k∈L, j≠k), where rjk is the correlation coefficient between d(p, zj) and 

d(p, zk) observed in sample points. We should note, however, that other measures of multicollinearity are 

also applicable to the method proposed in the following with a slight modification as discussed later. 

 



2.1 Two landmarks 

 We start with the optimal configuration of sample points when y(x) depends only on the distance 

to two landmarks, i.e., L=2. This case is rather trivial since we can easily keep r12 at zero as follows. We 

locate the first sample point P1 arbitrarily and draw the circle of radius d(p1, z1) centered at F1. Placing 

other sample points on the circle, we can change d(p, z2) with keeping d(p, z1). The correlation coefficient 

r12 becomes zero so that we can estimate β2 without being disturbed by the correlation between d(p, z1) 

and d(p, z2). We can similarly estimate β1 by using a circle of radius d(p1, z2) centered at F2. 

This method, unfortunately, limits the location of sample points only on two circles. Such a 

tight restriction is practically undesirable because the clustering of sample points often increases the 

correlation between spatial and aspatial variables in regression models, which also greatly reduces the 

stability and reliability of model estimation. We thus propose an alternative location of sample points that 

spreads over a wider area. 

Suppose XY coordinate system as shown in Figure 1a, where the location of two landmarks F1 

and F2 are denoted as z1=(-c, 0) and z2=(c, 0), respectively. We also consider another space whose XY 

axes indicate d(p, z1) and d(p, z2) as shown in Figure 1b. We call the latter distance space to distinguish 

from real space shown in Figure 1a. Any location in the real space is projected in light and dark gray 

regions in Figure 1b, which is bounded by three lines y=x+2c, y=x-2c, and y=-x+2c. 

 



 
 

Figure 1 The relationship between the real space and the distance space defined by d(p, z1) and d(p, z2). 

(a) The real space. Landmarks F1 and F2 and circles of radius 2c centered at F1 and F2 are drawn. (b) 

The distance space. Light and dark gray regions indicate the possible relationship between d(p, z1) and 

d(p, z2) in the distance space. Dark gray square corresponds to the dark gray region in Figure 1a. No 

correlation appears between the two distances if sample points are distributed symmetrically in both 

vertical and horizontal directions. 

 

 The correlation coefficient r12 becomes zero if sample points are distributed symmetrically in 

both vertical and horizontal directions in the distance space. Clearly, numerous distributions satisfy this 

condition. Among such distributions, we take a uniform distribution in the dark gray square denoted by 

G' in Figure 1b that corresponds to the dark gray region G in Figure 1a. We choose this distribution since 

sample points are spread relatively widely around the landmarks. Suppose a uniform function in G' whose 
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integral in G is equal to one. The function corresponds to the continuous function defined by 
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where L(p; F1, F2) is the length of perpendicular line from location p to F1F2 (see Sadahiro and Wang 

(2015) for the derivation of the equation). We call this function the density function of sample points, 

which is illustrated in Figure 2. The density is high around the circle whose diameter is F1F2. We denote 

the circle as C12 indicated by the white broken line in the figure. Two distances d(p, z1) and d(p, z2) are 

not highly correlated around the circle. The density function f12(p; F1, F2) decreases as p approaches the 

X-axis since the correlation between d(p, z1) and d(p, z2) is highly positive around D1F1 and F2D2 while 

highly negative around F1F2. 

 

 

 

Figure 2 Density function f12(p; F1, F2) defined by Equation (3). Darker shades indicate larger values. 

 

We can reduce r12 by locating sample points according to f12(p; F1, F2). We approximate a point 

distribution that follows a probability distribution on a two-dimensional as follows. We first divide the 

region in which we locate sample points by a square lattice of a high resolution, say, 10000 or more cells, 

and calculate the probability of a sample point located in each cell by using numerical integration (Davis 

and Rabinowitz (2007)). Let λi be the probability of a sample point located in ith cell. Cumulative 

distribution function of ith cell, which is denoted by Λi, is given by 
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We then generate a random number x between zero and one, and locate a sample point in ith cell that 

satisfies 
 1+Λ ≤ < Λi ix . 

