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Abstract 

This paper proposes a new method of measuring spatial segregation. Many of the existing 

measures of spatial segregation assume spatial data aggregated by spatial units. This leads to a 

problem called the modifiable areal unit problem, where measures are inevitably unstable and 

unreliable because of their sensitivity to the definition of spatial units. Another problem of the 

existing measures is that the relationship between the different dimensions of spatial segregation is 

not fully revealed and understood. This prevents us from extracting the distinct and independent 

dimensions of spatial segregation. To resolve the problem, this paper takes a decomposition 

approach to the measurement of spatial segregation. Our primary goal is to decompose the spatial 

segregation into mutually exclusive and independent components. We introduce three measures of 

spatial segregation each of which evaluates a different dimension of spatial segregation. To test the 

validity of the method, we apply it to three spatial datasets of different sizes. The result shows that 

the method is effective for evaluating the spatial segregation from three different perspectives.  



1. Introduction 

 Spatial segregation is a fundamental concept in geographical information science. It refers 

to the spatial isolation of different types of spatial objects. Spatial segregation of racial and 

occupational groups has drawn much attention of geographers and sociologists. Spatial segregation 

of plant and animal species has been discussed in biology and ecology. Landuse mixture, the lack of 

spatial segregation, is a critical issue in urban and regional planning. 

 Numerous measures have been proposed in the literature to evaluate the degree of spatial 

segregation quantitatively. Most of them utilize spatial data aggregated by spatial units such as 

census tracts, zip-code areas, and school districts. Among those, one of the most commonly used 

measure is the dissimilarity index proposed by Duncan and Duncan (1955). Though its suitability 

has been debated for a long time (White, 1983), the index has been widely used in racial segregation 

analysis because of its ease of calculation and interpretation. 

The dissimilarity index and its variants are aspatial measures in the sense that they are 

insensitive to the arrangement of spatial units. Spatial measures have been developed to address this 

limitation by explicitly considering the distribution of spatial units. Morgan’s distance-based 

measure of segregation (1983) and White’s spatial segregation indices (1983) calculate the distance 

between spatial units and incorporate it into the definition of their measures. Morrill (1991) and 

Wong (1993) introduced an additional component to the dissimilarity index, so the degree of 

segregation can be moderated by the arrangement of spatial units. 

 The above measures are all defined based on aggregated spatial data. Considering that 

spatial data are often provided in an aggregated form to keep the confidentiality of individuals these 

unit-based approaches can be useful to some extent. This, however, causes a problem called the 

modifiable areal unit problem. Since spatial measures are sensitive to the definition of spatial units, 

they are inevitably unstable and unreliable. 

 Reardon and O’Sullivan (2004) appropriately points out this problem and proposes new 

measures of spatial segregation. They define the measures directly from the location of individual 

points instead of using aggregated spatial data. When spatial data are available only in an aggregated 

form, the measures approximate the true values by assuming the uniform distribution of point in 

each unit. This assures that the measures converge to the true values with an increase in the 

resolution of spatial data and permits us to avoid the instability in the evaluation of spatial 

segregation. 

 Another significant contribution of Reardon and O’Sullivan (2004) is that it examines in 

detail the five dimensions advocated by Massey and Denton (1988) and re-conceptualizes into two 

fundamental dimensions. They claim that the distinction between the dimension of evenness and that 

of clustering is arbitrary and propose two dimensions called the spatial exposure and the spatial 

evenness as principal and distinct dimensions of spatial segregation. 



Their approach, however, has several problems that remain to be resolved. First, they did 

not define the spatial exposure and evenness in a formal way. Though their discussion is adequate 

and persuasive, they did not indicate a precise definition of the two dimensions. Second, the 

independency between the two dimensions is not fully discussed. They argue that the dimensions are 

distinct, but do not give a tangible proof of the independency between exposure and evenness 

measures. Third, the range of the segregation measures is not completely shown. This causes a 

difficulty in comparing the spatial segregation between different patterns because we cannot 

standardize the measures to obtain relative and comparative ones. 

 To resolve the above problems, this paper proposes a new method of measuring spatial 

segregation. Following the line of Reardon and O’Sullivan (2004), we discuss the spatial segregation 

of point objects whose exact location is assumed to be known. Our aim is to decompose the spatial 

segregation into different components that are mutually exclusive and independent. Section 2 defines 

several measures of evaluating the spatial segregation. Section 3 calculates the measures on three 

spatial datasets of different sizes. Section 4 summarizes the conclusions with discussion. 

