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Abstract 

This paper develops a new method of evaluating segregation among point distributions. We argue 

that there are three main sources of segregation: difference in the spatial arrangements of points; 

imbalance in the number of points; and lack of diversity of points, and that segregation has three 

distinctive components, each of which is due to one of these sources. The proposed measures 

evaluate each component separately, and this approach has five desirable properties, which are not 

fully possessed by existing measures. To demonstrate the validity of the method, we apply it to an 

analysis of three data sets. The results show that the proposed measures can evaluate the degree of 

segregation effectively from three different perspectives, and their interpretation can be 

straightforward because each of the measures is linked with only one component of segregation.
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1. Introduction 

 Segregation is a complex and multidimensional socio-spatial phenomenon. A complete, or 

near-complete, understanding of this phenomenon requires us to evaluate segregation from various 

perspectives, and for this reason, numerous indices have been proposed in geography, sociology, and 

other related fields. The index of dissimilarity (Duncan and Duncan, 1955), the Gini index, and the 

entropy-based indices (Theil and Finizza, 1971), for example, have been frequently used in the 

literature, in part because of their ease of calculation and interpretation. These earlier indices, however, 

are often criticized as aspatial since they are insensitive to the arrangement of spatial units (Morrill, 

1991). To overcome this limitation, a number of alternative, spatial segregation indices have been 

developed in more recent years (e.g., White, 1983; Morrill, 1991; Wong, 1993; Reardon and 

O’Sullivan, 2004). 

 While all these indices aim to evaluate segregation from different perspectives, they are 

overlapping to some extent with each other. We thus need to choose an appropriate set of indices that 

explain the whole picture of segregation efficiently and address different dimensions of segregation 

separately. As Massey and Denton (1988) pointed out, however, there has been no consensus on which 

indices are necessary and sufficient to fully describe patterns of segregation. Though several papers 

have proposed criteria for segregation indices (James and Taeuber, 1985; Reardon and Firebaugh, 

2002; Reardon and O’Sullivan, 2004), they do not directly discuss the relationship between the indices, 

and hence the criteria are not enough for choosing an appropriate set of indices. 

 To resolve the problem, Massey and Denton (1988) introduced five conceptually distinct 

dimensions (evenness, exposure, clustering, centralization, and concentration). They performed factor 

analysis on twenty segregation indices for the 1980 U.S. census data, from which they nominated five 

indices as the best indicators of the five dimensions. Reardon and O’Sullivan (2004), on the other hand, 

argued that the distinction between evenness and clustering is somewhat arbitrary, and proposed two 

primary dimensions and two indices. Johnston et al. (2007) conducted principal component analysis 

of the U.S. census data for three different years and concluded that two basic dimensions are sufficient 

to grasp the residential segregation in the U.S. metropolitan areas. They suggested the use of principal 

components’ (PC) scores derived from principal component analysis as measures of segregation. 

The concept of such distinct dimensions provides us a logical basis for choosing a set of 

indices. Since the dimensions of segregation are conceptually distinctive from each other, the chosen 

indices should also evaluate individual dimensions separately. Each index should fully represent one, 

and only one dimension, and overlaps between the indices are undesirable as it not only reduces the 

efficiency of analysis but also makes dimensions incomparable. 

However, the existing indices do not completely satisfy these properties. The five indices 

chosen by Massey and Denton (1988) are only partially correlated with the corresponding conceptual 

dimensions, implying that selected indices cannot completely explain the associated aspects of 



-4- 
 

segregation. Moreover, the indices are correlated not only with their corresponding dimensions but 

also with others. The indices overlap with each other not only empirically but also theoretically, which 

prohibits us from evaluating each dimension separately. Reardon and O’Sullivan (2004), on the other 

hand, did not prove that proposed dimensions are fully covered by their representative indices and that 

the two indices do not overlap. Furthermore, the lower bound of one index called the spatial 

information theory segregation index is not specified; thus, it cannot be standardized into a relative 

form (a revision of this index is given in Sadahiro and Hong, 2013). The representativeness of PC 

scores proposed by Johnston et al. (2007) depends on the data set used in principal component analysis. 

One PC that is chosen to represent a particular dimension of segregation in one data set may not be 

able to describe satisfactorily the same dimension in another data set. It is not assured that each 

dimension is fully represented by a single PC. In addition, the interpretation of PC scores is not 

straightforward, as there is no one-to-one correspondence between the PCs and the conceptual 

dimensions of segregation. 

 As seen above, the existing sets of indices are not entirely appropriate for the measurement 

of distinct dimensions. To resolve the problems, this paper proposes a new set of indices for measuring 

segregation. We focus on point distributions that represent zero-dimensional objects and approximate 

higher-dimensional objects in the real world. Examples include individual persons, animal species, 

houses, and land parcels. The proposed indices permit us to capture different aspects of segregation 

with satisfying the desirable properties discussed above. In the next section, we argue that segregation 

can be divided into three distinctive components, and then propose three indices, each of which 

evaluates one component of segregation. Section 3 applies the proposed approach to an analysis of 

three spatial data sets. Section 4 discusses in detail the properties of proposed measures, and Section 

5 summarizes the conclusions. 

 

2. Method 

Many of aspatial indices evaluate segregation in terms of spatial pattern such as 

concentration, clustering, and unevenness. Spatial indices, on the other hand, often focus on the 

possibility of social interaction between individuals since it permits us to consider the geographic scale 

explicitly (Echenique and Fryer, 2007; Kaplan and Holloway, 2001; O'Sullivan and Wong, 2007; 

Reardon and Firebaugh, 2002; White, 1983; Wong, 1993). Both spatial pattern and social interaction 

give us a measure of segregation, though they take different perspectives. The former focuses on a 

source of segregation while the latter puts more weight on the result of segregation. This paper follows 

the latter approach, i.e., a focus on the social interaction between individuals to consider the spatial 

aspect of segregation more explicitly. 

Segregation indices should address distinctive dimensions of segregation separately without 

overlap. To this end, this paper distinguishes the different sources of segregation. Existing papers 
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almost agree on that there are at least spatial and aspatial dimensions in segregation. For instance, 

among the five dimensions proposed in Massey and Denton (1988), evenness and exposure are aspatial 

while clustering, centralization, and concentration are spatial (Reardon and O’Sullivan, 2004). 