(5) 

Repeating this process N times, we can approximate a point distribution that follows f12(p; F1, F2). The 

below is a computational algorithm of this procedure. 

 

 1. Prepare a square lattice of K cells. 

 2. Set i=1. 

 3.  Calculate λi, the probability of a sample point located in ith cell. 

 4.  i=i+1. 

 5. Repeat the steps 3-4 until i=K. 

 6. Set i=1. 

 7.   Calculate the cumulative distribution function of ith cell defined by Equation (4). 

 8.  i=i+1. 

 9. Repeat the steps 7-8 until i=K. 

 10. Set i=1. 

 11.  Generate a random number x between zero and one. 

 12.  Locate a sample point in ith cell that satisfies Equation (5). 

 13.  i=i+1. 

 14. Repeat the steps 11-13 until i=N. 

 

To test the effectiveness of the density function derived above, we perform a numerical 

experiment. We distribute 1,000 points according to f12(p; F1, F2) in G (Dark gray region in Figure 1) and 

calculate the correlation coefficient r12. Repeating this process for 10,000 times, we obtain the probability 

distribution of r12. We also calculate the probability distribution of r12 when sample points are randomly 

distributed in G for comparison purposes. 

Figure 3 shows the result of this numerical experiment. The figure clearly indicates that f12(p; 

F1, F2) greatly reduces r12 compared with the random distribution. The probability of r12 falling between 

-0.1 and 0.1 is only four percent in the random distribution while it is 95 percent when sample points 

follow f12(p; F1, F2). Density function f12(p; F1, F2) sounds safe enough for locating sample points in the 

sense that no serious correlation occurs between distance variables. 

 



 

 

Figure 3 Probability distributions of correlation coefficient r12. Black bars indicate the probability 

distribution when sample points are distributed according to f12(p; F1, F2), while white bars indicate the 

probability distribution when sample points are randomly distributed. 

 

The above procedure of locating sample points is effective when sample points can be located 

only in a specific region, which is often called a sample domain. The density function of sample points in 

sample domain H can be calculated as follows. We first project H from the real space onto the distance 

space by calculating the distance from each vertex of H to two landmarks and connecting the vertices in 

the distance space to obtain polygon H'. We then choose a subdomain HS' inside H' in which sample points 

can be distributed symmetrically in both d(p, z1) and d(p, z2) directions. We finally determine the 

configuration of sample points in HS' and project it back onto the real space. 

We can choose subdomain HS' in various ways. A simple method is to draw a small circle or an 

axis-parallel square inside HS'. To locate sample points more widely, we can employ computational 

algorithms that calculate the largest axis-parallel rectangle inside a polygon (Daniels, Milenkovic, and 

Roth (1997); Boland and Urrutia (2001)). The below is a computational algorithm of the above procedure. 

 

 1. Approximate H by a polygon of vertices V1, ..., VK. 

 2. Set i=1. 

 3.  Calculate the distance from Vi to landmarks F1 and F2. 

 4.  Locate the point corresponding to Vi in the distance space. 

 5.  i=i+1. 

 6. Repeat the steps 3-5 until i=K. 

 7. Connect the obtained points in the distance space to generate polygon H'. 

 8. Choose a rectangular subdomain HS' inside H'. 

 9. Locate N sample points symmetrically in H'. Let z1 and z2 be the coordinates of ith point. 

 10. Set i=1. 
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 11.  Draw two circles of radius z1 and z2 centered at F1 and F2, respectively, in the real space. 

 12.  Locate a sample point at an intersection of the circles. 

 13.  i=i+1. 

 14. Repeat the steps 11-14 until i=N. 

 

If sample points are already prepared, we extract a subset of points according to f12(p; F1, F2). 

We first calculate f12(p; F1, F2) based on a square lattice as mentioned earlier. We then choose sample 

points in each cell in proportion to its assigned probability. If a cell does not contain enough number of 

points, we leave the cell and examine the next cell. We finally choose sample points from the cells that 

still have enough points in proportion to f12(p; F1, F2). 

