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Abstract 

This paper proposes a new method for analyzing the segregation between point distributions. 

Though there have been proposed numerous methods and measures in segregation analysis, they 

have at least three deficiencies: 1) statistical significance of segregation is not evaluated, 2) aspatial 

properties of points are not considered, and 3) the relationship between different dimensions of 

segregation is not fully discussed. To resolve these problems, this paper proposes a new method for 

analyzing the segregation between point distributions. We introduce a general procedure of 

evaluating the individual components of segregation. This procedure helps us find independent 

components of segregation, and provides a means of assessing their statistical significance. To test 

the validity of the proposed method, we apply it to three datasets of different sizes. The result 

supports the technical soundness of the method, and provides empirical findings. 
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1. Introduction 

 Segregation is a fundamental concept in geographical information science. In geographical 

context it refers to the spatial isolation of different types of objects. Ethnic segregation has drawn 

much attention in geography, demography, and sociology (Duncan and Duncan 1955; Morgan 1983; 

White 1983, 1986; James and Taeuber 1985; Massey 1985; Morrill 1995). Segregation of plant and 

animal species has been widely discussed in biology and ecology (O'Neill et al. 1988; Li and 

Reynolds 1993; Riitters et al. 1996; Mucientes et al. 2009). 

 There have been proposed numerous measures to evaluate the degree of segregation. 

Though earlier measures are easy to understand and calculate, they have been often criticized for the 

modifiable areal unit problem (Wong 1993, 2001; Reardon and O’Sullivan 2004). Recent methods 

are more sophisticated (Johnston et al. 2007, 2011; Poulsen et al. 2007; Rey and Folch 2011; Páez et 

al. 2012), and some measures are defined based on the location of individual objects to avoid the 

modifiable areal unit problem (Reardon and O’Sullivan 2004; Reardon et al. 2009; Reardon and 

Bischoff 2011; Sadahiro and Hong 2013). However, there still remain at least three problems to be 

solved: 1) statistical evaluation of segregation, 2) consideration of aspatial properties, and 3) 

independent dimensions of segregation. We discuss these problems successively in the following. 

 Statistical tests permit us to judge whether or not segregation can occur by chance. Some 

papers evaluate the statistical significance of segregation by using the measures of spatial 

autocorrelation. Johnston et al. (2011) and Poulsen et al. (2011) use global Moran's I to evaluate the 

segregation between ethnic groups. Logan et al. (2002) and Brown and Chung (2006) adopt local 

Moran's I to identify local clusters of ethnic and racial groups. However, these measures are not 

appropriate for the segregation between multiple groups since they were originally developed to 

evaluate the spatial autocorrelation of a single group of objects. Though these measures can evaluate 

the segregation of one group from the others, they cannot assess the statistical significance of the 

entire segregation between multiple groups. Other measures of spatial correlation such as those 

proposed by Wartenberg (1985) and Stephane et al. (2008) evaluate the segregation between every 

pair of groups, not the entire segregation between multiple groups. 

 Another aspect overlooked in existing studies is the aspatial properties of points. It often 

happens in the real world that one group is more similar to another than the others. Austronesian 

peoples are more similar to Papuan peoples in some aspects than Indo-European peoples. 

Segregation between Austronesian and Indo-European peoples may be more crucial than that 

between Austronesian and Papuan peoples. However, such aspatial properties of points have not 

been considered explicitly in segregation analysis. 

The third problem lies in the discussion of segregation dimensions. Massey and Denton 

(1988) defines dimensions as the primary axes for measuring the degree of segregation and 

advocated five dimensions called evenness, exposure, concentration, centralization, and clustering. 



Reardon and O’Sullivan (2004) claims that these dimensions are not fully distinct and proposes two 

independent dimensions called spatial exposure and spatial evenness. Johnston et al. (2007) uses 

principal component analysis in case studies to find two independent dimensions called separateness 

and location. However, the independence between these dimensions has not yet been fully examined. 

Reardon and O’Sullivan (2004) claims the independence of their dimensions without showing a 

theoretical proof, and empirical approach taken by Johnson et al. (2007) does not assure that the two 

dimensions exist in any circumstances. 