 

2. Method 

Spatial segregation has several different aspects. Suppose the four distributions of white 

and black points shown in Figure 1. The same number of white and black points are distributed in 

Figure 1a and Figure 1b, while black points are fewer than white points in Figure 1c and Figure 1d. 

White and black points are uniformly distributed in Figure 1a and Figure 1c, while they are spatially 

separated in Figure 1b and Figure 1d. 

Figure 1b and Figure 1d present complete spatial segregation of white and black points. 

Points are highly mixed in Figure 1a. In Figure 1c, though white and black points are globally mixed, 

a local segregation is observed due to the inequality in the number of points. Many white points do 

not have black neighborhoods except those located close to black ones. 

 



 

 

Figure 1 Four distributions of white and black points. 

 

 This implies that spatial segregation depends on at least the difference in location and that 

in number of points. This distinction almost corresponds to the spatial evenness and exposure 

advocated by Reardon and O’Sullivan (2004). This paper, however, further discusses spatial 

exposure from a different perspective. Figure 2 indicates the distributions of individuals of different 

species. If a white circle moves around its neighborhood, it is more probable to meet an individual of 

a different species in Figure 2b than in Figure 2a. Spatial exposure depends on the difference in not 

only the number but also the diversity of points. 

 

(c) (d)

(b)(a)



 
 

Figure 2 Distributions of individuals. Different symbols indicate different species. 

 

 The above observation suggests three factors of spatial segregation: locational unevenness, 

compositional unevenness, and qualitative homogeneity. The locational unevenness causes a 

difference in location of points, while the compositional unevenness increases the difference in the 

number of points, and consequently, both increase spatial segregation. The qualitative homogeneity 

decreases the variation of points, which also increases spatial segregation. We discuss these three 

factors in a more formal and quantitative way in the following. 

 

2.1 Evaluation of spatial segregation 

Suppose K types of points distributed in region R. We denote jth point of type i and its 

location as Pij and zij, respectively. Let Λi={Pi1, Pi2, ..., PiNi} be the set of type i points. The total 

number of points is N (=N1+ N2+... + NK). 

Let φ(x, zij) be a proximity function that indicates the spatial proximity between location x 

and point Pij. One definition of φ(x, zij) is a distance-decay function such as 

( ) ( ), expij ijφ α= − −x z x z

.
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We may also employ the Voronoi diagram, where points of the same type serve as generators. The 

proximity function φ(x, zij) is 

( ) 1 if
,

0 otherwise
ij

ij

V
f

∈
= 



x
x z

,

 

  (2) 

where Vij is the Voronoi region of Pij. 

(b)(a)



Using the proximity function, we define the density functions of points. Though they are 

spatially-weighted, we simply call them density functions in the following. The density of Pij at 

location x is defined as 
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The density function of type i points is given by 
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We can confirm 
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where Ni is the number of type i points. 

We then define segregation measures. The local segregation at x is measured by 
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Integration of t(x) over R yields the overall segregation: 
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where 

( ) ( )i
i

D D= ∑x x . 
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The minimum of t(x) is 1/K as shown in Appendix A1. Its maximum is 1, and it occurs only when a 

single type of points exist. The range of S is thus 1/K <S≤1. 

The overall segregation S is a composite of segregations caused by the three factors 



mentioned earlier. We will decompose it into three components in the following. 

The first component is the locational segregation. We can estimate this aspect of 

segregation by eliminating the locational unevenness in a given point distribution, calculating the 

degree of segregation for it, and comparing it with that for the original point distribution. The 

elimination is completed by the locational equalization, which converts the density distribution of 

every type of points into the uniform distribution with keeping the total density distribution of points. 

The density function of type i points becomes 

( ) ( )' i
i

ND D
N

=x x . 
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As a result, spatial segregation reduces from S to 
2
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Figure 3a illustrates the density distributions of five types of points on a one-dimensional space. The 

locational equalization transforms the distributions into those shown in Figure 3b. 

 



 
 

Figure 3 Elimination of locational and compositional unevenness in point distributions. (a) Density 

distributions of five types of points on a one-dimensional space. Different patterns indicate different 

types of points. (b) Density distributions obtained after the locational equalization. (c) Density 

distributions obtained after the compositional equalization. 