 

2.2 More than two landmarks 

 We then consider regression models whose independent variables contain the distances from 

more than two landmarks. Unfortunately, it is almost impossible to avoid the correlation between more 

than two distance variables simultaneously. We thus aim to reduce the correlation as small as possible, 

i.e., to minimize the maximum absolute correlation coefficient between distance variables, by carefully 

choosing sample location. We formulate the derivation of the optimal configuration of sample points as a 

spatial optimization problem: 

 

Problem CM (Correlation Minimization): 
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To solve Problem CM, we initially distribute sample points according to the following density 

function: 
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This function is the average of density function fjk(p; Fj, Fk) for all the pair of landmarks. We choose this 

function in expectation that g(p) reduces rjk of every pair of j and k equally and thus yields a small 

max{|rjk|}. We determine the initial location of sample points in the way similar to that discussed in the 

previous subsection. We then move every sample point from P1 to PN in turn by the steepest descent 

method (Hamacher and Drezner (2002); Avriel (2003); Snyman (2005); Fletcher (2013)). The method 

moves each point in the direction that decreases the objective function most rapidly. We repeat this process 

until the movement of sample points converges within a predetermined threshold. The obtained max{|rjk|} 

is denoted by rmax. 



Using this method, we perform a numerical experiment. We locate L landmarks randomly in a 

circle of radius 1.0 and derive an optimal configuration of sample points. We repeat this process 1000 

times to obtain the probability distribution of rmax. Table 1 describes the summary statistics of the 

distribution. The mean of rmax increases monotonically with L, which implies that correlation between 

distance variables becomes more unavoidable. If we accept rmax smaller than 0.5, we can always optimize 

the configuration of sample points when L≤3 since Prob(rmax<0.5) is 100 percent. The probability 

Prob(rmax<0.5) decreases to 62.3 percent when L=4, and then 8.7 percent when L=5. A serious gap 

between L=4 and L=5 cases suggests that it is safe to consider less than five landmarks simultaneously in 

terms of multicollinearity in regression analysis. 

 

Table 1 Summary statistics of rmax under a random configuration. Prob(rmax<0.5) indicates the 

probability of rmax being smaller than 0.5. 

 
 

 In practice, we often have to limit the number of distance variables equal or less than three due 

to the high correlation between the variables. Considering this, we can regard the proposed method 

effective enough since it always assures rmax<0.5 when L=3, and permits four landmarks with a probability 

of 62%. We even recommend the method when 5≤L since we can reduce rmax at an acceptable level in 

some situations. 

The above procedure is also applicable when sample points are already prepared. We determine 

the initial set of sample points according to g(p). We then optimize the combination of sample points to 

minimize the objective function of Problem CM. Since it is a combinatorial optimization problem, we use 

a heuristic algorithm such as simulated annealing, tabu search, and genetic algorithms to reach the final 

result (Nemhauser and Wolsey (1988); Wolsey (1998); Karlof (2005)). 

 

2.3 Extensions 

This subsection briefly discusses several extensions of the proposed method. Due to space 

limitations, we will examine them more thoroughly elsewhere in the near future. 

Problem CM utilizes max{|rjk|} as its objective function. The problem, however, can utilize 

other measures such as VIF, tolerance value, and eigenvalue instead of max{|rjk|} as a measure of 

multicollinearity. Replacing the objective function by a different measure, we can optimize the 

configuration of sample points from a different perspective. We can even incorporate principal component 

regression by replacing rmax with that obtained after principal component analysis. The optimal location 
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of sample points under the use of principal component regression is highly probable to reduce rmax to 0.5 

even when 5≤L. 

 We can also incorporate aspatial variables into our framework as follows. Aspatial variables are 

often correlated with distance variables under the existence of spatial autocorrelation, which typically 

emerges in the clusters of sample points. A practical solution is thus to add the minimum distance between 

sample points as a constraint in Problem CM. We may use the nearest neighbor distance between points 

for a certain significance level that are randomly distributed in sample region (Pielou (1977); Ripley 

(2005)). If we can build a mathematical model that represents the spatial distribution of aspatial variables, 

we can directly incorporate the model into the optimization procedure. The model gives the correlation 

coefficients between spatial and aspatial variables and those between aspatial variables. Replacing {|rjk|} 

with the set of all the absolute correlation coefficients, we solve Problem CM to derive the optimal 

location of sample points that minimize the correlation between all the variables. 