Reardon and O’Sullivan (2004) proposed spatial evenness and spatial exposure that put more focus 

on spatial and aspatial dimensions, respectively. Spatial and aspatial dimensions imply two sources of 

segregation, i.e., spatial and aspatial sources. Extending these sources, this paper considers three 

sources of segregation: 1) different arrangement of points, 2) imbalance in the number of points, and 

3) lack of diversity in points. The different arrangement of points is a spatial source of segregation 

while the latter two are aspatial sources. 

Each source causes segregation in a different manner. We introduce a term component to 

refer to an element of segregation caused by a specific source. The three sources cause three different 

components of segregation, which we name the components locational, compositional, and qualitative 

segregations. In the following subsection, we will explain the concepts of sources and components in 

more detail, and propose the indices associated with the three components. 

 

2.1 The three sources and components of segregation 

 Figure 1 shows the distribution of individuals of different ethnicities. The black and white 

points exhibit almost the same spatial arrangement in Figure 1a. On the other hand, points are clearly 

separated from each other in Figure 1b. The probability of contact between the black and white points 

in the latter is obviously smaller than that in the former due to the different spatial configuration of the 

points. The term "locational segregation" refers to segregation due to such different arrangements of 

points. Figure 1c displays black and white points that share the same proportional distributions, but 

differ in the number of points. One may think that segregation does not exist because the two types of 

points share the same proportion at individual locations. However, if we consider the probability of 

contact between points, each white point has a higher chance of meeting points of the same color; thus, 

they could be considered to be more segregated than those in Figure 1a. In this paper, we use the term 

"compositional segregation" to refer to segregation caused by such imbalance between the groups (i.e., 

point types) in terms of the number of points. In Figure 1d, there are four different types of points. 

Although they are arranged in the same manner as the points in Figure 1a, the probability that a certain 

type of point meets a different type of point is clearly larger than in Figure 1a. This implies that the 

increasing variety of points reduces the level of segregation, and the term "qualitative segregation" 

refers to segregation caused by a lack of diversity of points. 

The difference in the spatial arrangements of points is a spatial source of segregation, 

although the imbalance in the number of points and the lack of diversity of points are aspatial elements. 

Thus, the locational segregation can be considered to address the spatial aspect of segregation, and the 

compositional and qualitative segregation to evaluate the aspatial aspects. Previous studies have 
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discussed the aspatial aspects of segregation primarily with respect to the imbalance in the proportion 

of different types of points, which corresponds to the compositional segregation. As seen above, 

however, a close relationship exists between the variety of points and the level of segregation. Thus, 

we advocate qualitative segregation as the third component of segregation. 

 

2.2 Measurement of segregation 

This subsection proposes a set of measures to evaluate the three components of segregation. 

Suppose a bounded region R of area T in which , a set of K types of points are distributed. The 

location of jth point of type i is denoted by zij. Let Ni and N be the number of type i points ant the total 

number of points, respectively. 

 The measurement of segregation depends on the geographic scale of analysis (Wong, 1993; 

Wong et al., 1999; Kaplan and Holloway, 2001; Reardon et al., 2008). Figure 1e shows the distribution 

of black and white points. Segregation is not observed from a usual point of view because both black 

and white points are uniformly distributed. However, if we take a local view, we find segregation 

between the points; no white point exists in the close neighborhood of black points, and vice versa. 

White points are less probable to meet black points in Figure 1e than in Figure 1a. Segregation is 

caused by the difference in the spatial arrangement of points at a local scale. 

 To deal with the geographic scale of segregation, we adopt what is called the surface-based 

approach often used in existing papers (Reardon and O’Sullivan 2004; O’Sullivan and Wong, 2007; 

Reardon et al., 2008; Spielman and Logan, 2013). The surface-based approach transforms a point 

distribution into a continuous surface that indicates the degree of spatial clustering of points. The 

surface represents the probability of contact between points since points are more probable to meet 

where many points are clustered. 

 We adopt the Gaussian kernel in converting point distributions into surfaces (Silverman, 

1986): 

 
2

1

21
, ,

2

ij

h

ijk h e


 
 
 
 

x z

x z . 

  (1) 

The parameter h is called the bandwidth that determines the geographic scale parameter of analysis. A 

large h gives us a global view in the measurement of segregation while a small h permits us to evaluate 

segregation at a local scale. The degree of spatial clustering of type i points at x is represented by the 

summation of Equation (1) in a standardized form: 
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We call Di(x, h) the density function of type i points. It shows a large value where points are clustered. 

It becomes smooth with an increase in the bandwidth h. 

 So far we have assumed that the location of individual points is known. However, spatial 

data are often provided only in an aggregated form to keep the confidentiality of individuals. This is a 

primary reason why most of segregation measures proposed in the literature assume spatial data 

aggregated by spatial units such as census tracts and zip code units. Aggregated data are undesirable 

since they inherently bring the Modifiable Areal Unit Problem, i.e., calculated indices depend on the 

spatial units used for data aggregation (Wong, 1993; Reardon and O’Sullivan, 2004). Though this 

problem is not fully avoidable, the method proposed in this paper can be applied to aggregated spatial 

data. Suppose region R is divided into subregions R1, R2, ..., RV. Let us denote Tv and piv as the area of 

vth region and the number of type i points in the vth region, respectively. A simple approach is to 

substitute the point density piv/Tv for Di(x) everywhere in the vth region. In this method, however, we 

cannot evaluate the geographic scale of segregation. A more sophisticated alternative is to assume that 

points are uniformly distributed in every region and calculate the density functions of points based on 

Equation (2): 
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  (3) 

Unlike aspatial measures, we can consider the geographic scale of analysis explicitly by surface 

conversion. 

 Using the density functions defined by Equation (2), we define a local segregation measure 

as 
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  (4) 

where: 

   , ,i
i

D h D hx x . 
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  (5) 

Though the entropy index has been often used as a measure of segregation in the literature, this paper 

adopts the above definition because the entropy index cannot evaluate qualitative segregation 

(Sadahiro and Hong, 2013). The local segregation measure estimates the level of the imbalance 

between different types of points at location x. It can be interpreted as the sum of the proportion of 

each type of point that needs to change for balanced proportions. Figure 2a shows the density functions 

of five types of points in a 1D space. Figure 2b shows the distribution of s(x, , h) calculated from 

the density functions in Figure 2a. It has a large value if the proportion of different types of points at 

location x varies widely. It becomes small when each type of point occupies a similar proportion of 

the total. 

