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Abstract 

This paper develops a new method of comparing numerical variables defined in 
a region. The method covers numerical variables defined over a two-dimensional space 
such as temperature and humidity distributions and those defined on a discrete space 
such as the height of trees and the age of buildings. To evaluate the difference between 
two variables, the method considers three types of transformations. The transformations 
convert one variable so that it fits the other as well as possible. The result gives a basis 
for the separate evaluation of spatial and non-spatial differences between the variables. 
The transformations also permit us to describe the spatial difference in more detail. To 
test the validity of the method, the paper applies it to an analysis of three spatial datasets 
of different sizes. The result showed that the proposed method is effective for evaluating 
and visualizing the difference between numerical variables.  
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1. Introduction 
 This paper proposes a method of comparing numerical variables defined in a 
region. Temperature, humidity, and the density of carbon dioxide are represented as 
numerical variables defined continuously over a two-dimensional space. Population 
counts and population density are also variables defined on a two-dimensional space, 
though not as smooth as temperature distribution because they are often calculated by 
aggregating point data in spatial units. Traffic flow is a numerical variable defined on a 
network space. The height of trees, the age of buildings, and the annual sales of 
supermarkets are numerical variables defined on a discrete space. 
 There are several ways of comparing these numerical variables. One method is 
to employ general statistical measures. Correlation coefficients, both rank and 
product-moment, tell us whether two variables are correlated with each other. The 
Kullback-Leibler divergence (Kullback & Leibler, 1951; Kullback, 1959) is also useful 
to compare positive variables. If variables are defined on a discrete space, we can use 
the χ2 test to evaluate the difference between the variables from a statistical perspective. 

Unfortunately, however, the above statistical measures do not recognize 
differences in the spatial dimension (Hubert et al., 1985; Haining, 1991; Lee, 2001). 
There are mainly two groups of methods in the literature that incorporate the spatial 
aspect explicitly. 

One group extends the Pearson’s correlation coefficient to consider the 
correlation between variables and their spatial autocorrelation simultaneously. Some of 
the methods employ Moran’s I to evaluate the spatial autocorrelation (Wartenberg, 
1985; Lee, 2001; Stephane et al., 2008), while the others develop new measures of 
spatial autocorrelation (Tjøstheim, 1978; Hubert et al., 1985; Haining, 1991). 

Another class of methods uses the earth mover’s distance (Peleg et al., 1989; 
Rubner et al., 2000; Zhao et al., 2010). The methods consider the turning of a pile of 
dirt into another form with the least cost. It is formulated as a transportation problem, 
and the solution is used as a measure of the difference between two variables. Although 
the earth mover’s distance is primarily used in image processing, it is also useful in 
spatial analysis. 

The above existing methods are motivated to compare numerical variables 
defined on a discrete space. Consequently, they are not directly applicable to the 
analysis of numerical variables defined over a continuous space. In addition, the above 
methods implicitly assume variables with the same total volume. When the volume is 
different, they divide each variable by its total volume. Though such a standardization 
permits us to focus on the spatial difference between variables, it conceals the 



 
 

non-spatial difference that existed in the original variables. The standardization prevents 
us from separating the differences in the spatial dimension and non-spatial dimensions. 

There are several papers that discuss the separation of spatial and non-spatial 
factors, though their focus is not on the comparison of numerical variables. Pontius 
(2000, 2002) and Pontius & Millones (2011) propose statistical measures for comparing 
categorical variables. Assuming a stochastic process, these measures evaluate the degree 
to which the observed number and location of each category differ from the expected 
ones. Wong (2011) proposes a new framework that considers the spatial and attribute 
dimensions separately when measuring the spatial autocorrelation. The separation of 
spatial and non-spatial factors permits us to deepen our understanding of the structure of 
spatial phenomena. Following the line of these papers, this paper aims to evaluate the 
difference between numerical variables separately in spatial and non-spatial dimensions. 
 Section 2 proposes several measures for evaluating the difference between 
numerical variables. It also discusses an extension of the measures to treat the difference 
between categorical variables. Section 3 applies the proposed approaches to an analysis 
of three datasets of different sizes in order to demonstrate the effectiveness the method 
in exploratory spatial analysis. Section 4 summarizes the conclusions with discussion. 
 