 

2.4 Three landmarks 

The numerical experiment in the previous subsection showed that we can keep the correlation 

between distance variables at a reasonable level when L≤4. This subsection discusses further in detail the 

relationship between the location of landmarks and the maximum correlation rmax with a focus on the case 

of L=3. 

Clusters of sample points are undesirable as mentioned earlier. Since careful consideration is 

indispensable on the spatial pattern of sample points, we introduce two measures to evaluate the degree 

of spatial clustering. One is standard distance defined by 
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where pC is the mean center of sample points (Bachi (1962); Rogerson and Yamada (2008); Burt, Barber, 

and Rigby (2009)). Standard distance SD evaluates the overall degree of spatial dispersion of sample points. 

It becomes large when sample points are widely dispersed. Another measure is relative nearest neighbor 

distance defined by 
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(8) 

It is the ratio of the average nearest neighbor distance of sample points to SD. Relative nearest neighbor 

distance becomes small when points form local clusters, while it is large if points are widely scattered. 



The two measures complement with each other by evaluating the degree of spatial clustering from 

different perspectives. 

 Using three measures rmax, SD, and RD, we discuss the relationship between the location of 

landmarks and the maximum correlation through numerical experiments. Three landmarks are arranged 

in two ways. They form an isosceles triangle in Case 1, while a sheared triangle in Case 2. Landmarks F1 

and F2 are located at (-1, 0) and (1, 0) in both cases, respectively. The third landmark F3 is located on the 

y-axis and horizontal line  as shown in Figure 4, respectively. The location of F3 is denoted as 

30,
15

m
 
  
 

 and 
3 , 3

15
m

 
  
 

 in the two cases, respectively. Parameter m changes from 0 to 75 in 

both cases. In Case 1, triangle ∆F1F2F3 becomes an equilateral triangle when m=15. In Case 2, ∆F1F2F3 

is an equilateral triangle when m=0, and gradually becomes a sheared triangle with an increase in m. 

 

 
 

Figure 4 The location of three landmarks F1, F2, and F3. (a) Case 1: The landmarks form an isosceles 

triangle, (b) Case 2: The landmarks form a sheared triangle. 

 

We first discuss Case 1, where ∆F1F2F3 forms an isosceles triangle. Figure 5 shows the 

relationship between m and numerical measures. As seen in the figure, rmax initially decreases greatly with 

an increase of m, and stays zero when 7≤m. The correlation between distance variables completely 

vanishes when vertex angle ∠F1F3F2 is smaller than 0.567π=102.1°. Figure 6 shows the final 

configuration of sample points when m=5, 10, 15, 30, 45, and 75, where Cij is the circle of diameter FiFj 

centered at the midpoint of Fi and Fj. While Figure 6a and Figure 6b contain clusters, points are distributed 

rather uniformly in Figure 6c, where ∆F1F2F3 forms an equilateral triangle. Points become gathered along 

a circle centered at the midpoint of F1 and F2 with an increase in m. This is clearly reflected in Figure 5c 

where RD first increases and then decreases monotonically. Figure 5b shows that standard distance SD 

captures the global pattern of sample points successfully, where SD increases monotonically with a spread 
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of sample points over a wider area. 

 

 
 

Figure 5 Measures of the configuration of sample points. (a) The maximum correlation rmax, (b) 

standard distance SD, (c) relative nearest neighbor distance RD. 
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Figure 6 The final configuration of sample points in Case 1. Gray circle denoted as CD in Figure 6f 

indicates the clustering of sample points. Broken lines indicate circles C12 and C13. 