 We define a global measure of segregation by integrating s(x, , h) weighted by the total 

density of points D(x, h) over the entire region: 

     1
, , , ,

R
S h D h s h d

N 
  x x x x . 

  (6) 

This indicates the average degree of segregation over the entire region. We call it the overall 

segregation measure, whose range is 1/K<S(, h)1 (a proof is given in Sadahiro and Hong, 2013). 

As seen in Equation (6), it is a function of point set  and bandwidth h, which implies that the measure 

depends on the geographic scale of analysis represented by h. 

 We then define the measures for the three components of segregation. To evaluate a 

particular component, we need to consider two situations: where the source of that component is 

present and where it is absent. We first calculate the overall segregation measure S(, h) by assuming 

the latter and comparing the result with the observed value; the difference represents the effect of the 

source of that component. 

 Next we begin with the evaluation of locational segregation. The source of locational 

segregation is absent when all types of points have exactly the same spatial arrangement. In this case, 

the fragmented pieces of K types of points {q1, q2, …, qK} are distributed at every location of the 

original points, where qi is a piece of Ni/N fraction of type i point (Figure 3). In Figure 3a, there are 

four black points and eight white points. If we replace every point in this figure with a point comprising 

1/3(=4/12) black and 2/3(=8/12) white points (Figure 3b), the black and white points have exactly the 

same spatial arrangement. In this situation, the density functions of points are given by, 

   , , ,i
i

N
D h D h i

N
 x x . 

  (7) 

This equation indicates that the relative share of each type of point is constant everywhere in R. 

We can confirm this in Figure 2c, which shows the density functions above applied to the 
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data in Figure 2a. The difference in the spatial arrangement of points disappears in Figure 2c. This 

makes the distribution of the local segregation measure s(x, , h) uniform, as seen in Figure 2d; 

consequently, it reduces the overall level of segregation. Substituting Equation (7) into Equations (4) 

and (6), we obtain 

 
2

' i

i

N
S

N
    
 

 . 

  (8) 

The reduction of overall segregation measure indicates the degree of locational segregation: 
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SL(, h) is the locational segregation measure, and its range is 0SL(, h)<S(, h). This index 

indicates the variation in the proportional share of points across locations, and has a large value when 

the proportional share of points varies greatly across locations (i.e., when the different types of points 

are separated from each other). The value of SL(, h) becomes zero when the proportional share is 

constant in R. 

 We then consider compositional segregation. To evaluate this component, we again compare 

two hypothetical cases. The first case is the same as the one that was considered during the evaluation 

of locational segregation, i.e., the absence of a difference in the spatial arrangements of points. For the 

second, we assume that both a difference in the spatial arrangement of points and an imbalance in the 

actual number of points do not exist. To represent this situation mathematically, suppose that the 

fragmented pieces of K types of points {q1, q2, …, qK} are distributed at every location of the original 

points, where each qi has the 1/K proportion of the total of that point. In this situation, the density 

functions of the points are given by, 

   ,
, ,i

D h
D h i

K
 

x
x . 

  (10) 

This equation indicates that all types of points' are present in the same proportion across every location 

in R (Figure 2e), and is applicable where both a difference in the spatial arrangements of points and 

an imbalance in the actual number of points are absent. 

Figure 2f shows the distribution of the local segregation measure for this situation. 

Compared with Figure 2d, it decreases everywhere in R, so does the overall segregation. This reduction 

occurs because the imbalance in the number of points has vanished. Substituting Equation (10) into 
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Equations (4) and (6), we obtain 

  1
''S

K
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  (11) 

The degree of compositional segregation can be estimated by the reduction from S'(, h) to S''(, h): 
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  (12) 

SC() is the compositional segregation measure, and its range is 0SC()<S(, h). Unlike SL(, h), 

we omit h in the notation since Equation (12) is independent of the bandwidth h. This measure has a 

large value when the proportional share of the point types is unbalanced across locations in R, and 

becomes zero when all the types of points are present in the same proportion at every location. 

 Now we move on to the evaluation of qualitative segregation. To explore this component of 

segregation, we compare the case wherein a difference in the spatial arrangement of points and an 

imbalance in the number of points do not exist (i.e., Equation (10)) with another hypothetical case 

wherein all three sources of segregation do not exist. To represent the latter case, we first assume that 

the fragmented pieces of K types of points {q1, q2, …, qK} are distributed at every location of the 

original points, where each qi has a 1/K fraction of the type i points. Subsequently, we increase K 

infinitely to resolve the lack of diversity of points. Under this circumstance, the density function of 

the points approaches zero: 

 , 0,iD h i x  

  (13) 

Figure 2g shows the density functions of the points when all three sources of segregation do not exist. 

The local segregation measure infinitely approaches zero everywhere in R as illustrated in Figure 2h, 

as does the overall segregation. Thus, the qualitative segregation can be evaluated using the reduction 

from S''() to zero: 

   '' 0

1

QS S

K

   


. 

  (14) 

SQ() is the qualitative segregation measure. This measure represents the homogeneity of the points, 

ranging from zero to one. A large value of SQ() implies that there are only a few different types of 

points in R, whereas a small value indicates that a wide variety of points exist. 
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The locational segregation evaluates the spatial aspect of segregation, and the compositional 

and qualitative segregation deal with the aspatial aspects of segregation as mentioned previously. This 

is, in fact, reflected in the definitions of these measures. The definition of SL(, h) in Equation (9) 

contains the bandwidth h that determines the geographic scale of analysis, while SC() and SQ() are 

defined only by aspatial variables as seen in Equations (12) and (14). 

The relationship between these three measures can be expressed as: 

       , ,L C QS h S h S S       . 

  (15) 

This indicates that segregation can be decomposed into locational, compositional, and qualitative 

segregations. The measures cover the whole range of segregation without overlap. This relationship 

makes the three measures comparable with each other so that we can tell what sources are more 

influential on segregation. If, for instance, SL(, h) is larger than SC(), the difference in the spatial 

arrangement of points is a more influential source than the imbalance in the number of points. If SC() 

is predominant among the three measures, the imbalance in the number of points is a primary source 

of segregation among the three sources. 