 To resolve the above problems, this paper proposes a new method for analyzing the 

segregation between point distributions. Though our method is developed based on the information 

about the location of individual points, it is also effective for aggregated spatial data that have been 

frequently used in the literature. Section 2 introduces a general procedure of evaluating the 

individual components of segregation. This procedure helps us find independent components of 

segregation, and provides a means of assessing their statistical significance. To test the validity of the 

proposed method, Section 3 applies it to the analysis of two synthetic datasets and one real dataset. 

Section 4 summarizes the conclusions with discussion. 

 

2. Methodology 

 This paper introduces two terms factors and components to refer to the causes and results 

of segregation, respectively. The latter almost correspond to dimensions discussed in existing studies 

such as evenness, exposure, and clustering. Independent components refer to the components that are 

mutually exclusive and collectively exhaustive, i.e., components that form the entire segregation 

without overlapping. This definition is equivalent to those used in Reardon and O’Sullivan (2004) 

and Johnson et al. (2007). 

 Sadahiro and Hong (2013) proposes a method for evaluating segregation based on the 

location of individual points. We extend their method to resolve the three problems mentioned in 

Section 1. This section starts with the measurement of segregation without considering the aspatial 

properties of points. We then extend the method by incorporating the aspatial properties of points. 

This permits us to evaluate individual components separately, and helps us find independent 

components of segregation. We finally propose a method for testing the statistical significance of 

segregation. 

 

2.1 Measurement of segregation without considering the aspatial properties of points 

 Suppose a set of K types of points in region R of area T. Let Pij and zij be jth point of type i 

and its location, respectively. The number of type i points and its summation are denoted by Ni and 

N=N1+ N2+... +NK, respectively. The set of type i points is denoted by Pi={Pi1, Pi2, ..., PiNi}. 

 Reardon and O’Sullivan (2004) and Sadahiro and Hong (2013) evaluate the segregation 



between points by using their density distributions. Following this line, we define Di(x) as the 

density function of Pi at location x. The set of the density functions is denoted by D={D1(x), 

D2(x), ..., DK(x)}. Let φ(x, zij) be a proximity function that indicates the spatial proximity between 

location x and point Pij. One definition of φ(x, zij) is a distance-decay function such as 

( ) ( ), expij ijφ α= − −x z x z

.

 

  (1) 

The density of type i points at x is defined as the summation of proximity functions of all the type i 

points: 
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This definition standardizes the summation of proximity functions in such a way that the integration 

of a density function is equal to the number of points, i.e., 
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  (3) 

 The above definition is based on the location of individual points. If the locational data of 

points are aggregated by spatial units, we substitute the density of points in individual units for Di(x). 

The method described in the following is applicable to both aggregated and disaggregated spatial 

data. 

 Using the density functions of points, we define the local segregation at x as 
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We adopt this definition for its simplicity and flexibility (Sadahiro and Hong, 2013). Integrating 

Equation (4), we obtain the global measure of segregation: 



( )
( ) ( )

( )
; d

d
R

R

D s
S

D
∈

∈

= ∫
∫

x

x

x x x

x x

D
D , 

  (5) 

where 

( ) ( )i
i

D D=∑x x . 

  (6) 

The measure ranges from zero to one. A large value appears when different groups are separated 

while a small value indicates the integration of different groups. 

 

2.2 Measurement of segregation with considering the aspatial properties of points 

 This subsection extends the proposed measures to incorporate the aspatial properties of 

points. Let us suppose the segregation of black, dark-grey, light-grey, and white points. Dark-grey 

and light-grey points are the composites of black and white points at 70/30 and 30/70 ratios, 

respectively. The properties of points are represented by the proportion of black and white, i.e., {1.0, 

0.0}, {0.7, 0.3}, {0.3, 0.7}, and {0.0, 1.0}. 

 To formalize this example, we introduce a positive K×M matrix A that represents the 

aspatial properties of points: 
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Element aim indicates the mth attribute of type i points. We assume that every set of variables {a1m, 

a2m, ..., aKm} is given in a standardized form, i.e., 

1 2i i iM
i i i

a a a= =∑ ∑ ∑ . 

  (8) 

The attributes of four types of points mentioned above is represented by 

1.0 0.0
0.7 0.3
0.3 0.7
0.0 1.0

 
 
 =
 
 
 

A . 