 

To examine the clustering of sample points around a circle in detail, we discuss the relationship 

between sample location and distance variables in the case of two sample points. Suppose Figure 7a in 

which the first sample point P1 is located. Broken and solid lines indicate arcs centered at F1 and F2 and 

their tangents at P1, respectively. Let us consider the location of second point P2 around the neighborhood 
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(f) m=75

F1 F2

F3

CD

C13

C12



of P1.If we place P2 between the tangents, the area indicated by gray-shades, correlation coefficient r12 

becomes positive. Figure 7b depicts the angle of P2 with respect to F1 that yields a positive r12. Black area 

in small circles indicates the range of the angle giving positive r12. As seen in the figure, r12 tends to be 

positive outside circle C12 while it becomes negative inside C12. If we locate P2 randomly around F1, the 

probability of positive r12 is given by 
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(9) 

Figure 7c show the distribution of Prob(r12>0). Probability Prob(r12>0) is 1/2 on C12, which implies that 

points clustered around C12 do not exhibit strong correlation between distance variables. We can confirm 

in this figure that the correlation r12 is negative inside C12, while it becomes highly positive as sample 

points move away from C12 toward its outside. 

 



 
 

Figure 7 Calculation of the probability distribution of positive r12. Red circles indicate circle C12. (a) 

The location of the first sample point P1. (b) The angle of P2 with respect to P1 that yields a positive r12. 

Black area in small circles indicate the range of the angle giving positive r12. (c) The distribution of 

probability Prob(r12>0). Darker shades indicate that distance variables tend to be highly positively 

correlated. 

 

Figure 7b also suggests that a specific form of sample clusters causes a strong correlation, either 

positive or negative. Suppose sample points aligned on an extension of a diameter of C12 such as green 
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line Q in Figure 7b. The line is running through the black area of small circles at every location in the 

figure. This indicates that d(p, z1) and d(p, z2) are positively correlated at all these locations, and 

consequently, r12 becomes 1.0. In contrast, sample points located on F1F2 yields r12=-1.0. Negative 

correlation also occurs when sample points are aligned on a circle centered at the midpoint of F1 and F2 

such as circle C in Figure 7b. The circle is passing through the white area of small circles at every location, 

which yields a highly negative correlation. 

Keeping the above patterns in mind, let us return to Figure 6f. We examine correlation 

coefficients r12 and r13 in detail to reveal how the sample points accomplish rmax=0(=r12=r13). Many points 

are concentrated along the circle denoted by CD, whose center is located at the midpoint of F1 and F2. We 

expect the points to cause a highly negative correlation, which is supported by Figure 8a showing the 

relationship between d(p, z1) and d(p, z2) on CD. Other points are all dispersed outside C12, which leads 

to a positive correlation as confirmed in Figure 7c. The negative and positive correlations cancel out with 

each other, and consequently, r12 becomes zero as a whole in Figure 6f. We then turn to the case of r13. 

Figure 8b shows the relationship between d(p, z3) and the other distance variables on CD. The figure 

exhibits no significant correlation. Other points are distributed equally inside and outside of C13 in Figure 

6f so that negative and positive correlations similarly emerge and cancel out with each other. Correlation 

r13 also becomes zero, so does rmax. 

 

 
Figure 8 The relationship between distance variables of sample points located on circles. Points are 

located on (a)(b) circle CD in Figure 6f, and (c) (d) CD' in Figure 9e. Bold and broken lines in (b) (d) 
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indicate d(p, z1) and d(p, z2), respectively. 

 

We then discuss Case 2, where ∆F1F2F3 forms a sheared triangle. Figure 5a shows that rmax 

stays at zero until m reaches at 11, where ∠F1F3F2≈0.287π=51.6°, and then monotonically increases as 

∆F1F2F3 becomes further sheared. The final configuration of sample points is shown in Figure 9. Points 

are distributed uniformly around ∆F1F2F3 when m=0, and then gradually concentrated along a circle 

centered at the midpoint between F1 and F2 with an increase of m. This change is reflected in SD and RD 

shown in Figure 5. Interestingly enough, a clear concentration along two circles appears in Figure 9b as 

indicated by gray lines, where ∆F1F2F3 forms an isosceles triangle. Similar but less clear circles can also 

be observed in Figure 6a. Figure 9 suggests that sample points are initially distributed uniformly, then 

gathered along two circles, and finally clustered along a single circle. 