 

2.3 Geographic scale of segregation 

 The measurement of segregation depends on the geographic scale of analysis as mentioned 

earlier. This paper argues that the scale dependence occurs because segregation measured at a certain 

scale consists of a collection of smaller elements observed at larger scales. This subsection discusses 

the geographic scale of segregation in detail, and proposes another segregation measure. 

 Of the three components of segregation, we focus on locational segregation here because 

the others represent aspatial aspects of segregation. Figure 4a illustrates SL(, h) as a function of the 

bandwidth h. This figure is equivalent to the dissimilarity index D represented as a function of grid 

size (Wong et al., 1999), the GD index proposed by Wong (2005), and the segregation profile proposed 

by Reardon et al. (2008). The measure SL(, h) is usually a monotonically decreasing function of scale 

parameter h, since the level of observed segregation tends to decrease with an increase in the scale of 

analysis. 

 The surface conversion is a kind of low-pass filter (Silverman, 1986; Sonka et al., 2014), 

i.e., it conceals the spatial patterns in a point distribution with a scale smaller than the scale parameter 

h. The surface obtained by the surface conversion of scale h represents a collection of spatial patterns 

of scales larger than h in the point distribution, and consequently, the measure SL(, h) is the 

summation of segregation of scales larger than h. This implies that the locational segregation can be 

decomposed further into segregations of different scales, which we call differential locational 

segregations. The locational segregation observed at scale h is a collection of differential locational 
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segregations measured at scales larger than h. This relationship is mathematically represented as 

   , , dL DLh
S h S u u


   , 

  (16) 

where SDL(, h) is the differential locational segregation measure of scale h. Differentiating both sides 

of this equation with respect to h, we obtain 

   d
, ,

dDL LS h S h
h

    , 

  (17) 

Figure 4b presents SDL(, h) calculated from SL(, h) in Figure 4a. The measure SL(h1) in Figure 4a 

is equal to the gray-shaded area in Figure 4b. 

 Calculation of SDL(, h) is, in a sense, a frequency resolution of SL(, h). Substituting 

Equation (16) into (15), we obtain 

       , , dC Q DLh
S h S S S u u


       . 

  (18) 

This equation indicates that segregation measured at scale h can be decomposed into compositional 

segregation, qualitative segregation, and differential locational segregations of scales larger than h. 

Differential locational segregations of scales smaller than h are concealed in S(, h), which yields the 

scale dependence of S(, h). 

 

2.4 Evaluation of spatial segregation by the entropy index 

The entropy index has been often used as a measure of segregation in the literature (Theil 

and Finizza, 1971; White, 1986; Allen and Turner, 1989; Hårsman and Quigley, 1995; Reardon and 

O’Sullivan, 2004). This paper adopts different measures because the entropy index cannot evaluate 

the three components of spatial segregation separately. However, if such a separation is not 

necessary, we can use the entropy index within our framework. This subsection briefly describes the 

evaluation of spatial segregation by the entropy index. 

We replace the local segregation measure s(x, , h) defined by Equation (4) with that 

based on the entropy index: 
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The overall segregation becomes 
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The locational, compositional, and qualitative segregation measures become 
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and 

   , , , ,

0

Qe eS h S h  


CD D
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  (23) 

respectively. Equation (23) indicates that the entropy index conceals the qualitative segregation. The 

ranges of the segregation measures are 0SLe(D, , h)<Se(D, , h) and 0SCe(D, , h)Se(D, , h) (a 

proof of the former is given in Appendix A4). The equalization measures can be calculated in a similar 

way as that in the previous subsection. 

 Segregation measures defined from Equation (4) and those based on Equation (19) have 

both advantages and disadvantages. One strength of the former is that it permits us to decompose the 

aspatial components of spatial segregation into the compositional and qualitative segregations. The 

latter is advantageous in that the entropy index has already been widely used in the measurement of 

spatial segregation. Its implementation can be done with a slight modification of existing programs. 

 

2.5 Comparison with Reardon and O’Sullivan’s paper 

This paper shares an intention and a principle with Reardon and O’Sullivan (2004). Both 

aim to present distinct dimensions of spatial segregation and define segregation measures based on the 

location of individual points. This subsection briefly compares the two papers in terms of segregation 

dimensions and measures. 

Reardon and O’Sullivan (2004) advocates the spatial exposure and the spatial evenness as 
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the two dimensions of spatial segregation. The latter corresponds to the locational segregation 

proposed in this paper. Spatial exposure contains at least the compositional segregation, but it is not 

clear whether it also contains the qualitative segregation since they do not explicitly discuss the spatial 

exposure in terms of the multigroup segregation. 

As shown in Section 2.2, the locational, compositional and qualitative segregations are 

independent with each other. This implies that the spatial exposure and evenness are also independent. 

We can change the former with keeping the latter, and vice versa. We should note, however, that this 

does not assure the independency between their segregation measures. It is unknown whether their 

spatial exposure index and spatial evenness indices are independent with each other. 

To evaluate the spatial evenness, they advocate the spatial information theory segregation 

index (for details, see Reardon and O’Sullivan (2004)). Let p and pm  be the density of points at 

location p and the proportion of type m points in the local environment of p, respectively. The total 

number of points is given by 

pp R
T dp


  . 

  (24) 

The entropy index at location p is 

logp pm pm
m

E      . 

  (25) 

The spatial information theory segregation index is defined by 

 1
1 p pp R

H E dp
TE




    , 

  (26) 

where E is the overall entropy. The index corresponds to SL(D, , h) in this paper in that both compare 

the spatial segregation with the overall segregation. While SL(D, , h) considers the difference 

between the segregations, H  evaluates their ratio. 

 The range of SL(D, , h) is known as 0SL(D, , h)<S(D, , h), while that of H  is not 

known. The latter can take a negative value, and we cannot compare the spatial segregation between 

different patterns as mentioned in Section 1. This is presumably because the local entropy is calculated 

from the local density of points while the overall entropy is based on the total number of points. The 

summation of the local density is not always equal to the total number of points. 