  (9) 



 Here, we consider the spatial distribution of attributes instead of that of points themselves. 

The spatial distribution of mth attribute is given by 

( ) ( )m im i
i

A a D=∑x x . 

  (10) 

We replace D={D1(x), D2(x), ..., DK(x)} by {A1(x), A2(x), ..., AM(x)} to evaluate the segregation of 

point distributions. The local and global measures of segregation become 
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and 
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respectively. We call the latter the overall segregation. 

 The measure S(D) is a special case of S(D, A). The former is obtained by defining A as the 

K×K identity matrix in Equation (12): 

1 0 0
0 1 0

0 0 1
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 So far we have assumed attributes to be represented by the proportion of elements. 

However, the proposed measures are effective for a wider range of properties measured on a ratio 

scale. The only requirement for attributes is that they can be standardized as shown in Equation (8). 

 

2.3 Evaluation of individual components of segregation 

 This subsection proposes a method for evaluating individual components of segregation. 

To consider a certain component, we compare two situations where its underlying factors are present 

and absent. The difference in the overall segregation S(D, A) between the two situations reflects the 



effect of the factors, and consequently, provides us a means of evaluating the component. 

 Suppose point distributions in Figure 1a, where black and white points are uniformly 

distributed. In Figure 1b, white points are uniformly distributed while black points are distributed 

only on the left side. Segregation is caused by the non-uniform distribution of black points. 

Consequently, the difference in S(D, A) between the two patterns indicates the effect of 

non-uniformity in black points on segregation. 

 

 

 

Figure 1 The distributions of black and white points. (a) Both black and white points are uniformly 

distributed. (b) Black points are distributed only on the left side, which causes segregation between 

points. 

 

 We evaluate the effect of non-uniformity in type i points by considering the situation 

where type i points are uniformly distributed. The set of density function D' is given by 

( ) ( ) ( )1 2, ,..., ,...,i
M
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T

 =  
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  (14) 

The effect of the non-uniformity in type i points is measured by 

 ( ) ( ) ( ), , ,S S S∆ = −A A A∆∆∆  ' .   

  (15) 

 We then suppose Figure 2 where the different number of black and white points are 

uniformly distributed. Though Figure 2a exhibits no obvious segregation, segregation occurs at a 

local level in Figure 2b. Points are integrated only in the neighborhood of white points, and we can 

(a) (b)



find many places where white points are absent. Segregation occurs and increases with the difference 

in the number of points. 

 

 

 

Figure 2 The uniform distributions of black and white points. (a) The same number of black and 

white points are distributed. (b) White points are fewer than black points. Segregation occurs at a 

local level where white points are absent. 

 

 We evaluate the effect of the difference in the number of type i points by replacing Ni with 

the average number of other types of points: 
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The density functions become 

( ) ( ) ( ) ( ) ( )1 2, ,..., ,...,
1

i
i K

i

N ND D D D
K N

 − =  −  
x x x xD'' . 

  (17) 

The effect is measures by 

 ( ) ( ) ( ), , ,S S S∆ = −A A A∆∆∆  '' .   

  (18) 

 As seen above, evaluation of a certain component requires us to compare two situations 

(a) (b)



where its factors are present and absent. However, it is sometimes difficult to remove only relevant 

factors without affecting the others. To resolve the problem, we propose an indirect method for 

evaluating a component of segregation. 

 Suppose two components C1 and C2 each of which is caused by different factors. If we can 

remove only the factors of C1, we can evaluate C2 even if we cannot remove the factors of C2 

separately. Let S and S' be the overall segregation of two situations where the factors of both C1 and 

C2 are present and absent, respectively. The difference S-S' represents C1+C2. Let S'' be the overall 

segregation where the factors of C1 are absent. The difference S-S'' represents C1. Consequently, we 

can evaluate C2 by substituting S-S'' from C1+C2: 

( ) ( )2 ' ''
'' '

C S S S S
S S

= − − −

= −
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  (19) 

 

2.4 Primary factors and components of segregation 

 The proposed procedure permits us to evaluate the individual components of segregation. 

This subsection discusses four primary components of segregation using this procedure: spatial 

segregation, compositional segregation, qualitative segregation, and attribute segregation. They are 

caused by four factors what we call spatial unevenness, compositional unevenness, qualitative 

uniformity, and attribute similarity, respectively. We will discuss the above factors and components 

successively in the following. 

