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seg: Implementing recent developments in the measurement of segregation 

Abstract 

Despite the advances in the measurement of segregation over the last few decades, 

recently developed segregation indices have been rarely used in the literature, 

primarily due to the computational difficulties. The calculation procedure of these 

measures tends to be more sophisticated than the traditional counterparts, and it 

often involves spatial data processing using Geographic Information Systems 

techniques. Although considerable efforts have been made in recent years to im-

plement some of the newly proposed approaches, either it does not incorporate 

important improvements in the field, or it requires commercial software to run. In 

this paper, we describe our contribution to the implementation of segregation 

measures in R, open-source software environment for statistical computing and 

graphics. Our implementation has several merits over the existing tools. First, we 

provide coercion methods that enable the transformation of output from the im-

plemented functions into more general R classes. This feature allows using thou-

sands of standard and modern statistical techniques, as well as facilities for data 

manipulation and visualisation, for the post-processing of the results. Second, the 

implemented functions work with a wide range of input parameters, and most of 

them have carefully chosen defaults, which will perform fine in many situations. 

This provides greater flexibility and control over the calculation procedure for 

advanced users, while ensuring that less experienced R users can still use the 

functions without too much difficulty. Third, our implementation does not require 

commercial software to operate, so it is accessible to a wider group of people. 

Keywords: segregation; segregation measures; R; 
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Introduction 

The measurement of segregation has been a topic of debate and discussion among soci-

ologists and geographers for decades (Johnston, Poulsen, & Forrest, 2010; Kramer, 

Cooper, Drews-Botsch, Waller, & Hogue, 2010; Massey & Denton, 1988; Peach, 2009, 

2010; Wong, Reibel, & Dawkins, 2007). Many measures have been proposed over the 

last half century, to capture various dimensions of this complex social phenomenon, but 

only a few of them have been regularly used in the segregation literature. Some of the 

indices have not been adopted in practice because they overlap with the existing ones to 

a large extent, providing little new insight into the patterns of segregation (Massey & 

Denton, 1988), and some have not been chosen due to their methodological flaws and 

ambiguity in interpretation (Johnston, et al., 2010; Peach, 2009). 

There are, however, several methods that are generally acknowledged to have 

theoretical advantages over the conventional ones but have been rarely used, primarily 

due to the computational difficulties. Recently developed spatial indices might be cases 

in point: the calculation procedure of these measures tends to be more sophisticated than 

the traditional counterparts, and it often involves spatial data processing using Geo-

graphic Information Systems (GIS) techniques (Wong, 2003). Although considerable 

efforts have been made in recent years to implement these spatial indices (Apparicio, 

Martori, Pearson, Fournier, & Apparicio, 2013; Reardon, et al., 2009; Wong, 2003), ei-

ther it does not incorporate important improvements in the field, or it requires commer-

cial software to run, which is not available to the public. 

To address this problem, we have developed an R package seg that provides fa-

cilities for a wider variety of segregation measures. R is a multi-platform, open-source 

software environment for statistical computing and graphics (R Core Team, 2014), so it 

is accessible to almost all members of the academic and research communities. Fur-

thermore, since R offers numerous powerful statistical and graphical tools, the manipu-

lation and visualisation of the spatial data, as well as the post-processing of the results 

can be readily performed without exporting it to another data format. 

This paper is mainly concerned with describing the structure and functions of the 

seg package. In the next section, we present the definitions of the segregation measures 

currently included in this extension package and explain briefly how these are imple-

mented. The subsequent section evaluates the reliability and computational efficiency of 

the implemented functions with a set of hypothetical segregation patterns: the idealised 

landscapes are adopted from Morrill (1991) and Wong (1993), as they are intended to 



4 

 

test the accuracy of the associated functions through regression testing. This paper con-

cludes with a discussion about the limitations of the current work and future directions 

for development. 

 

Implementation 

The measures of segregation can be classified based on a number of different criteria. 

Massey and Denton, for instance, examined 20 indices available at that time and 

grouped them into five categories, based on their correlations to each other (Massey & 

Denton, 1988). The indices may also be distinguished into spatial and non-spatial indi-

ces, depending on whether the calculation is sensitive to the spatial arrangement of the 

population. One well-known example of the latter is the index of dissimilarity devel-

oped by Duncan and Duncan (1955), while a considerable number of more recent meth-

ods, such as the set of measures proposed by Reardon and O‘Sullivan (2004), belong to 

the former. 

In this paper, we classify the segregation measures under two headings, namely, 

zone-based and surface-based measures, based on the types of input data required. 