 

The locational segregation is measured by the decrease from S to S’: 
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Since 0<S’ and 0≤SL (a proof is shown in Appendix A2), the range of SL is 0≤SL<S. It shows a large 

value when the locational equalization is very effective, that is, the spatial segregation greatly varies 

between different locations. The measure SL becomes zero if the locational equalization does not at 
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all reduce the spatial segregation. This occurs when all the density distributions of points are already 

uniform before the locational equalization. 

The second component of spatial segregation is the compositional segregation. We define 

it as the segregation further reduced from S’ by eliminating the compositional unevenness in point 

distributions. This elimination is performed by the compositional equalization, which equalizes the 

proportion of the total density between different types of points. The compositional equalization 

transforms the density function of type i points into 

( ) 1''iD
K

=x . 
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and reduces spatial segregation to 

2
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Figure 3c shows the result of the compositional equalization applied to the distributions shown in 

Figure 3b. The compositional segregation is measured by 
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The range of SC is 0≤SC<S’, which can be proved in a similar way as that of Appendix A1. It shows a 

large value if the number of points greatly varies between different types of points. The measure SC 

becomes zero when the compositional equalization is completely ineffective, that is, all the types of 

points have the same number of points. 

The third component of spatial segregation is the qualitative segregation. We define it as 

the segregation reduced from S’’ by eliminating the qualitative homogeneity of points. The 

elimination is completed by increasing infinitely the types of points. As K approaches infinity, the 

spatial segregation infinitely reduces. Consequently, the qualitative segregation is measured by 

2
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The range of SQ is obviously 0<SQ≤1. 

The locational segregation evaluates the spatial aspect of segregation while the 

compositional and qualitative segregations consider the aspatial aspects. The decomposition of 

spatial segregation into the three components permits us to discuss the different aspects of spatial 



segregation separately. Figure 4 displays the relationship between the segregation measures. As seen 

in the figure, the locational, compositional and qualitative segregations are mutually exclusive. They 

are also independent with each other in that we can change one aspect of segregation with preserving 

the other two dimensions. For instance, the locational and compositional segregations are 

independent with each other, and they are both independent of the qualitative segregation. We will 

show concrete examples in the next section. The qualitative segregation is also independent of the 

locational and compositional segregations. A proof is given in Appendix A3. 

 

 
 

Figure 4 Relationship between the segregation measures. 

 

The segregation measures proposed above do not meet the criterion of composition 

invariance defined by James and Taeuber (1985). Their definition claims that a measure should 

remain unchanged if the distribution of spatial objects changes but its relative spatial distribution 

does not change. Though some papers raise objections to this definition (Coleman et al., 1982; 

Reardon and O’Sullivan, 2004), we can modify the proposed measures to satisfy it by using the 

standardized density distribution of points instead of Di(x): 
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Since it is independent of the absolute distribution of points, the segregation measures defined based 

on Equation (16) meet the criterion of composition invariance. 

 The segregation measures proposed above evaluate the three components of spatial 
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segregation by using the result of eliminating the three factors of spatial segregation successively 

from the overall segregation. This implies that the measures cannot distinguish point distributions 

that share the same values of segregation measures. Suppose the checkerboard patterns (Wong, 2005; 

O’Sullivan and Wong, 2007) of different resolutions as shown in Figure 5. Each cell contains the 

same number of white or black points. If we define the density functions of points by simply 

dividing the number of points by the cell size, the two patterns show the same values of segregation 

measures, and consequently, we cannot distinguish the two patterns. 

 

 

 

Figure 5 Checkerboard patterns of different resolutions that cannot be distinguished by the 

segregation measures. 

 

 One option to resolve the problem is to use a distance-decay function such as those defined 

by Equation (1). This enables us to take into account explicitly the spatial dimension of density 

distributions, and yields different values of segregation measures between the two patterns. 

Interpretation of the result, however, is not straightforward since the result heavily depends on the 

definition of distance-decay function. Its interpretation requires us to fully understand the properties 

of distance-decay function and the relationship between the function and result, especially when the 

point distributions present more complicated patterns. 