To avoid this problem, we suggest using the variables defined in the local environment 

consistently to calculate segregation measures. Let p  be the density of points in the local 

environment of p. We define the total volume of points T' as 
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' pp R
T dp


   . 

  (27) 

Using these variables, we modify the spatial information theory segregation index as 

 1
' 1

' ' p pp R
H E dp

T E



    , 

  (28) 

where 

' log
' '

pm pmp R p R
M

m

dp dp
E

T T

 
  
 

 
. 

  (29) 

The modified index would range from 0 to 1. 

 

3. Applications 

 This section tests the validity of the proposed approach, by applying it to an analysis of three 

data sets. For simplicity, we omit the indicators (, h) and () used in the notations hereafter. 

 

3.1 Properties of the measures of segregation 

 This subsection explores the properties of the three segregation measures using a synthetic 

data set. To focus on the relationship between the measures, we assume that point distributions are 

already converted into density functions. 

 We first discuss the relationship between the locational and compositional segregation 

measures. Figures 5a and 5b show the density distributions of two types of points in a 1D space. In 

both figures, the proportion of each type of point varies in the vertical direction, while it is relatively 

constant in the horizontal direction. The spatial arrangement of the points becomes more similar in 

every row from columns A to E. Figures 5c and 5d present the segregation measures calculated for the 

density distributions in Figures 5a and 5b, respectively. The locational segregation measure SL 

decreases from columns A to E as the difference in the spatial arrangement of the points decreases. 

The imbalance in the proportion of the two types of point increases from columns 5 to 1 in Figures 5a 

and 5b; consequently, it raises the compositional segregation measure SC from columns 5 to 1 in 

Figures 5c and 5d. The qualitative segregation measure SQ is constant at 0.5 in all the patterns. The 

compositional and qualitative segregation measures occupy the majority share of the overall 

segregation, implying that aspatial sources are the primary source of segregation in Figures 5a and 6b. 

From columns A to E in Figure 5c, SL changes when holding SC and SQ constant. In Figure 5d, on the 

other hand, SC changes when holding SL and SQ constant. This occurs because SL and SC do not overlap 
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with each other, i.e., they evaluate different aspects of segregation. 

 Figures 5e and 5f display the modified spatial information theory segregation index  'H  

defined by Sadahiro and Hong (2013) calculated for the density distributions shown in Figures 5a and 

5b. Comparing Figures 5c-5f, we notice that the distribution of  'H  is more similar to that of SL than 

to that of S. This is reasonable, considering that  'H  represents the spatial aspect of segregation. 

Figures 5g and 5h display the index of dissimilarity developed by Duncan and Duncan (1955). The 

two figures look similar to Figures 5e and 5f and thus the distribution of SL in Figures 5c and 5d. 

Though the index of dissimilarity does not consider the spatial aspect of segregation explicitly, this 

index looks like being sensitive to the spatial arrangement of points. 

  Let us move on to the relationship between the compositional and qualitative segregation 

measures. Figures 6a and 6c show the density distributions of points and their segregation measures, 

respectively. SL is constantly zero because all the density distributions are uniform. The number of 

types of point increases from rows 1 to 5, while the imbalance in the proportion of points decreases 

from columns A to E. Figure 6c demonstrates that the degree of qualitative segregation decreases with 

an increase in the number of types of point, as does the overall segregation. This supports our earlier 

discussion in Figure 1d (i.e., that an increasing variety of points decreases segregation). We can also 

confirm our observation in Figure 1c (i.e., an imbalance in the number of points increases segregation), 

by looking at the increase in SC and S from the columns E to A in Figure 6c. 

 We then discuss the relationship between the locational and qualitative segregation measures. 

Figures 6b and 6d show the density distributions of points and their segregation measures, respectively. 

The measure SC is constantly zero because all the types of points are present in the same proportion. 

Similar to Figure 6c, Figure 6d shows that an increase in the number of types of point reduces SQ and 

S from rows 1 to 5. The locational and compositional segregation measures change while keeping SQ 

unchanged in Figures 6c and 6d, implying that SL and SC does not overlap with SQ. 

 Figures 6e and 6f show the modified spatial information theory segregation index  'H . The 

index is always equal to zero in Figure 6e, as it does not consider the lack of diversity of points as a 

separate source of segregation. The distribution of  'H  in Figure 6f is more similar to the distribution 

of SL in Figure 6d, which is compatible with our observation in Figure 5. 

 

3.2 Geographic scale of segregation 

 This subsection investigates the geographic scale of segregation. Figure 7a displays seven 

different patterns of two types of points distributed on a 1D space of length 1. We convert the point 

distributions into density functions by Gaussian kernel smoothing of bandwidth w, ranging from 0.001 

to 1. 

 Figure 7b shows the relationship between the bandwidth h and the proposed segregation 

measures. The scale of analysis changes from local to global with an increase of h. The vertical axis 
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shows SL+SC, i.e., the sum of the locational and compositional segregation measures. The 

compositional and qualitative segregation measures are constant in all the patterns, as they are 

independent of the scale of analysis. The latter is always 0.5(=1/2). SC is zero in patterns A to D, and 

it increases from pattern E to G with an increasing imbalance in the number of points, as indicated by 

the arrows in Figure 7b. The locational segregation measure SL decreases monotonically with an 

increase in the geographic scale, which reflects a shift in our viewpoint from local to global. SL 

infinitely approaches zero, even when the points are clearly separated as shown in pattern D. It has a 

large value, however, at a very local scale, even when the points are globally well mixed, as shown in 

pattern A. The locational segregation increases from patterns A to D, regardless of scale h, with the 

clustering of the white points (Figure 7b). 

 Figure 7c demonstrates the relationship between the bandwidth h and the differential 

locational segregation measure SDL. The peak of SDL shifts from a local to a global scale from patterns 

A to D. This indicates that the locational segregation in pattern A is primarily due to a small-scale 

difference in the spatial arrangement of the points, while large-scale differences are more predominant 

in pattern D. A similar shift of the peak is observed from patterns E to G, reflecting an increase in the 

distance between the white points in Figure 7a. 

 

3.3 Application of the analysis to a real data set 

 In this subsection, we use the proposed approach to analyze a real data set as a test of its 

practical feasibility. As mentioned in Subsection 2.2, many segregation measures are defined based on 

spatially-aggregated data. We thus use land use data in a lattice form to evaluate the performance of 

segregation measures calculated based on aggregated data. 