Zone-based measures use aggregated population counts for their calculation, and sur-

face-based measures utilise a continuous population density surface to minimise the so-

called modifiable areal unit problem (MAUP) (Openshaw, 1984). We distinguish segre-

gation measures in this manner because the amount of information required for the cal-

culation significantly differs between the two, and hence the computational steps are 

also very different. Table 1 presents the zone-based and surface-based segregation 

measures implemented in the seg package; each of these will be discussed in the follow-

ing subsections. 

 

Zone-based measures 

The calculation of the zone-based measures is relatively straightforward: most can be 

calculated by hand, or using a simple spreadsheet program. There are, however, several 

more complex methods that demand extensive data preparation. The seg package pro-

vides tools for some of these methods, including the index of dissimilarity (Duncan & 

Duncan, 1955) and its spatially-modified forms (Morrill, 1991; Wong, 1993), the index 

of spatial proximity (White, 1983), and the concentration profile (Poulsen, Johnston, & 

Forrest, 2002). In this section, we present a brief introduction to these indices and their 
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implementation in R. More detailed descriptions of the methods are given in the corre-

sponding original papers. 

The index of dissimilarity, D, is one of the most widely used measures in the 

segregation literature. For the study region consisting of n census tracts, D is defined as: 
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where X and Y denote the total population counts of two population groups, and xi and yi 

are the local populations in the census tract i. Although D itself is non-spatial, this can 

be adjusted to reflect the spatial distribution of the population. For example, Morrill 

(1991) suggested adding a spatial term to the equation (1), so it becomes: 
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where zi and zj are the proportions of the minority population in the census tracts i and j 

(i.e., zi = xi / (xi + yi) and zj = xj / (xj + yj)), respectively, and cij denotes an element at (i, j) 

in a contiguity matrix C, which becomes one only if i and j are adjacent. 

This spatially-adjusted version of D can be further supplemented by taking into 

account additional geometric features of the spatial units, which might influence indi-

viduals‘ accessibility to neighbouring areas. Wong (1993) proposed replacing the binary 

contiguity matrix in (2) with a distance-weighted matrix, W, whose (i, j) element is de-

noted by wij: 
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and dij is the shared boundary length between the census tracts i and j. He further argues 

that if the area and perimeter of the census tracts are known, they can be incorporated 

into D (Wong, 1993): 
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where Pi and Ai are the perimeter
1
 and area of the census tract i, and                  

is the maximum possible ratio in the entire region. 

These three spatial associates of D (i.e., equations (2) – (4)) might be more real-

istic representation of residential segregation, but they—particularly, DW and DS—are 
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rather complicated to calculate. To facilitate the use of these extended indices, we have 

implemented them in the seg package, as a single function called dissim(). Once the 

function is called, it first estimates the traditional index of dissimilarity, and then the 

spatial term (i.e., the second component of (2), (3) and (4)) is deducted from it. Which 

index to calculate is controlled by input arguments, because the calculation procedures 

of DM, DW and DS are essentially identical: the difference lies in the amount of spatial 

information required, not in the way in which the spatial term is calculated. 

The first two arguments to this function, x and data, specify the data for which 

the index is calculated: x should be of class SpatialPolygons (or one that extends it) 

representing the study region, and data should be a n-by-2 table, where n is the number 

of census tracts and the two columns contain the population counts of mutually exclu-

sive groups. If data is given, x becomes optional. If x is present, and if it includes a data 

frame, data may be omitted. However, at least one of these arguments must be supplied. 

The third argument to dissim() is nb. It should be a n-by-n matrix, sorted in the 

same order as data, whose elements describe the social and physical distances between 

the census tracts. If this is a simple binary matrix indicating the adjacency between the 

units, the function calculates DM. If it is a numeric matrix representing the standardised 

lengths of common boundaries, or the perimeter-to-area ratio, the function returns DW 

or DS, respectively. When nb is not specified, the spatial component is assumed to be 

zero, so the output is not adjusted (i.e., equation (1)). 

Although the seg package does not provide facilities for creating an object for nb, 

there are a number of user-contributed packages that can model spatial relationships be-

tween the census tracts. For example, a binary contiguity matrix can be constructed us-

ing poly2nb() and nb2mat()in the spdep package. The area of spatial polygons can be 

obtained by invoking slot() if it is stored as class SpatialPolygons (or its inherit 

class). The lengths of shared boundaries are a little more difficult to get, because topo-

logical information is not available in most of the common spatial classes in R (Gómez-

Rubio & López-Quílez, 2005). One way to work around this problem is to use the 

spgrass6 package that provides an interface between R and GRASS (GRASS 

Development Team, 2012), open-source GIS software. It has a function called 

vect2neigh(), which computes the lengths of common boundaries in an R object 

through GRASS. 
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When the argument adjust is set to TRUE, dissim() checks if these functions 

are available on the user‘s system and attempts to calculate the spatially-adjusted indi-

ces. If the calculation fails, or if this spatial adjustment is disabled (by setting adjust = 

FALSE), NA is assigned to the corresponding elements of a list, which will eventually be 

returned by the function.  