2. Method 
 This paper discusses the comparison of numerical variables defined over a 
two-dimensional continuous space and those defined on a discrete space. We first 
discuss the latter and then proceed to the former. 

Suppose n regions R={R1, R2, ..., Rn} (N={1, 2, ..., n}) in each of which two 
sets of numerical variables U={u1, u2, ..., un} and V={v1, v2, ..., vn} are defined. The 
location of Rk is indicated by that of its representative point denoted by zk. 

 
2.1 Separation of the differences between variables 

A simple method of comparing two variables is to sum up the difference 
between the variables in every region. We call this overall difference given by 

( ),O i i
i

D U V u v
∈

= −∑
N .

 

  (1) 
 Though this measure is easy to calculate and understand, it does not recognize 
the spatial difference between variables as general statistical measures. In Figure 1, for 
instance, variables U, V11 and V12 have the same configuration of values, which results 
in DO(U, V11)=DO(U, V12). Their spatial distribution, however, is different in that both U 



 
 

and V12 have a peak in the top row whereas the peak of V11 is at the lower-right corner. 
The measure DO do not recognize this difference since it neglects the spatial dimension. 
 

 
 

Figure 1. The distributions of U and V. 
 

To resolve the problem, we consider three types of transformations: 1) 
rearrangement, 2) moving, and 3) addition/deletion. We apply a transformation to U so 
that it fits V as well as possible. This permits us to evaluate the difference between U 
and V in the spatial dimension. 
 
1) Rearrangement transformation 

Rearrangement transformation changes the location of U values so that its 
spatial distribution is similar to that of V as well as possible. To this end, it relocates U 
values in the way that the rank of U coincides that of V in every cell. Let r(ui) be the 
function indicating the rank of ui in U. Rearrangement is represented by a binary 
function defined by: 

( ) ( ) ( )1 if

0 otherwise
i j

ij

r u r v
Ur

 == 
 .
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  (2) 
Rearrangement transformation reduces the difference between U and V to 

( ) ( ),R ij i j
i j

D U V U u vρ
∈ ∈

= −∑∑
N N .

 

  (3) 
We call the difference between DO(U, V) and DR(U, V) the location difference: 

( ) ( ) ( ), , ,L O R

i i ij i j
i j

d U V D U V D U V

u v u vρ
∈ ∈

= −

 
= − − − 

 
∑ ∑

N N
.
 

  (4) 
Location difference estimates the difference in the location of values of two 

variables. If all the elements of U are identical to those of V, the rearrangement 
transformation can completely resolve the difference between U and V. In Figure 1, for 
instance, we can transform U into V11 or V12 by only changing the location of values. In 
such a case, we have 

( ) ( ), ,L Od U V D U V=
.
 

  (5) 
The rearrangement transformation, on the other hand, completely fails in two 

circumstances. One is the case when 

( ) ( )i ir u r v i= ∀ ∈N  

  (6) 
holds as shown in V13 and V14 in Figure 1. The other is when 

i iu v i≤ ∀ ∈N , 

  (7) 
or 

i iu v i≥ ∀ ∈N  

  (8) 
holds as shown in V23 and V24 in Figure 1. In both cases we have 

( ) ( ), ,O RD U V D U V=
.
 

  (9) 



 
 

and 

( ), 0Ld U V =
.
 

  (10) 
 
2) Moving transformation 
 The rearrangement transformation changes the location of variables with 
keeping their values. This prevents us from transforming U into V13, V14, V21, and V22. 
We thus introduce the moving transformation, a special case of earth moving mentioned 
earlier. The moving transformation permits us to partially transfer U values between 
regions so that the difference between U and V is minimized. 

Earth moving, in its original form, assumes two variables with the same total 
volume such as the probability density distribution. It converts the distribution of one 
variable into that of another variable by transferring values between regions at the least 
cost. The transfer can occur between every pair of regions, where the cost is given by 
the total weighted volume of transfer. Earth moving makes two distributions completely 
identical. 

The moving transformation, on the other hand, permits variables with different 
total volumes. In addition, it only considers the transfer of a variable between adjacent 
regions. The moving transformation converts the distribution of one variable into that of 
another variable so that the summation of the difference at each region is minimized at 
the least cost. As a result, the moving transformation leaves the difference in the total 
volume of variables. 