 The above problem arises because the locational unevenness is evaluated in the aspatial 

rather than the spatial dimension. The locational segregation SL is dimensionless as seen in Equation 

(11). To resolve the problem, we evaluate the locational equalization in the spatial dimension using 

the earth moving transformation (Peleg et al., 1989; Rubner et al., 2000; Zhao et al., 2010, Sadahiro, 

2012). The earth moving transformation is originally a transportation problem that converts a pile of 

dirt into another form by transferring the dirt between regions with the least cost. We regard the 

locational equalization defined by Equation (9) as the earth moving transformation from Di(x) into 

Di’(x). The solution gives the volume of transfer between locations, from which we calculate two 

equalization measures useful for evaluating the locational equalization. 

 To discretize the density distributions of points, we divide region R by M subregions {R1, 



R2, ..., RM} of the same size. The subregions should be small enough for a close approximation. Let 

Dij be the density of type i points in Rj. The density of type i points transferred from Rj to Rk is 

denoted by xijk (xijk≥0). The locational equalization of Di(x) is formulated as the following 

optimization problem where the total volume of transfer is minimized. 

 

Problem LE (Locational equalization): 
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Operator A(R) gives the area of region R. Problem LE is a linear optimization problem whose 

computational complexity is O(n). It is thus solvable in a linear time. 

From the solution of Problem LE, we calculate the weighted average distance of locational 

equalization. Let ljk be the distance between Rj and Rk. The equalization distance is defined by 
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  (17) 

This distance measure permits us to evaluate the locational equalization in the spatial dimension. 

Another measure useful for evaluating the locational equalization is the ratio of the total volume of 

transfer called the equalization ratio: 
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This measure indicates the discrepancy of the density distributions of points from the uniform 

distribution. It ranges from zero to one. 

 

2.2 Evaluation of spatial segregation by the entropy index 

Existing studies of spatial segregation often adopt the entropy index as a measure of spatial 

segregation (Pielou, 1977; White, 1986; Allen and Turner, 1989; Wong, 1993; Reardon and 

O’Sullivan, 2004). This paper, on the other hand, defines segregation measures in a different manner 

as shown in Equation (6). This is because the entropy index prevents us from decomposing the 

compositional and qualitative segregations separately as shown later. However, if they can be treated 

as a single component of segregation, we can use the entropy index within our framework. This 

subsection briefly describes the evaluation of spatial segregation by the entropy index. 

We replace the local segregation measure t(x) defined by Equation (6) with that based on 

the entropy index: 
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The overall segregation becomes 
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Segregation measures S’ and S’’ are defined as 
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respectively. The locational, compositional, and qualitative segregation measures become 
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and 
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respectively. Equation (24) indicates that the entropy index conceals the qualitative segregation. This 

prevents us from evaluating spatial segregation caused by the qualitative homogeneity shown in 

Figure 2. The ranges of the segregation measures are 0≤SLe<Se and 0≤SCe≤Se (a proof of the former is 

given in Appendix A4). The equalization measures can be calculated in a similar way as that in the 

previous subsection. 

 Segregation measures defined from Equation (6) and those based on Equation (19) have 

both advantages and disadvantages. One strength of the former is that it permits us to decompose the 

aspatial components of spatial segregation into the compositional and qualitative segregations. The 

latter is advantageous in that the entropy index has already been widely used in the measurement of 

spatial segregation. Its implementation can be done with a slight modification of existing programs. 

 

2.3 Comparison with Reardon and O’Sullivan’s paper 

This paper shares an intention and a principle with Reardon and O’Sullivan (2004). Both 

aim to evaluate spatial segregation from different perspectives and define segregation measures 

based on the location of individual points. This subsection briefly compares the two papers in terms 

of segregation dimensions and measures. 

Reardon and O’Sullivan (2004) advocates the spatial exposure and the spatial evenness as 

the two dimensions of spatial segregation. The latter corresponds to the locational segregation 

proposed in this paper. Spatial exposure contains at least the compositional segregation, but it is not 

clear whether it also contains the qualitative segregation since they do not explicitly discuss the 

spatial exposure in terms of the multigroup segregation. 

As shown in Section 2.1, the locational, compositional and qualitative segregations are 



independent with each other. This implies that the spatial exposure and evenness are also 

independent. We can change the former with keeping the latter, and vice versa. We should note, 

however, that this does not assure the independency between their segregation measures. It is 

unknown whether their spatial exposure index and spatial evenness indices are independent with 

each other. 