The returned list has five elements: d for D, dm for DM, dw for DW, ds for DS, 

and user for the index adjusted by the optional argument nb. Each element ranges be-

tween 0 and 1, where a value of zero represents no segregation and a value of one indi-

cates complete segregation. Theoretically, the spatially-adjusted indices are similar to 

the traditional version when the census tracts with a high proportion of the minority 

population are clustered together in the study region (i.e., positive spatial autocorrela-

tion). If areas with similar population composition are dispersed, however, output from 

the equations (2) – (4) should be considerably lower than that from (1), as the additional 

spatial component becomes large. 

It is noteworthy that D and its spatial associates consider only two population 

groups at a time. Considering that many societies are increasingly diverse in terms of 

race, ethnicity, culture, and religion, this limitation is not desirable. One of the classical, 

zone-based measures that can work with multiple groups is the index of spatial proximi-

ty SP (White, 1983), which is defined as: 

    
 ∑ ∑                 ∑ ∑               

     ∑ ∑             
 (4)  
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and f (dij) is a function of distance between two census tracts i and j. In the equations (4) 

and (5), X, Y, xi, and yi are defined as in (1).  

SP evaluates the average distance between all individuals regardless of their 

population group and then compares that with the sum of the within-group proximities 

weighted by their respective size. Unlike the index of dissimilarity, this formula can be 

easily extended to three or more groups by adding them to the numerator and denomina-

tor in the same manner as the groups X and Y. 

In the seg package, the function to compute this measure of clustering is called 

isp(). As with dissim(), the arguments data and nb specify the population counts and 

distances between the census tracts, respectively. However, data does not have to be a 
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n-by-2 matrix; it accepts a numeric matrix with more than two columns, as SP can han-

dle multiple population groups. These arguments become optional, if an R object con-

taining points or polygons is provided via the argument x, and if it has the population 

counts as attributes. In this case, the Euclidean distances between the spatial features are 

estimated using dist() when nb is not given. The argument fun defines f (dij) and con-

trols how the distance affects the social interactions between people. It defaults to a 

simple negative exponential function (i.e.,        ), but it is recommend to try several 

different distance-decay models and choose the most plausible one. 

The function returns a single numeric value indicating the degree of segregation: 

a value of one means absence of segregation, and values greater than one indicate clus-

tering. If the index value is less than one, it indicates an unusual form of segregation 

(i.e., people live closer to other population groups). 

It is important to note that although SP is a useful method for evaluating the de-

gree of residential clustering in the study region, it tends to neglect geographic patterns 

of small minorities by definition. If one‘s interest lies in identifying residential cluster-

ing of an individual population group, the concentration profile approach proposed by 

Johnston, Poulsen and Forrest (2002) might be more suitable.  

A concentration profile is a cumulative distribution curve, which displays the 

proportion of the subject group along the y-axis and their share in census tracts along 

the x-axis. This is conceptually similar to the Lorenz curve, but in the segregation litera-

ture, the Lorenz curve is often constructed by plotting the cumulative proportion of one 

population group against that of the other group. The concentration profile is different 

from the Lorenz curve in the sense that it plots the cumulative proportion of the popula-

tion group against their relative demographic share in geographic units. 

Figure 1 is an example of a concentration profile for Pacific peoples in Auckland, 

the largest city in New Zealand. From this graph, it is apparent that the majority of Pa-

cific peoples reside in the areas where they are relatively overrepresented (i.e., > 30%), 

and that almost 30% of them live in the areas where they comprise over a half of the 

local demographic composition. Compared to the single-value indices above, this visual 

inspection of the data enables a more detailed interpretation of the population distribu-

tion. 

Concentration profiles can be produced using a function called conprof() in the 

seg package. Similar to dissim() and isp(), the function uses the argument data for 

the population counts, but it does not require any spatial information as this method is 
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non-spatial. Additional arguments grpID and n should be a single integer value, specify-

ing the population group (i.e., column of the input data matrix) to be examined and the 

number of x values to be used for the construction of the concentration profile. If, for 

example, n = 5, the function takes five equally-spaced values between 0% and 100% as 

x values. For each x, it examines how many of the selected group members live in the 

census tracts where they comprise at least x % of the local population.  