 We examine the changes in land use mixture observed in the urbanization process from 1974 

to 1994 in Chiba, Japan. Chiba is adjacent to the east side of Tokyo Metropolis, the population of 

Chiba had drastically increased with the expansion of the Tokyo metropolitan area during this period. 

Urban sprawl spread from west to east all over Chiba, often with an undesirable land use mixture that 

caused traffic congestion and deteriorated the residential environment. The causes and processes of 

the land use mixture vary between different regions, and they have not yet been analyzed in detail. 

This subsection reveals the detailed process of land use mixture in Chiba using the proposed measures 

to evaluate the degree of mixture between different land uses. 

 We use the land use data of a 10-m resolution lattice provided by the Geospatial Information 

Authority of Japan. The data were generated by recording land use categories at sample locations that 

are distributed regularly at 10-m intervals on aerial photographs. To evaluate the land use mixture at a 

local scale, we aggregated the data into the lattice format with 500 m resolution and calculated the 

overall segregation measure S in each cell. We did not perform the kernel smoothing to focus on the 

change of land use mixture rather than its spatial pattern. 
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 Figure 8 shows the distribution of the local segregation measure s(x). This measure indicates 

the imbalance in the proportion of different land use categories at location x, which usually decreases 

with a change in the land use mixture. As seen in Figure 8, s(x) had decreased all over Chiba during 

this period (dark shades indicate small s(x)). Land use mixture had spread in this area, especially along 

railway lines. This is confirmed in Figure 9a, wherein the compositional segregation measure SC had 

decreased from 0.41 to 0.34, as SC reflects the mean of s(x) of the entire region. Figure 9a shows that 

the locational segregation measure SC had slightly increased from 0.17 to 0.18. This indicates that the 

variation in the pattern of land use mixture had gradually increased during this period. The spatial 

information theory index shown in Figure 9a is similar to SL, which is again consistent with the result 

obtained in Subsection 3.1. 

 We then examine the changes in land use mixture in more detail in six subregions, as shown 

in Figure 8. Subregions R1 and R2 experienced a rapid expansion of urban areas during the 1980s, 

primarily as a result of new town construction. Subregions R3 and R4 both contain urban areas with a 

long history, where the land use patterns were stable over the same period. Subregions R5 and R6 are 

a mixture of urban, suburban, and rural areas. The former contains an old historical town, while the 

latter is a new town located at the border between urban and rural areas. 

 Figure 9b-e shows the segregation measures calculated in the six subregions from 1974 to 

1994. The measures showed similar changes, except those of subregion R3. These subregions 

represent the overall tendency of the progress of land use mixture in Chiba. In subregion R3, SL 

decreased and SC increased during this period. Having examined the land use pattern in R3 in detail, 

we found that the urbanization was already complete in 1974. Most of this subregion was already 

covered by residential areas, and no significant changes occurred from 1974 to 1994. However, in 

general, we can conclude that the land use mixture had changed all over Chiba, with an increase in the 

variation in the land use mixture pattern from 1974 to 1994. Comparing Figures 9c and 9e, we do not 

find a clear similarity between SL and the spatial information theory index. However, the spatial 

information theory index is still closer to SL than SL and SL, which is not incompatible with the results 

obtained in Subsection 3.1. 

 

4. Properties of the proposed measures 

The discussion in Section 1 suggests five desirable properties of segregation measures: 1) 

each component should be fully represented by a single measure, 2) there should be a set of measures 

that addresses all aspects of segregation without overlap, 3) the measures should be consistently 

defined independently of the data used in empirical studies, 4) the range of the measures should be 

analytically known, and 5) interpretation of the measures should be intuitive and straightforward. 

The proposed measures are defined based on different sources of segregation independently, 

and they evaluate the different components of segregation. The measures have a one-to-one 
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correspondence to the components of segregation. Equation (15) indicates that they cover the whole 

range of segregation without overlap. This confirms that the measures meet the first two criteria. We 

should note, however, that the separability of components is not equivalent to empirical independence. 

A typical example is Figures 5a and 5c, where SL increases and SC decreases simultaneously from rows 

1 to 5. A correlation between measures can be observed even if the measures do not overlap with each 

other. Empirical dependence is not incompatible with the separability of components. 

The measures also satisfy the third and fourth criteria: the components of segregation we 

propose in this paper and their associated measures are defined deductively prior to empirical 

applications, and their range is analytically known. As seen in the applications in Section 3, the 

interpretation of the measures is straightforward. It is primarily because they clearly correspondent to 

each component of segregation. 

Reardon and O’Sullivan (2004) suggested eight criteria for segregation measures: 1) scale 

interpretability, 2) arbitrary boundary independence, 3) location equivalence, 4) population density 

invariance, 5) composition invariance, 6) transfers and exchange, 7) additive spatial decomposability, 

and 8) additive grouping decomposability. These criteria are satisfied by the definition of Di(x, h) and 

s(x, , h), and Equation (15), except scale interpretability and composition invariance. Scale 

interpretability requires a measure to become zero when all the groups share the same proportion in a 

local environment. The measure S(, h) does not satisfy this criterion, as it becomes 1/K under this 

condition. However, if we interpret this criterion as being a requirement for a clear and interpretable 

relationship between a measure and the degree of segregation, S(, h) satisfies this criterion since it 

increases monotonically with the degree of segregation. Composition invariance, on the other hand, 

was originally advocated by James and Taeuber, 1985, to which some papers, including Reardon and 

O’Sullivan (2004), raise objections. However, we can modify the proposed measures to satisfy it by 

replacing Di(x, h) with the standardized density distribution of points i(x, h): 

   
 
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Similar to existing measures, our measures aim to evaluate the different aspects of 

segregation. The locational segregation measure SL(, h) captures the spatial aspect of segregation, 

which is also evaluated by evenness and concentration indices such as the index of dissimilarity, the 

Gini index, the entropy-based indices, and the spatial information theory segregation index (Massey 

and Denton, 1988; Reardon and O’Sullivan, 2004). Among those, the spatial information theory 

segregation index often yields similar result with the locational segregation measure as seen in Section 

3. The compositional and qualitative segregation measures SC() and SQ() focus on the aspatial 

aspect of segregation, which are similar to exposure indices including the isolation index, interaction 
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index, and the spatial exposure index. Compared with those existing indices, one strength of our 

measures is that they satisfy the five desirable properties of segregation measures as discussed above. 