To evaluate the spatial evenness, they propose the spatial information theory segregation 

index defined by 


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  (25) 

where T and E are the total number of points and the overall entropy, respectively. This corresponds 

to SL in this paper in that both compare the spatial segregation with the overall segregation. While SL 

considers the difference between the segregations, H  evaluates their ratio. 

 The range of SL is known as 0≤SL<S, while that of H  is not known. The latter can take a 
negative value, and we cannot compare the spatial segregation between different patterns as 

mentioned in Section 1. This is presumably because the local entropy is calculated from the local 

density of points while the overall entropy is based on the total population of points. Unlike 

Equation (5), the summation of the local density is not always equal to the total population. 

To avoid this problem, we suggest using the variables defined in the local environment 

consistently to calculate segregation measures. We modify the spatial information theory segregation 

index as 
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The modified index would range from 0 to 1. 

 

3. Applications 



 To test the validity of the method proposed above, this section applies it to an analysis of 

three datasets of different sizes. 

 

3.1 Small synthetic dataset 

 This subsection aims to investigate the properties of the segregation measures. Figure 6 

and Figure 7 show a small synthetic dataset of the density distributions of points on a 

one-dimensional space and their segregation measures. 

 

 

 

Figure 6 Density distributions of points (a, b) and their segregation measures (c, d). Different colors 

indicate different types of points in Figure 6a and b. 
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Figure 7 Density distributions of points (a, b) and their segregation measures (c, d). Different colors 

indicate different types of points in Figure 7a and b. 

 

 We first discuss the relationship between the locational and compositional segregations in 

Figure 6. To focus only on the two segregations, we consider the distributions of two types of points. 

In every row from column A to E, the proportion of two types of points remains unchanged while the 

gradient of the boundary between two types of points changes. The gradient also changes from row 1 

to 5 in Figure 6a while it remains unchanged in Figure 6b. Since the number of types of points does 

not change, SQ is constant in Figure 6c and Figure 6d. In column E, the locational segregation SL is 

equal to zero in all the cases due to the uniform density distributions. The compositional segregation 

SC increases from row 5 to 1 with the unevenness in the composition of points. This is consistent 

with our earlier observation in Figure 1c, where a difference in the number of points causes a local 

segregation. The locational unevenness decreases from column A to E, which results in a decrease in 

SL. 

 The overall segregation S(=SL+SC+SQ) first decreases and then increases from row 5 to 1 in 

columns from A to D in Figure 6c. This is because the locational and compositional segregations can 

change simultaneously. While SL decreases monotonically from row 5 to 1, SC increases continuously. 

This confirms us that we cannot distinguish the locational and compositional segregations by only 

using S. The distinction requires at least two measures. 
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 In Figure 6c, the locational segregation SL changes with keeping SC and SQ unchanged 

from column A to E. In Figure 6d, on the other hand, SC changes with keeping SL and SQ from row 5 

to 1. This clearly indicates that the locational and compositional segregations are independent with 

each other. 

 We then consider the relationship between the compositional and qualitative segregations. 

To exclude the effect of locational segregation, we consider the uniform density distributions in 

Figure 7a. The number of point types K ranges from two to six. Figure 7c shows that the qualitative 

segregation SQ increases with a decrease of K from row 5 to 1, so does the overall segregation. This 

supports our earlier discussion in Figure 2, that is, the locational segregation increases with the 

qualitative homogeneity. We also confirm our observation in Figure 1c by looking at an increase in 

SC and S from column E to A, where the compositional unevenness monotonically increases. 

 We finally discuss the relationship between the locational and qualitative segregations. To 

exclude the effect of compositional segregation, we consider the density distributions of points 

shown in Figure 7b, in each of which all the distributions have the same total density. Similar to 

Figure 7c, Figure 7d shows that a decrease of K increases SQ from row 5 to 1. The locational 

segregation SL increases while SC and SQ remain unchanged from column E to A. This again supports 

the independency of locational segregation. 

 

3.2 Larger synthetic datasets 

 We then apply the method to larger synthetic datasets to test the validity of equalization 

measures. We consider five checkerboard patterns of side 32, each of which consists of 2*2, 4*4, 

8*8, 16*16, and 32*32 cells as shown in Figure 8. Every cell contains the same number of either 

white or black points. 