Unless the argument graph is set to FALSE, it draws a concentration profile on 

the current graphic device and returns a numeric value ranging between 0 and 1. The 

return value is a summary statistic for the concentration profile, R, which is derived as 

described in Hong and Sadahiro (2014). This output can be interpreted in a similar 

manner to the index of dissimilarity: a small value indicates that the group comprises 

similar proportions of the local population in all census tracts, and a large value implies 

a high degree of residential concentration (Hong & Sadahiro, 2014). 

 

Surface-based measures 

The segregation measures in the previous section work on the data in which the popula-

tion counts are agglomerated into arbitrarily defined geographic areas, such as census 

tracts, electorates, and school zones. Therefore, the resulting degree of segregation de-

pends not only on the actual distribution of the population but also on the choice of spa-

tial units (Openshaw, 1984). 

Unlike the zone-based measures outlined above, the surface-based measures do 

not require the use of aggregate spatial units, so they are theoretically free from this 

problem. Although, in practice, almost all data available are provided in aggregate form, 

a plausible population density surface can be obtained using a variety of interpolation 

techniques by making certain assumptions regarding the distribution of the population. 

This sort of approach does not necessarily eliminate all possible errors, but previous 

studies argued that it could reveal important patterns that would not be found using the 

conventional index of dissimilarity (Kramer, et al., 2010). 

Nonetheless, the surface-based measures have not been as widely used in the lit-

erature as they might deserve to be. There has been hesitation among scholars to employ 

these indices, partly because their calculation is complicated and constructing an appro-

priate interpolation map requires significant computing skills and knowledge in statis-

tics. In order to lower such computational barriers and facilitate the use of these poten-
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tially useful methods, we have implemented two sets of surface-based measures in the 

seg package. One is the spatial segregation indices developed by Reardon and 

O‘Sullivan (2004), which consists of the general spatial exposure/isolation index (P*), 

the spatial information theory index (H), the spatial relative diversity index (R), and the 

spatial dissimilarity index (D). The other is the decomposable segregation measure pro-

posed by Sadahiro and Hong (2013). 

 The core function for the former method is called spseg().The first argument 

to this function (x) should be a spatial object of class Spatial or matrix of x and y co-

ordinates, and the second argument (data) should be an object of class matrix or da-

ta.frame containing the population data to be analysed. As with isp(), the second ar-

gument may be omitted if x has the data attached to the spatial features. The third argu-

ment (method) determines which of the four indices should be calculated. By default, it 

is set to all, but a character vector indicating one or more of the following pre-defined 

strings can be used to specify a subset to calculate: exposure for P*, information for 

H, diversity for R, and dissimilarity for D. 

The rest of the arguments are either optional or have a default value. Experi-

enced R users can control, for example, how the population density surface is estimated 

and the scale at which segregation is measured through these arguments. Some of the 

useful arguments include: 

nrow, ncol: Define a regularly-spaced grid over the study region with the specified 

number of rows and columns; when smoothing = "kernel", the kernel estimate 

is computed for each node of the grid, and segregation is measured at the same 

location. In theory, nrow and ncol should be infinite, because segregation is a 

continuous phenomenon (i.e., segregation can be measured at any location). In 

practice, this is not computationally feasible, so a reasonably large number is of-

ten used instead. 

power, useExp, maxdist: Define a distance decay function. This function is applied to 

estimate the population composition of the local environment at each point of 

measurement. When useExp is set to FALSE, it has the form of w(d) = e
(–d × α)

, 

where d is the distance between two spatial units, and α is power. Otherwise, it is 

defined as w(d) = d 
–α

. If maxdist is given, any spatial units that are further than 

the specified distance will not be considered while evaluating the demographic 
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mix. As will be demonstrated in the next section, the use of this option can help 

enhance the computation speed, with little or no practical impact on the output. 

smoothing, window, sigma: Determine whether or not to interpolate (or simply redis-

tribute) the input spatial data (x). If x represents exact locations of individuals, the 

spatial redistribution of the population may not be necessary. When smoothing = 

"equal", it assumes that the population is uniformly distributed within each cen-

sus tract. If smoothing = "kernel", spatial interpolation is performed through 

kernel2d() in the splancs package, with optional arguments window and sigma 

that define the spatial extent and the kernel bandwidth. 