The three measures evaluate the three different aspects of segregation without overlap, and they cover 

the whole range of segregation. This permits us to evaluate the three components separately, and 

compare the effect of three sources with each other. 

 The three measures are, in a sense, the minimum set of measures for evaluating the different 

aspects of segregation. This paper, however, neither prohibits us from using other existing measures 

nor forces us to use all the three proposed measures. Existing measures are still useful to evaluate 

segregation from various perspectives, especially when the distinctiveness of measures is not essential. 

One may argue that no segregation is observed in Figure 1c where black and white points share the 

same spatial pattern. If social interaction is not considered to evaluate segregation, it is enough to use 

only S(, h) or SL(, h). 

 The differential locational segregation is not identical to the geographic scale discussed in 

Reardon et al. (2008), although both address the geographical scale of segregation. Differential 

locational segregation is a subcomponent of locational segregation, while the geographic scale is an 

independent dimension distinct from the spatial evenness. 

 

5. Conclusion 

 This paper develops a new approach to the measurement of segregation among point 

distributions. The major contribution of the paper is the development of new measures that evaluate 

segregation from different perspectives. We argued that segregation can be decomposed into three 

components that are supported by three measures respectively. The measures satisfy the five desirable 

properties of segregation measures discussed in Subsection 2.2 that are not fully possessed by existing 

indices. Since the three components of segregation are separately measurable, the proposed measures 

can serve as a minimum set of measures that address distinct dimensions of segregation. The second 

contribution of the paper is to advocate qualitative segregation. Existing studies consider the aspatial 

aspects of segregation primarily with respect to the imbalance in the proportion of different types of 

points. As seen in Subsection 2.1, however, there exists a close relationship between the variety of 

points and the level of segregation. Consideration of qualitative segregation provides us a more 

detailed view of segregation. The third contribution of the paper is to introduce differential locational 

segregation. It is a representation of multi-scale aspect of segregation. Differential locational 

segregation permits us to consider the geographic scale of segregation explicitly, i.e., to decompose 

locational segregation into smaller elements of different scales. 

 Finally, we discuss some limitations of the paper and potential directions for future research. 

 First, this paper does not evaluate the statistical significance of segregation measures. One 

method to test the significance is to calculate the measures of spatial autocorrelation for individual 
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types of points. Johnston et al. (2010) and Poulsen et al. (2011) used Moran's I and Getis's G statistics 

to test the significance of the spatial clustering of individual ethnic groups. This method, however, 

does not directly evaluate the segregation of more than two types of points. A statistical test that 

considers the segregation of multiple types of points simultaneously needs to be developed. 

 Second, this paper evaluates segregation of points without considering their attributes in 

detail. This treatment, however, may not be appropriate in the real world. For instance, segregation 

between two population groups with very different socio-economic levels may have a larger impact 

on society in comparison with that of two groups with similar profiles. In such a case, we should put 

more weight on the former in the evaluation of segregation. To accomplish this, we should explicitly 

take into account the attributes of points in segregation measurement. 

 Third, as Reardon (2009) stated, most of the existing studies have discussed segregation 

among groups classified by nominal variables. However, groups can be categorized by other scales 

such as ordinal, interval, and ratio variables. Reardon (2009) developed ordinal segregation measures, 

and Reardon and Bischoff (2011) used them in the analysis of income segregation in the U.S. from 

1970 to 2000. Extension of the proposed measures in this direction might be an important topic for 

future research. 
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Figure 1 Point distributions representing individuals of different ethnicities. 
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Figure 2 Density functions of points assumed in the evaluation of segregation on a one-dimensional 

space and the distribution of local segregation measure. Density functions where (a) all the three 

sources of segregation are present, (c) the difference in the spatial arrangement of points is absent, 

(e) the difference in the spatial arrangement of points and the imbalance in the number of points are 

absent, (g) all the three sources of segregation are absent. Figures 2b, 2d, 2f, and 2h indicates the 

distribution of local segregation measure of density functions shown in Figure 2a, 2c, 2e, and 2g, 

respectively. Different textures indicate different types of points. 
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Figure 3 Evaluation of locational segregation. (a) Distribution of four black and eight white points. 

(b) A hypothetical situation where both black and white points have the same spatial arrangement. 

  

(a) (b)



-26- 
 

 

 

 

Figure 4 Relationship between the locational segregation measure and the differential locational 

segregation measure. The horizontal axis indicates the window width h used in kernel smoothing. 
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Figure 5 Density distributions of points (a, b), their segregation measures (c, d), the spatial 

information theory segregation index (e, f), and the index of dissimilarity (g, h). Different colors 

indicate different types of points in Figures 5a and 5b. 
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Figure 6 Density distributions of points (a, b), their segregation measures (c, d), and the spatial 

information theory segregation index (e, f). Different colors indicate different types of points in 

Figures 6a and 6b. 
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Figure 7 Segregation measures of the distribution of two types of points on a one-dimensional 

space. (a) Point distributions, (b) the summation of the locational and compositional segregation 

measures, (c) the differential locational segregation measure. Bold solid lines indicate patterns from 

A to D while bold broken lines indicate patterns from E to G. 
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Figure 8 The local segregation measure s(x) of land use pattern in (a) 1974 and (b) 1994. 
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Figure 9 The segregation measures of land use pattern from 1974 to 1994. (a) Segregation measures 

of the entire region, (b)-(e) Segregation measures of the subregions shown in Figure 8. (b) The 

overall segregation measure S, (c) the locational segregation measure SL, (d) the compositional 

segregation measure SC, (e) the spatial information theory segregation index. 
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Appendix A1 

This appendix derives the minimum value of s(x, , h) defined by Equation(4) using the 

Langrangian multiplier method. Let us define di(x, h) as 

   
 
,

,
,

i
i

k
k

D h
d h

D h



x
x

x
. 