 

 
 

Figure 8 Checkerboard patterns of white and black points. Every cell contains the same number of 

either white or black points. 

 

 The result is shown in Table 1. While the segregation measures fail to distinguish the 

checkerboard patterns of different resolutions, the equalization distance LE clearly detects the 

difference between them. In checkerboard patterns, the locational equalization is completed by 

transferring a half of points in each cell to one of its adjacent cell. Consequently, the equalization 



distance is theoretically equal to the distance between the centroids of adjacent cells, though it is 

violated by the boundary effect. This permits LE to distinguish the checkerboard patterns of different 

resolutions. 

 

Table 1 Segregation and equalization measures of checkerboard patterns 

 

 

 

 We then consider the distributions of white and black points of the same number in a 

rectangular region of 16*32 cells. Figure 9 shows the five patterns of the density distribution of 

black points. Patterns P1, P2, and P3 have a single peak, while P4 and P5 have two and four peaks, 

respectively. 

The result is shown in Table 2. We again confirm the effectiveness of the equalization 

distance LE. It increases from P1 to P3 as the peak shifts from the center to the boundary of the 

region. It decreases from P1 to P4 and P5 as the distribution becomes smooth. The equalization ratio 

RE can also distinguish P4 and P5 from P1, P2, and P3. This is because the total volume of transfer 

necessary for flattening peaks decreases as the density distribution becomes smooth. 

 

SQ REResolution LESL SC

0.25 10.688 0.500.00 0.002*2

0.25 4.031 0.500.00 0.004*4

0.25 1.773 0.500.00 0.008*8

0.25 1.063 0.500.00 0.0016*16

0.25 1.000 0.500.00 0.0032*32



 

 

Figure 9 Distributions of white and black points of the same number. Grey shades indicate the 

density distribution of black points. 

 

Table 2 Segregation and equalization measures of density distributions shown in Figure 9. 

 

 

P1

P2

P3

P4

P5

SQ REPattern LESL SC

0.25 10.422 0.720.00 0.00P1

0.25 11.880 0.720.00 0.00P2

0.25 16.350 0.720.00 0.00P3

0.25 6.933 0.650.00 0.00P4

0.25 5.090 0.610.00 0.00P5



 

3.3 Real dataset 

 We finally use the method to analyze a real dataset to test its practical feasibility. We 

examine the urbanization process from 1974 to 1994 in Chiba Prefecture, Japan. Figure 10 shows the 

population distribution of Chiba in 1994. Since Chiba is adjacent to the east of Tokyo Metropolis, its 

population density is higher along railway lines in the western area that is densely inhabited by 

people working in Tokyo. 

 

 
 

Figure 10 Population distribution of Chiba Prefecture, Japan in 1994. White and black broken lines 

indicate subregions in which landuse mixture is analyzed in detail. 

 

 We obtained the landuse data of 10m resolution from Geospatial Information Authority of 

Japan, and aggregated them into the raster format data of 500m resolution. We calculated the 

segregation measures of landuse pattern in each cell and summed them up over the entire region. 

 Urbanization is usually accompanied with a progress of landuse mixture. The transition 

proceeds from the dominance of natural landuse to the mixture of urban landuse such as residential, 

commercial, and industrial areas. Consequently, a decrease in the segregation measures is often 
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observed with the progress of urbanization. 

 Figure 11 shows the distribution of the overall segregation S. Note that darker shades 

indicate smaller values of S where the landuse is highly mixed. Comparing Figure 11b with Figure 

10, we notice that the landuse mixture and the population density are highly correlated. This 

confirms us of the close relationship between the landuse mixture and urbanization. The urban area 

expanded especially in the western area of Chiba during this period because of the rapid 

concentration of population in the metropolitan area of Tokyo. 

 

 

Figure 11 The overall segregation S of landuse pattern in (a) 1974 and (b) 1994. 

 

We then examine the progress of landuse mixture in more detail in six subregions shown in 

Figure 10. Subregions R1 and R2 experienced a rapid expansion of urban areas in 1980’s primarily 

caused by the new town construction. Subregions R3 and R4 both contain urban areas of a long 

history, where landuse pattern had been stable during the period. Subregions R5 and R6 present a 

mixture of urban, suburban, and rural areas. The former contains an old historical town while the 

latter is a new town located at the boundary of urban and rural areas. 