 Spatial unevenness refers to the non-uniformity in point distributions, which causes spatial 

segregation. To evaluate spatial segregation, we can take either absolute or relative approach. 

Absolute approach evaluates absolute spatial unevenness, which refers to the fluctuation of each 

distribution. Relative approach considers relative spatial unevenness, which refers to the fluctuation 

of the proportion of each distribution to all the distributions. Though both approaches yield the same 

segregation measures, they provide different bases for statistical tests as discussed later. 

 Absolute approach evaluates spatial segregation by considering the situation where 

absolute spatial unevenness does not exist. It is represented by the set of uniform density functions: 
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Suppose the density distributions of points defined on a one-dimensional space shown in Figure 3a. 

Figure 3b shows the situation where absolute spatial unevenness is absent. Overall segregation 

reduces from S(D, A) to 
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  (21) 

The reduction represents absolute spatial segregation: 
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Figure 3 Evaluation of spatial and compositional segregations on a one-dimensional space. Figure 3a 

shows the density distributions of points to be evaluated while the others indicate density 

distributions where some factors are absent. Absent factors are (b) absolute spatial unevenness, (c) 

absolute spatial unevenness and compositional unevenness, (d) relative spatial unevenness, (e) 

relative spatial unevenness and compositional unevenness. 

 

 Relative approach introduces another representation of overall segregation. Let r be a set 

(a)

(b) (d)

(e)(c)



of variables indicating the ratio of Di(x) to D(x): 
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The set of density distributions and their overall segregation are represented by 

( ) ( ) ( ) ( ) ( ) ( ){ }1 2, ,..., Kr D r D r D= x x x x x xD  

  (24) 

and 

( ) ( )( ), , ,S S D=A x AD r , 

  (25) 

respectively. 

 Relative approach evaluates spatial segregation by considering the situation where the 

proportion of every type of points is uniform in R. It is represented by 

1 2, ,..., KN N N
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  (26) 

Figure 3d shows the absence of relative spatial unevenness. As seen in this figure, relative approach 

keeps the distribution of the total density of points. Relative spatial segregation is the reduction of 

overall segregation from S(r, D(x), A) to S(rRS, D(x), A): 
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  (27) 

Since SAS(D, A)=SRS(D, A), we define spatial segregation as 
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 Compositional unevenness refers to the variation in the number of points between different 

groups, which leads to compositional segregation. Compositional unevenness is another critical 

factor of segregation as seen in Figure 2. We take the indirect method to evaluate compositional 

segregation because we cannot remove compositional unevenness without affecting the other factors. 



 Suppose the situation where both spatial and compositional unevenness are absent. In 

absolute approach, it is represented by Figure 3c where all the density distributions are defined by 

the same uniform function: 

, ,...,N N N
KT KT KT
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The reduction of overall segregation is 

( ) ( ) ( ) 1, , ,S S S
K

− = −A A AASCD D D . 

  (30) 

Relative approach changes Figure 3a into Figure 3e. The latter are represented by 
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The reduction of overall segregation is 
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  (32) 

Equations (30) and (32) represent the effect of spatial and compositional unevenness, i.e., the 

summation of spatial and compositional segregations. We thus subtract spatial segregation from 

these equations to measure compositional segregation: 
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  (33) 

This equation indicates that compositional segregation is defined as a function of only aspatial 

variables. Compositional segregation evaluates the aspatial aspect of segregation. 

 We then discuss the third factor of segregation what we call qualitative uniformity. It refers 

to the lack of the diversity of points advocated by Sadahiro and Hong (2013). When only a few types 

of points exist, points of the same group tend to cluster, and consequently, segregation of points 

increases. To evaluate the effect of qualitative uniformity, we take the indirect method that assumes 

the absence of spatial unevenness, compositional unevenness and qualitative uniformity. Absence of 

qualitative uniformity is represented by an infinite increase in the variety of points, which is 

mathematically represented as infinite operation K→∞. Absence of spatial and compositional 

unevenness reduces overall segregation from S(D, A) to 1/K, and absence of qualitative uniformity 



further reduces it infinitely to zero. Consequently, the effect of qualitative uniformity is evaluated by 

( ) 1,QS
K

=AD . 