To derive the moving transformation, we have to calculate the volume of 
transfer between every adjacent regions. At present, however, we only need the result of 
the transformation, which can be obtained without calculating the actual volume of 
transfer. 

The difference that remains after the moving transformation is given by 

( ),M i i
i i

D U V u v
∈ ∈

= −∑ ∑
N N

. 

  (11) 
The moving transformation can completely convert U into V13, V14, V21 and V22 in Figure 
1, each of which has the same total volume as U. 

We call the difference between DR(U, V) and DM(U, V) the configuration 
difference: 



 
 

( ) ( ) ( )

( )

, , ,C R M

ij i j i i
i j i i

d U V D U V D U V

U u v u vρ
∈ ∈ ∈ ∈

= −

= − − −∑∑ ∑ ∑
N N N N

.
 

  (12) 
It is equal to DM(U, V) when the total volume of U is equal to that of V. 

The moving transformation does not work when inequality (7) or (8) holds as 
shown in V23 and V24 in Figure 1. In addition, after the use of the rearrangement 
transformation, the moving transformation cannot further reduce the difference between 
variables if either 

( )i i iju v U iρ≤ ∀ ∈N , 

  (13) 
or 

( )i i iju v U iρ≥ ∀ ∈N  

  (14) 
holds. Examples include V31 and V32 in Figure 1. In the above cases, we have 

( ) ( ), ,R MD U V D U V=
.
 

  (15) 
and 

( ), 0Cd U V =
.
 

  (16) 
 
3) The addition/deletion transformation 
 To remove the difference in the total volume between variables, we finally 
employ the addition/deletion transformation. It changes the value of U into that of V at 
individual locations. As a result, U becomes completely identical to V. 
 The difference reduced by the addition/deletion transformation is called the 
volume difference: 

( ) ( ), ,V M

i i
i i

d U V D U V

u v
∈ ∈

=

= −∑ ∑
N N

.
 



 
 

  (17) 
 The relationship among the difference measures is shown in Figure 2. Relative 
measures are also useful to compare the location, configuration, and volume differences 
between different pairs of variables: 

( ) ( )
( )

,
,

,
L

L
O

d U V
U V

D U V
d =

,
 

  (18) 

( ) ( )
( )

,
,

,
C

C
O

d U V
U V

D U V
d =

,
 

  (19) 
and 

( ) ( )
( )

,
,

,
V

V
O

d U V
U V

D U V
d =

.
 

  (20) 
 

 
 

Figure 2. The relationship between the differences. 
 

The three transformations described above permit us to evaluate the difference 

DO(U, V)

DR(U, V)

DM(U, V)

dL(U, V)

dC(U, V)

dV(U, V)



 
 

between variables in the spatial and non-spatial dimensions separately. The location and 
configuration differences indicate the spatial difference, while the volume difference 
represents the non-spatial one. The relative measures allow us to evaluate the proportion 
of each component in the overall difference. 

The proposed measures can be calculated with or without the standardization of 
variables, depending on the objective of the analysis. If the separation of the spatial and 
non-spatial difference is critical, variables should be compared without standardization. 
If an emphasis is on the spatial difference, variables should be compared after 
standardization. In the latter case, we have 

( ) ( ), , 0M VD U V d U V= =
.
 

  (21) 
After standardization, inequalities (7) or (8) can hold only when U and V are 

identical. This implies that while the moving transformation is almost always effective, 
the rearrangement transformation may not work when V=V13 or V=V14 in Figure 1. 
 
2.2 Evaluation of the spatial difference between variables 
 The difference measures proposed in the previous subsection permit us to 
consider the difference between variables in the spatial and non-spatial dimensions 
separately. Evaluation is performed basically based on the difference of variables in 
individual regions. Consequently, though the transformations on which the difference 
measures are defined consider the spatial dimension explicitly, their summary measures 
do not reflect the spatial distribution of variables. The difference measures, for instance, 
fail to distinguish the difference between U and V11 and that between U and V12 in 
Figure 1. 

To complement the difference measures, this subsection introduces two 
distance measures using the two spatial transformations, that is, the rearrangement and 
moving transformations. The distance measures are defined as the weighted average 
distance of a particular spatial transformation. 