  (31) 

We minimize 

   2 , 1 ,i i
i i

f d h d h     
 

 x x  

  (32) 

with constrain 

 , 1i
i

d h  x , 

  (33)  

where  is the Langrangian multiplier. Partial differentiation of f by di(x, h) and that by  are 

   2 ,
, i

i

f
d h

d h


 


x
x

 

  (34) 

and 

 1 ,i
i

f
d h




 
  x , 

  (35) 

respectively. Since 

 
0

,i

f

d h




 x
, 

  (36) 

we obtain 

 ,
2id h


x . 

  (37) 

Substitution of Equation (37) into Equation (35) yields 

 1 , 1 0
2i

i

K
d h


    x . 

  (38) 
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Solving this equation, we have 

2

K
  . 

  (39) 

Substituting the above equation into Equation (38), we obtain 

  1
,id h

K
x . 

  (40) 

This gives the minimum of s(x, , h), that is, 

    2
, , ,

1

i
i

s h d h

K

 



x x
. 

  (41) 

Appendix A2 

This appendix derives the minimum value of SL(, h). To this end, we divide region R into 

M subregions denoted by {R1, R2, ..., RM}. Let Dij be the density of type i points in Rj, which 

corresponds to Di(x, h) in Equation (2). The proportion of type i points in Rj is given by 

ij
ij

ij
i

D
p

D



. 

  (42) 

The total density of points in Rj is denoted by i. The total density of all the points is 

 j j
j

T A R  , 

  (43) 

where A(Rj) is an operator that gives the area of Rj. 

 The locational segregation SL(, h) is defined as 

   

 

2
2

2
2

1
,

1

i
L j j ij

j i i

i
j j ij

i j

N
S h A R p

T N

N
A R p T

T N





     
 

      
   

  

 
. 

  (44) 

We use the Langrangian multiplier method, where we minimize 
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   
2

2 i i
i j j ij ij j j

j j

N N
f A R p T T p A R

N N
  

       
   

  . 

  (45) 

The constraints are 

 , i
ij j j

j

N
i p A R T

N
   

  (46)  

Partial differentiation of fi by pij and that by  are 

   2i
j j ij j j

ij

f
A R p A R

p
  

 


. 

  (47) 

and 

 i i
ij j j

j

f N
T p A R

N





 
  , 

  (48) 

respectively. Solving 

0i

ij

f

p





, 

  (49) 

we obtain 

2ijp


 . 

  (50) 

This equation indicates that pij does not depend on i. We thus obtain 

i
ij

N
p

N
 . 

  (51) 

and the minimum of SL(, h): 

   
2 2

1
,

0

i i
L j j

i j

N N
S h A R T

T N N


           
     



  . 

  (52) 

 

Appendix A3 
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 This appendix proves that the qualitative segregation is independent of the locational and 

compositional segregations. To this end, we add m types of points to the point set considered in Section 

2. We keep the total number of points but can modify the number of each type of points. Let Ni’ be the 

number of type i points after the addition of new points. 

We first consider the independency of the qualitative segregation from the locational 

segregation. The locational segregation remains unchanged when the following equation holds for any 

x: 

 
 

 
 

2 2

, ' ,

, ' ,
i i

i ik k
k k

D h D h

D h D h

   
      
      

  
x x

x x
. 

  (53) 

This condition is equivalent to 

2 2'i i
i i

p p  , 

  (54) 

under the constraint: 

' 1i i
i i

p p   . 

  (55) 

We assume m=1 and pi=pi’ for i=1, ..., K-2. Equations (54) and (55) become 

2 2 2 2 2
1 1 1' ' 'K K K K Kp p p p p      , 

  (56) 

and 

1 1 1' ' 'K K K K Kp p p p p      . 

  (57) 

We can rewrite pK-1 as 

1K Kp p a    

  (58) 

without losing generality. Substituting Equations (57) and (58) into Equation (56), we solve it in terms 

of pK: 

 1 1 1' ' 2 ' ' ' '

2
K K K K K K

K

p p p p ap ap
p       

  

  (59) 

The condition of the existence of a positive pK is 
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   2

1 14 ' ' ' 'K K K Ka p p p p    . 

  (60) 

It is always possible to satisfy the above inequality by choosing close values of p’K and p’K+1. 

Consequently, we can change the locational segregation with keeping the qualitative segregation. 

We then consider the independency of the qualitative segregation from the compositional 

segregation. The compositional segregation is unchanged when 

 

2 2

22

'1 1i i

i i

N N

N K N K m

        
    

  . 

  (61) 

Solving Equation (61) in terms of m, we obtain 

2

2 2
2 2'

1i i

i i

K
m K

N N
K K

N N

 
       
   

 
. 

  (62) 

Since m is positive, the following inequality needs to hold: 
2 2 2

2

'1i i i

i i i

N N N

N K N N
            
     

   . 

  (63) 

It is always possible to satisfy the above inequality by slightly reducing every Ni and add a new type 

of points. Consequently, we can change the qualitative segregation with keeping the compositional 

segregation. 

 

Appendix A4 

 This appendix derives the minimum value of the locational segregation SLe(D, , h). We use 

the same setting as that of Appendix A2. The locational segregation SLe(D, , h) is written as 

   

 

1
, , log log

1
log log

Le j j ij ij ij ij
j i i

i i
j j ij ij

i j

S h A R p p p p
T

N N
A R p p T

T N N





  

 
  

 

  

 

D

. 

  (64) 

We use the Langrangian multiplier method to calculate the minimum value of SLe(D, , h). We 

minimize 
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   log logi i i
i j j ij ij ij j j

j j

N N N
f A R p p T T p A R

N N N
  

 
    

 
  . 

  (65)  

with constraints 

 , i
ij j j

j

N
i p A R T

N
  . 

  (66)  

Partial differentiation of fi by pij and that by  are 

  log 1i
j j ij

ij

f
A R p

p
 

  


. 

  (67) 

and 

   i i
ij j

j

f N
A R p A R

N


 
  , 

respectively. Solving 

0i

ij

f

p





, 

  (68) 

we obtain 

1
ijp K  . 

  (69) 

This implies that pij is independent of i. From this we derive 

i
ij

N
p

N
 . 

  (70) 

Substitution of Equation (70) into (64) yields 

   1
, , log log

0

i i i i
Le j j

i j

N N N N
S h A R T

T N N N N


 
   

 


 D
. 

  (71) 