  (34) 

We call this measure qualitative segregation. 

 The relationship between spatial, compositional, and qualitative segregations is 

represented as 

( ) ( ) ( ) ( ), , , ,S C QS S S S= + +A A A AD D D D . 

  (35) 

This equation indicates that overall segregation is decomposed into three components. Spatial, 

compositional, and qualitative segregations are independent components of segregation since they 

comprise the entire segregation without overlapping. 

 The final factor of segregation is attribute similarity, which refers to the similarity in the 

aspatial properties of points. To measure the effect of attribute similarity, we consider the situation 

where different groups have completely different properties. Since it is mathematically represented 

as Equation (13), the effect of attribute similarity is measured by 

( ) ( ) ( ), , ,AS S S= − IA A AD D D . 

  (36) 

We call this measure attribute segregation. Attribute segregation is usually negative or zero since 

segregation decreases with the similarity between different groups. 

 We have introduced four primary components of segregation: spatial segregation, 

compositional segregation, qualitative segregation, and attribute segregation. Spatial segregation 

represents the spatial aspect of segregation while the others evaluate the aspatial aspect of 

segregation. Spatial, compositional, and qualitative segregations are independent components as 

mentioned earlier, while attribute segregation is not independent of the others. 

 

2.5 Statistical analysis of segregation 

 This subsection proposes a method for evaluating the statistical significance of individual 

components of segregation. The null hypothesis assumes a stochastic process where the factor of a 

component to be examined is absent. We derive the probability distribution of the segregation 

measure by using Monte Carlo simulation and test the statistical significance of the component. 

 The significance of spatial segregation can be evaluated by either absolute or relative 

approach. Absolute approach assumes a situation where every type of points are distributed 

independently according to the uniform distribution. We calculate the probability distribution of SS(D, 



A) in this circumstance and evaluate the statistical significance of spatial segregation. Relative 

approach considers the random permutation of points. We randomize the type of points with keeping 

their location and calculate SS(D, A) to obtain its probability distribution under the null hypothesis. 

 Test of compositional segregation employs SC(D, A) as the statistic. Since SC(D, A) is a 

purely aspatial variable, we perform its statistical test within an aspatial framework. The null 

hypothesis considers a situation where every point is randomly assigned to one of M types. We 

calculate the probability distribution of SC(D, A) in this circumstance and evaluate the statistical 

significance of compositional segregation. 

 

3. Applications 

 To test the validity of the proposed method, this section applies it to the analysis of three 

different datasets. We omit the indicator (D, A) used in segregation measures for simplicity hereafter. 

 

3.1 Properties of segregation measures 

 This subsection investigates the properties of segregation measures using a small synthetic 

dataset. We consider two types of points P1 and P2 distributed on a one-dimensional space of length 

one. 

 We first focus on the spatial and compositional segregations by assuming matrix A as AI. 

Figure 4a shows the density distributions of P1 and P2 that gradually become uniform with keeping 

their total volume from D1 to D5. Spatial segregation SS decreases with spatial unevenness as shown 

in Figure 4b. Measures SC and SQ remain unchanged because the proportion of P1 and P2 does not 

change. 
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Figure 4 The relationship between spatial unevenness and segregation measures. Spatial segregation 

decreases with spatial unevenness from D1 to D5. 

  



 Figure 5a shows a decrease in compositional unevenness where the total volume of P1 and 

P2 gradually approaches with each other. Figure 5b indicates that compositional segregation 

decreases monotonically with compositional unevenness from D6 to D10. Though spatial segregation 

increases, overall segregation decreases due to the decrease in compositional segregation. 

 

 
 

Figure 5 The relationship between compositional unevenness and segregation measures. 

Compositional segregation decreases with compositional unevenness from D6 to D10. 
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 We then discuss attribute segregation by using the point distributions shown in Figure 6a. 

Their attributes are represented by 2×2 matrix A shown in Figure 6b, where attribute similarity 

decreases from A1 to A6. We can confirm in Figure 6b that attribute segregation SA increases with a 

decrease in attribute similarity. We also notice that SS+SC+SQ-SA remains unchanged from A1 to A6. 