Figure 12 shows the segregation measures from 1974 to 1994. The overall segregation S 

decreased in all the regions, which suggests the progress of urbanization all over Chiba. Comparing 

Figure 12b and Figure 12c, we notice that the decrease of S was caused by the rapid reduction of SC. 

Subregions R1, R2 and R6 show a drastic decrease of SC during this period. The locational 

segregation SL, on the other hand, slightly increased in many regions. The compositional unevenness 

of landuse decreased while the locational unevenness increased with the progress of urbanization. 
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This implies that urban areas expanded scatteredly rather than uniformly in Chiba. We confirm this 

in Figure 13 where the equalization distance LE increased in R1 and R2. 

 

 

 

Figure 12 The segregation measures of landuse pattern from 1974 to 1994. (a) The overall 

segregation S, (b) the locational segregation SL, (c) the compositional segregation SC.  

 

 

 

Figure 13 The equalization distance LE from 1974 to 1994. 

 

4. Concluding discussion 

 This paper has developed a new method of evaluating the spatial segregation. Using the 

locational and compositional equalizations, the method decomposes the spatial segregation into three 

exclusive and independent components. The locational segregation evaluates the spatial aspect of 

segregation caused by the locational unevenness. The compositional and qualitative segregations 

reflect the compositional unevenness and the qualitative homogeneity, both of which are aspatial 

factors of spatial segregation. The paper proposes three segregation and two equalization measures 

to evaluate the three components of spatial segregation quantitatively. To test the validity of the 

method, the paper applied it to an analysis of three spatial datasets of different sizes. The result 



indicated that the method is effective for evaluating the spatial segregation from three different 

perspectives. 

 Our method has several advantages over existing method. First, the method defines the 

three components of spatial segregation in a formal and quantitative way. It clearly reveals the 

exclusive and independent relationship between the components. Second, the paper proposes three 

segregation measures whose range is analytically obtained. This permits us to compare the spatial 

segregations between different patterns. Third, following the line of Reardon and O’Sullivan (2004), 

the paper defines the segregation measures based on the location of individual points. This enables 

us to apply the method to both point data and their aggregated data, the latter of which permits us to 

approximate the segregation measures calculated from the former. 

 We finally discuss some limitations and extensions of the paper for future research. 

 First, the paper considers three components of spatial segregation. Existing papers, on the 

other hand, have proposed further dimensions. Massey and Denton (1988), for instance, advocates 

five dimensions called evenness, exposure, clustering, centralization, and concentration. Though 

they may not be independent with each other, they are still effective and convenient for 

understanding the spatial structure of segregation from various perspectives. For a better usage of 

existing dimensions, their properties need to be clarified in more detail. To this end, we should 

analyze and describe the relationship between our components and existing dimensions. 

 Second, we should consider the spatial segregation in the spatiotemporal dimension. 

Numerous moving objects exist in the real world such as human beings, animal species, vehicles and 

planes. Their spatial distributions change continuously, and so does their spatial segregation. 

Fortunately, a rapid progress of data acquisition tools in GIS enables us to capture the trajectories of 

moving objects. An analytical method of spatiotemporal segregation needs to be developed. 

 Third, this paper evaluates the similarity of different types of points equally between any 

pair of different types. In the real world, however, this treatment is sometimes inappropriate. For 

instance, the difference between European and Asian peoples is larger than that between Asian and 

Pacific peoples. When we discuss their spatial segregation, segregation of European and Asian 

peoples may be more critical than that of Asian and Pacific peoples. To treat such cases, we should 

take into account explicitly the attributes of spatial objects and their differences in the evaluation of 

spatial segregation. 

 Fourth, the behavioral approach seems useful in discussing the spatial segregation of 

moving objects. The concept of exposure (Massey and Denton, 1988; Reardon and O’Sullivan, 

2004) implicitly considers the movement of spatial objects that is represented as the possibility of 

contact between objects. Assuming a more realistic behavior of objects, we can define segregation 

measures that are practically more useful to describe the spatial segregation. Extension in this 

direction sounds promising. 
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Appendix A1 

This appendix derives the minimum value of t(x) defined by Equation (6) using the 

Langrangian multiplier method. Let us define di(x) as 

( ) ( )
( )

i
i

k
k

D
d

D
=

∑
x

x
x

. 