 

Figure 9 The final configuration of sample points in Case 2. Gray circles indicate the clustering of 

sample points. 

 

The above applications suggests sufficient conditions for rij=0. Correlation rij becomes positive 

if sample points are either 1) dispersed outside Cij, or 2) aligned on an extension of a diameter of Cij. It 

becomes negative when sample points are either 3) dispersed inside Cij, or 4) aligned on a diameter of Cij, 

or 5) aligned on a circle that is larger than Cij and centered at the midpoints of FiFj. The combination of 

one positive and one negative conditions yields rij=0. Figure 6c and Figure 9a are the cases of conditions 

1) and 3), where sample points are dispersed equally inside and outside Cij. Figure 6f, Figure 6e, Figure 
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9d, and Figure 9e are the cases of 1) and 5). Correlation rmax becomes zero only if all the correlations are 

equal to zero by satisfying some of the above conditions. 

What is interesting here is that condition 5) is found only for the shortest edge of ∆F1F2F3 in 

the above examples. This is because of the following reason. Suppose that F2F3 is the shortest among the 

three edges. Correlation r12 is zero if sample points are concentrated along circle C centered at the 

midpoints of F1F2 while other points are distributed outside C12 as seen in Figure 10. A necessary 

condition for r23=r31=0 in this case is that the sample points are distributed equally both inside and outside 

C23 and C31. However, since C23 is smaller than C, many points are inevitably located outside C23. When 

F2F3 is the shortest edge, therefore, a necessary condition for rmax=0 is that sample points are concentrated 

along circle C centered at the midpoints of F2F3 while other points are distributed outside C23. 

 

 

Figure 10 The location of sample points, ∆F1F2F3 and its related circles. 

 

We finally discuss a desirable configuration of three landmarks in terms of the correlation 

between distance variables. If the concentration of sample points does not cause a strong correlation 

between spatial and aspatial variables, we can adopt any configuration discussed in this subsection on the 

assumption that rmax<0.5 is acceptable. If point clusters are undesirable, it is safe to choose landmarks that 

form an almost equilateral triangle such as those in Figure 6c and Figure 9a where sample points exhibit 

no significant clusters. If sample points need to be dispersed more widely, we may choose the 

configuration of landmarks such as those in Figure 6e and Figure 9d, though we have to allow local 

clusters of sample points to a certain degree. 
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2.5 Applications to real data 

 This subsection applies the proposed method to the analysis of real data. We chose two regions, 

each of which is located in Tochigi and Fukuoka Prefectures, Japan. Source data are land price data in 

2014 collected at 23380 locations by the Ministry of Land, Infrastructure, Transport and Tourism. We 

consider a regression model that describes the land price at each location by the distance to landmarks. 

In the first region in Tochigi Prefecture we took three cities as landmarks: Utsunomiya, Tochigi, 

and Kanuma (Figure 11). Sample domain H is a circle of radius 25 kilometers centered at the centroid of 

the three cities. The domain contains 277 sample points, whose rmax is 0.7425 (Figure 11a). To reduce rmax 

smaller than 0.5, we located sample points in two different ways: one is to newly locate 277 sample points 

in H without any restriction, and the other is to extract 50 percent of the original points, i.e., 138 from 277 

points. 

Figure 11b is the distribution of sample points located without any restriction. Sample points 

are uniformly distributed in H, which is almost the same as the initial location of sample points given by 

Equation (3). If we further continue optimization, we could reduce rmax to 0.00. Figure 11c and Figure 

11d indicate the points randomly chosen from the original data and those obtained after optimization, 

respectively, where rmax reduced from 0.7310 to 0.50. Figure 11d looks reasonable since it contains no 

extreme cluster of points. If we further continue optimization, we could decrease rmax to 0.2988. Otherwise, 

we may increase sample points to reduce the loss of information with keeping rmax=0.5. This option is 

more effective in this case since we could increase sample points up to 80 percent of the original ones, 

i.e., we could attain rmax=0.5 with the loss of only 20 percent of the original information. 