Once the function is called with appropriate arguments, it invokes a series of subrou-

tines to accomplish the calculation (Figure 2). Although these subroutines are designed 

to work in sequence within the main function, they can also be run on their own. This 

modularisation is particularly advantageous when one wants to repeat only part of the 

calculation procedure. For instance, suppose that the user is interested in how the level 

of segregation changes with scale. One way to test this is multiple calls to spseg() with 

different scale arguments while holding other arguments constant. This is, however, 

computationally redundant, because it leads to the construction of the same population 

density surface each time it runs. It would be more efficient if we execute the subrou-

tines separately, as it allows repeating the necessary components only. 

In addition, it offers more flexibility in terms of data preparation. As mentioned 

above, spseg() employs a negative exponential distance decay function to model the 

effect of the distance on social interactions. While this simple function has been com-

monly adopted in the literature and is considered appropriate for general use (White, 

1983), more realistic representation of neighbourhood may yield a more reliable esti-

mate of segregation. If the user has irregularly-shaped neighbourhood boundaries gen-

erated from other R extension packages, or from other software, the local demographic 

composition could be manually calculated and passed to spatseg() directly, instead of 

going through all the steps in Figure 2. 

Regardless of whether the final subroutine spatseg() is invoked from the main 

function spseg() or by a direct call, it always returns an object of class SegSpatial. It 

comprises four slots, p, h, r, and d, to hold results for P*, H, R, and D, respectively, 

along with another four slots, coords, data, env, and proj4string, to store infor-

mation about the data. In order to access and retrieve the values in these slots, the seg 
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package provides methods for some standard generic functions, including show(), 

print(), and plot(). Figure 3 presents a list of the generic functions that have a meth-

od for SegSpatial. 

Another surface-based approach implemented in the seg package is the decom-

posable segregation measure, S (Sadahiro & Hong, 2013). One advantage of this meth-

od is that it allows decomposing the estimated level of segregation into three independ-

ent components, namely, locational segregation, compositional segregation, and qualita-

tive segregation. By evaluating each of these components separately, one can identify 

whether the observed segregation is mainly due to the demographic structure in the 

study region, such as the number of ethnic groups and their sizes, or it is caused by geo-

graphic clustering/isolation of certain groups. 

In the seg package, there exists a function called deseg() to calculate this de-

composable measure of segregation. It works in much the same way as spseg(): most 

of the arguments are identical to those for spseg(), except that it does not have the ar-

guments for defining a distance decay function. As with spseg(), once the function is 

initiated, it calls a series of subroutines as illustrated in Figure 4, and each of the subrou-

tines can be invoked separately to avoid unnecessary duplication of processes. 

Upon successful run, the function returns an object of class SegDecomp, which 

has four slots, d, coords, data, and proj4string. Of these slots, d contains a numeric 

vector of length three, giving the level of locational, compositional, and qualitative seg-

regation, respectively, and the remaining three slots are the same as in SegSpatial (i.e., 

describing the input data). Objects of this class can be manipulated and plotted using the 

methods implemented in the package (Figure 5). 

 

Results 

Zone-based measures 

The seg package has a sample data set of eight different distributions of the population 

for demonstration and maintenance purposes. The data set itself is a simple data frame 

but can be displayed on a 10-by-10 grid, as shown in Figure 6. Example code in the 

package documentation applies the implemented functions to these patterns, with vari-

ous combinations of user input, not only to illustrate their use but also to ensure that 

they produce the expected output. Since the same spatial configurations have been used 

elsewhere, one can easily determine whether the results from dissim() are correct or 
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not by comparing them with the relevant figures in the previous studies.  

Table 2 presents the output from the dissim() function for the idealised patterns 

above, as well as five additional landscapes portrayed in Figure 7. Although some of the 

results seem to be slightly different from the measurements of Morrill (1991) (i.e., D for 

the pattern D and DM for the patterns C and D), these figures are consistent with the 

ones in Wong (1993) for the pattern C, and also with those obtained from other imple-

mentations (e.g., Apparicio, et al., 2013). Considering that the differences between dis-

sim() and Morrill (1991) are relatively minor, this might be due to rounding errors. 

In comparison, the differences in DM for the last two patterns are fairly large, 

and it is perhaps because dissim() uses a different way of counting the neighbouring 

pairs from Wong (1993). In Wong (1993), the pattern L has eight pairs of neighbours: 

[1-2], [1-3], [1-5], [2-4], [2-5 through the edge A], [2-5 through the edge B], [3-4], and 

[4-5]. In four of these neighbouring pairs, the spatial units have the same population 

composition (i.e., zi – zj = 0). The other four pairs (i.e., [1-5], [2-5 through the edge A], 

[2-5 through the edge B], and [4-5]), consist of one unit with, say, Asians only, and the 

other unit with only non-Asians. In this context, the additional spatial component in the 

equation (2) becomes 4/8 = 0.5, and therefore, DM = 1 – 0.5 = 0.5. By contrast, the 

dissim() function does not distinguish the neighbouring pairs by the edge, so there are 

only seven pairs of neighbours, not eight: [1-2], [1-3], [1-5], [2-4], [2-5], [3-4], and [4-

5]. As a result, the spatial component changes to 3/7 = 0.4286, and DM = 1 – 0.4286 = 

0.5714. 