  (29) 

We minimize 

( ) ( )2 1i i
i i

f d dλ  = + − 
 

∑ ∑x x  

  (30) 

with constrain 

( ) 1i
i

d =∑ x , 

  (31)  

where λ is the Langrangian multiplier. Partial differentiation of f by di(x) and that by λ are 
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  (32) 

and 
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f d
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  (33) 

respectively. Since 

( )
0

i

f
d
∂

=
∂ x
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  (34) 

we obtain 

( )
2id λ

=x . 

  (35) 



Substitution of Equation (35) into Equation (33) yields 

( )1 1 0
2i

i

Kd λ
− = − =∑ x . 

  (36) 

Solving this equation, we have 

2
K

λ = . 

  (37) 

Substituting the above equation into Equation (36), we obtain 

( ) 1
id

K
=x . 

  (38) 

This gives the minimum of t(x), that is, 

( ) ( ){ }2

1

i
i

t d

K

=

=

∑x x
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Appendix A2 

This appendix derives the minimum value of SL. To this end, we divide region R into M 

subregions denoted by {R1, R2, ..., RM}. Let Dij be the density of type i points in Rj, which 

corresponds to ζij(x) in Equation (3). The proportion of type i points in Rj is given by 

ij
ij

ij
i

D
p

D
=

∑
. 

  (40) 

The total density of points in Rj is denoted by ρi. The total density of all the points is 

( )j j
j

T A R ρ= ∑ , 

  (41) 

where A(Rj) is an operator that gives the area of Rj. 

 The locational segregation SL is defined as 
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  (42) 

We use the Langrangian multiplier method, where we minimize 

( ) ( )
2

2 i i
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The constraints are 
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Partial differentiation of fi by pij and that by λ are 
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respectively. Solving 
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  (47) 

we obtain 

2ijp λ
= . 

  (48) 

This equation indicates that pij does not depend on i. We thus obtain 

i
ij

Np
N

= . 

  (49) 

and the minimum of SL: 
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Appendix A3 

 This appendix proves that the qualitative segregation is independent of the locational and 

compositional segregations. To this end, we add m types of points to the point set considered in 

Section 2. We keep the total number of points but can modify the number of each type of points. Let 

Ni’ be the number of type i points after the addition of new points. 

We first consider the independency of the qualitative segregation from the locational 

segregation. The locational segregation remains unchanged when the following equation holds for 

any x: 
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This condition is equivalent to 

2 2'i i
i i
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  (52) 

under the constraint: 

' 1i i
i i

p p= =∑ ∑ . 

  (53) 

We assume m=1 and pi=pi’ for i=1, ..., K-2. Equations (52) and (53) become 

2 2 2 2 2
1 1 1' ' 'K K K K Kp p p p p− − ++ = + + , 

  (54) 

and 

1 1 1' ' 'K K K K Kp p p p p− + −+ − − = . 

  (55) 

We can rewrite pK-1 as 

1K Kp p a− = +  

  (56) 



without losing generality. Substituting Equations (55) and (56) into Equation (54), we solve it in 

terms of pK: 
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  (57) 

The condition of the existence of a positive pK is 

( ) ( )2
1 14 ' ' ' 'K K K Ka p p p p+ ++ > − . 

  (58) 

It is always possible to satisfy the above inequality by choosing close values of p’K and p’K+1. 

Consequently, we can change the locational segregation with keeping the qualitative segregation. 

We then consider the independency of the qualitative segregation from the compositional 

segregation. The compositional segregation is unchanged when 
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Solving Equation (59) in terms of m, we obtain 
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Since m is positive, the following inequality needs to hold: 
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  (61) 

It is always possible to satisfy the above inequality by slightly reducing every Ni and add a new type 

of points. Consequently, we can change the qualitative segregation with keeping the compositional 

segregation. 

 

Appendix A4 

 This appendix derives the minimum value of the locational segregation SLe. We use the 

same setting as that of Appendix A2. The locational segregation SLe is written as 
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We use the Langrangian multiplier method to calculate the minimum value of SLe. We minimize 
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with constraints 
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Partial differentiation of fi by pij and that by λ are 
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we obtain 
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This implies that pij is independent of i. From this we derive 
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Substitution of Equation (68) into (62) yields 
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