 



 
 

Figure 11 The location of sample points and landmarks in Tochigi Prefecture, indicated by black and 

red points, respectively. Brown lines are railway lines. (a) The actual location in 2014, (b) sample points 

located without any restriction, (c) sample points extracted randomly from their original location, (d) 

sample points obtained after optimization. The maximum correlation rmax is 0.5 in Figure 11b and 

Figure 11d. 

 

Sample domain H in the second example is located in Fukuoka Prefecture. (Figure 12). It is a 

circle of radius 20 kilometers facing Hakata Bay centered at the centroid of three landmarks, i.e., 
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downtown area of Fukuoka City, Higashi-Hirao Park that contains football and athletic stadiums, and a 

big shopping mall called Torius. Domain H contains 381 sample points, where rmax is 0.8445 (Figure 12a). 

We optimize the location of sample points in the same way as that in Tochigi Prefecture. 

Figure 12b shows the distribution of sample points located without any restriction for rmax=0.5. 

We can see a rather obscure cluster of points around the three landmarks. It would be a circular cluster 

such as the one observed in Figure 6, a part of which is substituted by the cluster on the peninsula in 

Hakata Bay. This distribution seems practically infeasible since the peninsula is not densely inhabited. 

Figure 12c and Figure 12d are the points randomly chosen from the original ones and those obtained after 

optimization, respectively, where rmax reduced from 0.6827 to 0.5. We could either further reduce rmax to 

0.2768, or increase sample points up to 95 percent of the original ones with keeping rmax=0.5. The latter 

is very effective in a practical sense as we can decrease rmax from 0.8445 to 0.5 by discarding only five 

percent of the original information. We can use original data more effectively than in the case of Tochigi 

Prefecture because Fukuoka Prefecture has more sample points that assure the flexibility of sample 

location. 

 



 
 

Figure 12 The location of sample points and landmarks in Fukuoka Prefecture, indicated by black and 

red points, respectively. Brown lines are railway lines. The darker gray region indicates Hakata bay. (a) 

The actual location in 2014, (b) sample points located without any restriction, (c) sample points 

extracted randomly from their original location, (d) sample points obtained after optimization. The 

maximum correlation rmax is 0.5 in Figure 12b and Figure 12d. 

 

 We then evaluate the location of sample points in a more realistic context. We built a regression 

model that describes the land price by both spatial and aspatial variables. The former consists of the 
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distance to three landmarks, while the latter includes lot size, building and land use regulations, and 

surrounding land use represented by ten variables. We compared two models, one is based on sample 

points selected randomly from original data, and the other utilizes the same number of sample points that 

is optimized in such a way that rmax is smaller than 0.5. Both models chose independent variables by the 

forward stepwise method. 

 Table 2 shows the result of model estimation, where ρ is the proportion of sample points selected 

from the original ones. Regression models in Tochigi Prefecture describe land price better than those in 

Fukuoka Prefecture at any ρ. The former utilize more distance variables, which implies that the distance 

to landmarks plays an important role in Tochigi Prefecture. Optimization of sample selection generally 

improves the model fitness in both regions; R-square and adjusted R-square increase in nine out of twelve 

cases. R-square significantly increases especially when the number of distance variables increase by 

optimization such as the cases of ρ=0.50, 0.60, and 0.70. Optimization of sample points decreases the 

correlation between distance variables, which permits regression models to evaluate more distance 

variables, and consequently, improves the model fitness. 

 The above discussion also indicates that the optimization of sample selection is not so effective 

when the distance to landmarks is not critical to land price. We confirm this by the result obtained in 

Fukuoka Prefecture, where optimization of sample selection are less effective than in Tochigi Prefecture. 

Optimization of sample selection is worth trying in any case, but we should keep in mind that it does not 

always greatly improve the accuracy of regression models. 

 

Table 2 Summary statistics of estimated models. F value is significant at significance level 0.01 in all 

the models. 