Another notable difference appears in DS for the pattern M. The cause for this 

discrepancy is not certain, but one possible explanation is that the standardised shared 

boundary length, wij, in the equation (4) was rounded to the first decimal place during 

the calculation of DS in Wong (1993). The R code in Appendix A shows that, in this 

way, dissim() generates the same result as Wong (1993), up to the second decimal 

place. 

Table 3 shows SP and R for the same data set (i.e., Figure 6 and 7). Unlike dis-

sim(), there is no control output (i.e., results from a known set of the data) available for 

these indices, so the quality of the results cannot be assessed in the same manner as the 

index of dissimilarity. Nonetheless, the positive correlations between SP and DS and 

between R and D suggest that the functions isp() and conprof() also produce 

plausible results. 
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In terms of the computation speed, all the zone-based tools appear to perform 

quickly
2
: when applied to a 10-by-10 grid, the dissim() function with the nb argument 

completed the calculation in less than 0.03 seconds from 20 iterations, and conprof() 

took only around 0.01 seconds on the average (Figure 8). As the size of the data 

increased, the amount of time required to obtain results also increases, but not to a large 

extent; the computation speed does not seem to be too much of an issue here. 

In the case of isp(), on the other hand, an increase in the number of spatial 

units tends to slow down the process significantly: it ran in less than 0.03 seconds for a 

simple 10-by-10 grid, but this figure grew up to about 92.35 seconds for a larger, 100-

by-100 grid, as it involves the construction and manipulation of a 10,000-by-10,000 

matrix (Figure 8). This is not very slow, but a caution is probably needed when applied 

to a larger data set, because the current implementation always uses spaces proportional 

to N
2
, where N is the number of spatial units (i.e., n

2
). 

 

Surface-based measures 

One important consideration that must be taken into account before using spseg() or 

deseg() is the choice of arguments, such as the number of measurement points (i.e., 

nrow and ncol), the kernel bandwidth (i.e., sigma), and distance decay parameters (i.e., 

power and useExp). Ideally, the number of measurement points should be as many as 

possible for an accurate estimation of segregation, because the level of segregation an 

individual experiences changes continuously over space. The kernel bandwidth should 

be chosen to ensure that the estimated density surface provides a plausible representa-

tion of the actual distribution of the population, and the distance decay parameters 

should reflect the intensity of social interactions between locations. 

In real word applications, however, a large value of nrow and ncol compared to 

the spatial resolution of input data often slows down the calculation significantly, while 

making little difference in the output. Figure 9 shows that as the dimensions of the grid, 

n, increase, the computation time also increases at an exponential rate for the same data 

set. Nonetheless, the changes in the spatial information theory index, H, from the 

spseg() function seem to be negligible: when a 10-by-10 grid (i.e., 100 measurement 

points in total) was superimposed on the pattern A, it took only around 0.02 seconds to 

complete the task, and H was 0.697. This value remained quite similar (i.e., H = 0.685), 
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even when a much larger, 200-by-200 grid was employed, but the computation time in-

creased up to 74.4 seconds on the average. 

This result is of course data-dependent, and sometimes a fine grid (i.e., a large 

number of n) is desired to produce more accurate estimates of segregation. In this case, 

the optional argument maxdist can be used to improve the running speed: for example, 

when spseg() was run on the pattern A with default values, it spent more than 5 se-

conds  to return H = 0.6846. However, when maxdist was given, the computation time 

was reduced by more than one third (i.e., 3.501 seconds), and almost the same figure 

(i.e., 0.6853) was obtained
3
. In general, the smaller this value, the faster the calculation, 

but it should be large enough to make sure that f (maxdist) is practically zero, where f 

(x) is the distance decay function, minimising its impact on the output. 

In the case of the kernel bandwidth, there is lots of literature on a data-driven 

choice of this value, but it is often useful to examine several candidates first, as it could 

shed some light on the scale of segregation (Figure 10). In a similar vein, although a 

simple negative exponential function with a decay factor of 1 or 2 has been convention-

ally used as the distance decay parameters since White (1983), the use of varying dis-

tance decay rates can help reveal the scale of segregation present in the study region. 