This can be confirmed by substituting Equation (35) into (36): 

( ) ( ) ( ) ( ) ( ) ( )
( )

, , , , , ,

,
S C Q A AS S S S S S

S

+ + − = −

= I

A A A A A A

A

D D D D D D

D
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  (37) 

 

 

 

Figure 6 The relationship between attribute similarity and segregation measures. (a) Density 

distributions of points. (b) Attributes of points and segregation measures. Attribute similarity 

decreases from A1 to A6. 

 

3.2 Statistical significance of segregation measures 
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 This subsection discusses the statistical significance of spatial and compositional 

segregations. We again suppose two types of points P1 and P2 distributed on a one-dimensional 

space of length one. 

 We evaluate the significance of spatial segregation in point distributions shown in Figure 7. 

Spatial unevenness increases from left to right while compositional unevenness decreases from up to 

down. The points P1 and P2 follow the density distributions defined by 

( )1
11
2

f x b x = + − 
 

 

  (38) 

and 

( )2
1
2

f x b x = − − 
 

, 

  (39) 

respectively (0≤b≤2). We keep N1 as 500 while N2 varies from 100 to 500. 

 

 

Figure 7 Density distributions of P1 and P2. Spatial unevenness increases from left to right while 

compositional unevenness decreases from up to down. The number of P1 is 500 while that of P2 

varies from 100 to 500. 

 

 We employ both absolute and relative approaches in statistical tests to evaluate the effect 
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of different null hypotheses. The significance level of spatial segregation under a null hypothesis is 

defined by 

( )d
S

g s sg
∞

= ∫ , 

  (40) 

where g(s) is the probability density distribution of spatial segregation under the null hypothesis. A 

small value of g indicates a high significance of spatial segregation. 

 

 
 

Figure 8 The significance level of spatial segregation under null hypothesis. The number of P2 varies 

from 100 to 500 as indicated by arrows. Solid and dotted lines indicate the significance level 

evaluated by absolute and relative approaches, respectively. 

 

 Figure 8 shows the significance level of spatial segregation in absolute and relative 

approaches. As seen in this figure, spatial segregation becomes more significant with an increase in 

spatial unevenness represented by b. The figure also shows that spatial segregation becomes more 

significant with a decrease in N2. This implies that segregation is more probable to occur when fewer 

points are distributed. Comparing absolute and relative approaches, we notice that the former is less 

likely to evaluate spatial segregation as statistically significant. It is because absolute approach 
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considers a wider variety of point distributions in the null hypothesis. Absolute approach considers 

the random distribution of points while relative approach only randomizes the type of points with 

keeping their location. A narrower range of variation in the null hypothesis lowers the requirement 

for statistical significance. 

 We then turn to the statistical significance of compositional segregation. Figure 9 shows 

the distributions of P1 and P2, where N1 is 500 while N2 varies from 100 to 500. Compositional 

unevenness decreases from left to right. 

 

 

 

Figure 9 Density distributions of P1 and P2. The number of P1 points is 500 while that of P2 points 

varies from 100 to 500. 

 

 Figure 10 shows the significance level of compositional segregation under the null 

hypotheses. We can confirm that compositional segregation becomes less significant with a decrease 

in compositional unevenness. Statistical significance of compositional segregation at 5% level 

requires that the ratio of P2 to P1 is smaller than 0.75 (=375/500). 
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Figure 10 The significance level of compositional segregation under the null hypothesis. 

 

3.3 Real dataset 

 We finally apply the proposed method to the analysis of a real dataset to test its practical 

feasibility. We examine the segregation of commercial facilities in Chiba, Japan. Chiba is located 30 

kilometers away in a suburb of Tokyo. We converted the list of commercial facilities in the NTT 

telephone directory into spatial data by geocoding. Figure 11 shows the density distribution of 

commercial facilities in Chiba. 
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Figure 11 The density distribution of commercial facilities in Chiba [1/km2]. 

 

 We classified the commercial facilities into different categories by three classification 

schemes and calculated their segregation measures. Scheme C-1 classified the commercial facilities 

into three categories: 

 

 Group 1: retails (clothing stores, accessory stores, grocery store, ...) 

 Group 2: services (beauty shops, laundries, hotels, ...) 