 



 
 

 Sample points of land price and real estate data are often located primarily in downtown areas 

as seen in the two examples. Such distributions inevitably contain point clusters, which is a primary source 
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of the correlation between distance variables. If data are already prepared, we should avoid local clusters 

by choosing sample points in such a way that they are distributed more uniformly than their original 

distribution. When we newly collect sample points, uniform distribution is a simple but effective option 

because it yields both positive and negative correlations between distance variables as discussed in 

Subsection 2.4. 

 

2.6 Limited location of sample points 

 This subsection discusses the case where sample points can be located only in a limited region. 

This happens either when we choose sample location from a given set of locations or when we locate 

sample points in a given sample domain. 

In the former case, we solve Problem CM in a discrete space, i.e., choose the locations that 

minimizes max{|rjk|} from the given set. Since it is an integer programming problem, we employ a 

heuristic method to derive the optimal set of sample points. 

 In the latter case, we add a constraint to Problem CM that limit the location of sample points: 
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We move sample points from their initial location in a similar way as to that used in Subsection 2.2. 

 We apply this method to a numerical experiment. Three landmarks F1, F2, and F3 are located at 

(0, 0), (3, 0), and (2, 2), respectively, in rectangular region Ψ bounded by four lines x=-5, x=8, y=-5, and 

y=7. We derive the optimal location of 1000 sample points in circular sample domain HS of radius l. The 

center of HS moves at lattice points of interval 0.05 in Ψ. The radius l varies from 0.5 to 2.5 at the interval 

of 0.5. 

Figure 13 shows the relationship between rmax and the location of the center of HS when l=0.5, 



1.5, and 2.5. The left hand figures show max{|rjk|} when sample points are randomly distributed in HS, 

while the right hand figures indicate rmax obtained after optimization. The figures clearly present that the 

optimization of sample location drastically reduces the correlation between distance variables. 

Let us focus on the right hand figures of Figure 13. The figures show that we can keep rmax 

smaller than 0.5 when sample domain HS is close to landmarks. The maximum correlation rmax increases 

as HS moves away either inside or outside of ∆F1F2F3. This is consistent with the result shown in Figure 

7b where the correlation between distance variables increases with the distance from landmarks. We can 

also reduce rmax by employing larger sample domain because it increases the flexibility of sample location. 

A careful consideration is necessary when HS is located around the lines F1F2, F3F3, and F1F3. The 

maximum correlation rmax is small only when HS is close to landmarks. Otherwise, the neighborhood of 

these lines yields worse result. 
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Figure 13 The relationship between rmax and the location of sample domain HS. The left hand figures 

show max{|rjk|}when sample points are randomly distributed in HS, while the right hand figures indicate 

rmax obtained after optimization. The radius of HS is (a)(b) 0.5, (c)(d) 1.5, and (e)(f) 2.5. 

 

3. Concluding discussion 

 This paper developed a method for deriving the configuration of sample points that reduces the 

multicollinearity among distance variables in regression models. In the case of two landmarks, we derived 

the density function of sample points that totally vanishes the correlation between distance variables. We 

then proposed a mathematical procedure for locating sample points that minimizes the correlation 

between distances to more than two landmarks. To test the validity of the proposed method, we performed 

numerical experiments and empirical applications varying in the number of landmarks and sample domain. 

The results supported the technical soundness of the method, and provided useful implications for the 

design of sample location. 

 We finally indicate two limitations of the paper and potential extensions for future research. 

 First, we should discuss more thoroughly the extensions of the proposed method. Though 

Subsection 2.3 briefly describes some directions, we have not yet test their validity through numerical 

experiments and real applications. Computational cost and initial configuration of sample points in those 

extensions clearly need a detailed examination from both theoretical and empirical perspectives. 

Applications in various situations are also necessary to find an appropriate approach that is theoretically 

sound and practically feasible. 

 Second, the definition and treatment of distance variables need further discussion. This paper 

defines the distance as the Euclidean distance in a linear form in regression models. However, other 

measures such as the Manhattan distance, network distance and time distance are often used in regional 

science and geography. We can incorporate these distances into regression models in various forms 

including square root, inverse, logarithm, and exponential functions. We should extend the proposed 

method to treat a wider variety of distance measures. 
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