Reardon and his colleagues (2009), for example, demonstrated how changes in the dis-

tance decay parameters affect measured segregation using segregation profiles. This 

implies that unlike the number of measurement points controlled by nrow and ncol, the 

arguments, sigma, power, and useExp, should be chosen more carefully, not on the ba-

sis of computational considerations. 

 

Discussion 

In this paper, we have described our contribution to the implementation of segregation 

measures in R. The seg package contains various zone-based and surface-based 

measures of segregation, and among these, the concentration profile approach and the 

decomposable segregation measure are not available elsewhere. Although there are a 

few recently developed standalone applications and add-on packages that provide access 

to D and its spatial associates, and the spatial segregation measures, P*, H, R, and D, the 

present implementation has a number of merits over the existing tools. 

First, since the seg package works within the R environment, thousands of 

standard and modern statistical techniques, as well as facilities for data manipulation 



16 

 

and visualisation, can be used to analyse and map the results. This is an important ad-

vantage, especially over the standalone applications, because the measurement of segre-

gation is often the beginning of research, not the end. Once the presence of segregation 

is identified, the next step is to investigate its cause and potential consequences, and a 

variety of exploratory and confirmatory methods in R can be very useful in this phase. 

To help the use of other extension packages, the seg package provides coercion methods 

that enable the transformation of the output from spseg() or deseg() into more general 

classes, such as list, SpatialPoints, and SpatialPolygons. 

Second, the implemented segregation measures are invoked by typing the name 

of the function, followed by a list of arguments in parentheses. This command line inter-

face probably makes it difficult to use for those who have little experience of R, so we 

have made the parameter names consistent across the functions and have set default 

values for most of them. As a result, less skilled users can execute the functions without 

too much difficulty, while more advanced users can benefit from greater flexibility and 

control over the calculation procedure through the options. 

Third, the seg package does not require commercial software to operate, so it is 

accessible to a wider group of people. R is an open-source software program, and the 

seg package is downloadable from the Comprehensive R Archive Network (CRAN) 

without charge. Considering the high cost of commercial statistical and GIS software, 

our implementation in R might be a reasonable alternative for individual researchers and 

students. 

At present, our implementation is limited to place-based segregation measures 

that assess the demographic diversity of certain geographic areas. These methods are 

usually applied to residential areas, based on the assumption that where people live de-

termines other aspects of their lives. The recent advances in computing power and the 

increasing availability of detailed data on daily travel patterns have, however, encour-

aged the development of various activity space-based segregation measures (Farber, 

Páez, & Morency, 2012; Wong & Shaw, 2011). In future work, we will try to incorpo-

rate some of these indices to the seg package. 

 

Note 

1. In general, the boundaries of the study region do not account for the calculation of the area-

to-perimeter ratio, as no interactions with the outside are presumed. 
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2. All tests in this section were performed on a computer running Windows 7 and R 3.0.2 with a 

3.40 GHz Intel Core i7 processor and 8 GB of RAM. 

3. This is because the use of maxdist considerably reduces the computational complexity of 

the implemented algorithm. When maxdist is not given, the function considers all points 

in the data set to estimate the local population composition for each location, so the calcu-

lation takes O(N
2
) time. By specifying maxdist, we can approximate it by evaluating only 

nearby points, and this can decrease the computational complexity to O(N). 
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Appendix A 

Provided that the GRASS interface is already loaded into R, and that an object x is a 

SpatialPolygonsDataFrame object describing the pattern M: 

> writeVECT6(x, vname = "tmp", v.in.ogr_flags = "o") 

... 

> nl <- vect2neigh(vname = "tmp", units = "me") 

... 

> a <- unlist(lapply(slot(x, "polygons"), function(z) slot(z, "area"))) 

> p <- attr(nl, "total") - attr(nl, "external") 

> par <- p/a 

> mat <- matrix(NA, nrow = length(par), ncol = length(par)) 

> for (i in 1:length(par)) { 

+   for (j in 1:length(par)) 

+     mat[i,j] <- (par[i] + par[j]) / (max(par) * 4) 

+ } 

> lm <- listw2mat(sn2listw(nl)) 

> lm <- (2 * lm) / sum(lm) 

> dissim(data = data.frame(x), nb = lm * mat) 

[1] 0.6071429 

> dissim(data = data.frame(x), nb = round(lm, 1) * mat) 

[1] 0.5725 

The code above shows that if we round wij to the first decimal place, dissim() gener-

ates the same result as Wong (1993). Note that the lengthy (and unnecessary) output has 

been replaced with an ellipsis (―…‖). 
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Figures and Tables 