 Group 3: restaurants 

 

These groups consist of 6236, 4872, and 5197 facilities, respectively. Figure 12 shows the proportion 

of three types of commercial facilities. 
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Figure 12 The proportion of three types of commercial facilities in Chiba. (a) Retails, (b) services, 

(c) restaurants. 

 

 Figure 13 shows the distribution of local segregation measure s(x; D) defined by Equation 

(4). Comparing Figures 11 and 13, we notice a negative correlation between the density and 

segregation of commercial facilities. Segregation tends to occur where only a few facilities exist. 

 

 
 

Figure 13 The distribution of local segregation measure s(x; D). 

 

 Table 1 shows the measures of individual components of segregation. The case study 

evaluates not only the primary components but also the spatial segregation of individual categories. 

 We first examine the result for classification scheme C-1. Table 1a shows that only spatial 

segregation is statistically significant at 5% level. Segregation of commercial facilities in Chiba is 

primarily caused by their spatial unevenness. Table 1b shows that SS1 and SS2 (retails and services) 

are significant while SS3 (restaurants) is not significant. This implies that restaurants are distributed 

more uniformly than retails and services. Restaurants are common places for people to visit in 

suburban areas in Japan such as Chiba. 

 Scheme C-2 classified the commercial facilities into eight categories each of which 

contains 1434, 1999, 420, 1370, 1013, 3461, 1411, and 5197 facilities. The result is almost 

consistent with that for scheme C-1 as shown in Table 1. Only spatial segregation is statistically 
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significant in Table 1a and SS8 (restaurants) is not significant among eight categories in Table 1b. 

 Scheme C-3 classified restaurants further into three subcategories: 1) Japanese restaurants, 

2) Western and Chinese restaurants, 3) pubs, bars, and taverns. In this scheme, all the components 

are not significant as shown in Table 1. This suggests that any type of restaurant is so common 

everywhere in Chiba. 

 

Table 1 Segregation measures of commercial facilities in Chiba. (a) Segregation measures of primary 

components, (b) spatial segregation of individual categories. Asterisks indicate the statistical 

significance at 5% level in both absolute and relative approaches. 

 

 

 

4. Concluding discussion 

 This paper has proposed a new method for analyzing the segregation between point 

distributions. Section 2 introduces a general procedure of evaluating individual components of 

segregation. This procedure helps us find independent components of segregation, and provides a 

means of assessing their statistical significance. To test the validity of the proposed method, we 

applied it to the analysis of two synthetic and one real datasets. The result supports the technical 

soundness of the method, and provides empirical findings. 

 This paper has several advantages over existing ones. First, this paper proposes a method 

for evaluating the statistical significance of segregation. Statistical test permits us to judge whether 

or not a segregation measure can be obtained by chance. Second, our method takes into account 

explicitly the aspatial properties of points. We can consider spatial and aspatial aspects of point 

distributions simultaneously in segregation analysis. Third, this paper proposes a general procedure 

of evaluating individual components of segregation. This procedure helps us consider a wider variety 

of components and find independent components as shown in Section 2. 

 We finally discuss some limitations of the paper and potential extensions for future 
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research. 

 First, we should extend our method into the spatiotemporal domain. The location and 

properties of points often change over time, and so does their segregation. One method to treat the 

temporal dimension is to calculate segregation measures at different times and discuss their change 

over time. This approach, however, is not sensitive to the change in the spatial arrangement of points. 

Segregation measures remain the same even if a drastic change occurs in point distributions. A new 

approach is necessary that considers both the spatial and temporal domains simultaneously in 

segregation analysis. 

 Second, we should develop a method for analyzing the segregation of continuous variables. 

Though our method partially fulfills this purpose, statistical evaluation of segregation is not 

straightforward due to the difficulty in the choice of null hypothesis for continuous variables. A new 

statistical method needs to be developed. 

 Third, segregation analysis should explicitly consider the uncertainty in spatial data. 

Accuracy of spatial data has been long discussed in geographical information science (Gopal and 

Goodchild 1989; Hunsaker et al. 2002; Shi et al. 2002). Though there exist spatial data models that 

explicitly represent locational uncertainty, they have not yet been fully incorporated into analytical 

methods. An extension of our method to this direction is an important topic for future research.  
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