 

Figure 1 Concentration profile for Pacific peoples in Auckland, New Zealand 

Source: New Zealand census of population and dwellings, 2006 
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Figure 2 Computational flow of the function spseg(). In the diagram, circles represent 

an R object, rhombuses represent user arguments, and curved-rectangles refer to R func-

tions. Among the rectangles, only the shaded ones are user-level functions. 
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Figure 3 Class SegSpatial and the associated methods 
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Figure 4 Computational flow of the function deseg() 
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Figure 5 Class SegDecomp and the associated methods 
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Figure 6 Spatial patterns of segregation on a 10-by-10 grid. The black cells are where 

the minority population comprises 100% of the local population, the grey cells 50%, 

and the white cells 0%. 
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Figure 7 Same spatial patterns of segregation as the patterns A, B, F, G, and H, except 

that the cells with the same colour have been aggregated. The numbers inside of the 

cells in the pattern L indicate the cell ID, and the letters denote the edges. 
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Figure 8 Computation time (in seconds) of D(adj), SP, and R on a n-by-n grid. For each 

n, the calculations were repeated 20 times. The blue lines are locally weighted scatter-

plot smoothing (LOESS) curves. 
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Figure 9 Computation time (in seconds) of the spatial information theory index, H, on a 

n-by-n grid (left) and changes in the output (right). For each n, the calculations were 

repeated 10 times. The blue line on the left represents a LOESS curve. 
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Figure 10 Computation time (in seconds) of the spatial information theory index, H, for 

the pattern A, with different kernel bandwidth values (left) and changes in the output 

(right). For each n, the calculations were repeated 10 times. The blue line on the left 

represents a LOESS curve. 

  



30 

 

Table 1 Zone- and surface-based segregation measures implemented in the seg package 

 

 Measure Original paper Function 
Zo

n
e

-b
as

ed
 

Index of dissimilarity, D 
Duncan & Duncan 
(1955) 

dissim() 

Spatially-adjusted D (contiguity), DM Morrill (1991) dissim() 

Spatially-adjusted D (boundary length), DW Wong (1993) dissim() 

Spatially-adjusted D (perimeter/area ratio), DS Wong (1993) dissim() 

Index of spatial proximity, SP White (1983) isp() 

Concentration profile 
Poulsen, Johnston 
& Forrest (2002) 

conprof() 

Su
rf

ac
e-

b
as

ed
 

Spatial exposure/isolation index,  ̃* 
Reardon & 
O’Sullivan (2004) 

spseg() 

Spatial information theory index,  ̃ 
Reardon & 
O’Sullivan (2004) 

spseg() 

Spatial relative diversity index,  ̃ 
Reardon & 
O’Sullivan (2004) 

spseg() 

Spatial dissimilarity index,  ̃ 
Reardon & 
O’Sullivan (2004) 

spseg() 

Decomposable measure of segregation 
Sadahiro & Hong 
(2013) 

deseg() 
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Table 2 D, DM, DW and DS from the function dissim() 

 

           

 D DM DW DS D DM D DM DW DS 

A 1.00 0.94 0.94 0.95 1.00 0.94 1.00 0.94 0.94 0.95 

B 1.00 0.83 0.83 0.84 1.00 0.83 1.00 0.83 0.83 0.84 

C 1.00 0.50 0.50 0.54 1.00 0.48 1.00 0.50 0.50 0.54 

D 0.84 0.79 0.79 0.79 0.83 0.76 - - - - 

E 0.83 0.66 0.66 0.68 0.83 0.66 - - - - 

F 1.00 0.97 0.97 0.97 - - 1.00 0.97 0.97 0.97 

G 1.00 0.93 0.93 0.93 - - 1.00 0.93 0.93 0.93 

H 1.00 0.90 0.90 0.91 - - 1.00 0.90 0.90 0.91 

I 1.00 0.50 0.50 0.50 - - 1.00 0.50 0.50 0.50 

J 1.00 0.33 0.24 0.54 - - 1.00 0.33 0.24 0.54 

K 1.00 0.50 0.70 0.74 - - 1.00 0.50 0.70 0.74 

L 1.00 0.57 0.54 0.68   1.00 0.50 0.54 0.68 

M 1.00 0.40 0.36 0.61 - - 1.00 0.33 0.36 0.57 

 

Table 3 SP and R from the functions isp() and conprof() 

 

 A B C D E F G H I J K L M 

SP 1.62 1.16 0.89 1.44 1.12 1.42 1.34 1.16 0.67 0.26 0.91 0.37 0.34 

R 1.00 1.00 1.00 0.67 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

 