The rearrangement transformation defines a distance measure by 
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( )
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,
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i j
R

i j
i j

ij i j
i j
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U
U V

n
n

n U

ρ
λ

ρ

∈ ∈
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−
=

−

−
=

−

∑∑
∑∑

∑∑
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N N

N N

N N

N N

z z

z z

z z

z z
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  (22) 
In the moving transformation, we cannot calculate the weighted average 

distance as we have not yet derived the actual volume of transfer between regions. We 
thus formulate the moving transformation as an optimization problem where the moving 
cost is minimized. 

Let us assume that U value is transferred from a region only to its adjacent 
regions. Let NAi be the set of regions adjacent to Ri. The volume of U value transferred 
from Ri to Rj is denoted by xij (xij≥0). We formulate the moving transformation as the 
following optimization problem where the total volume of transfer is minimized. 
 
Problem MT0 (Moving Transformation): 

, ,
minimize

subject to

0 ,

0 ,

ij
i

ijx i j i j

i ij ji i i i
i j j i i

ij i

ij i

x

u x x v u v

x i j
x i j

∈
∈ ∈

∈ ∈ ∈ ∈ ∈

− + − = −

≥ ∈ ∈

= ∈ ∉

∑ ∑

∑ ∑ ∑ ∑ ∑

N N NA

N N N N N

N NA
N NA

 

 
Problem MT0 is not solvable by using a general optimization technique since it 

contains the absolute functions in the constraints. To remove the absolute functions in 
the constraints, we define variable wi as 

( )i i i ij ji
j

w u v x x
∈

= − − −∑
N . 

  (23) 
Substituting Equation (23) into the first constraint of Problem MT0, we obtain 
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i ij ji
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i ij ji
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i

w u v

w x x

w x x

w

∈ ∈

∈ ∈
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∈

= −

 
= + − 

 

= + −

=

∑ ∑

∑ ∑
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∑

N N

N N

N N N
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  (24) 
Problem MT0 then becomes 
 
Problem MT: 

( )

( )

, ,
minimize

subject to
0 0,

0 0,

0 ,

0 ,

ij
i

ijy i j i j

i i i
i

i i i
i

ij i

ij i

x

u v w i

u v w i

x i j
x i j

∈
∈ ∈

∈

∈

− ≤ ⇒ ≤ ∀ ∈

− ≥ ⇒ ≥ ∀ ∈

≥ ∈ ∈
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∑ ∑

∑

∑

N N NA

N

N

N
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N NA
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Problem MT is equivalent to Problem MT0 in that both yield the same solution. Problem 
MT is a linear optimization problem whose computational complexity is O(n). It is thus 
solvable in a linear time. 
 The solution of Problem MT permits us to calculate the weighted average 
distance of moving transformation. Let µA(R) be the average distance between all the 
pairs of adjacent regions of R. It is given by 

( )
2

i

i j
i j

A
An

µ ∈ ∈

−
=
∑ ∑

N NA
z z

R
,
 

  (25) 
where nA is the number of pairs of adjacent regions. The distance measure is then 
defined as 
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i
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i

i j ij
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M
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A i j ij
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i j i
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U V

u v

n x

u v
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∈

∈ ∈
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−
=

−

−
=

− −

∑ ∑
∑
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N NA

N
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N NA N

z z

R

z z

z z
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  (26) 
In the moving transformation, it is also useful to calculate the total volume of transfer. 
Its standardized form is given by 

( ), i

ij
i j

M
i i

i i

x
U V

u v
γ ∈ ∈

∈ ∈

=
+

∑ ∑
∑ ∑

N NA

N N
.
 

  (27) 
 
2.3 Visualization of the difference between variables 
 The spatial difference between variables can be visualized effectively by a map 
based representation. The rearrangement and moving transformations are visualized by 
arrows that indicate the degree and direction of transformations as shown in Figure 3. 
 

 
 

Figure 3. Rearrangement and moving transformations from U to V. The width of arrows 
indicates the volume of transfer in the moving transformation. 
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 Visualization of rearrangement transformation, however, does not work when 
variables are defined in a large number of regions. In such a case, the map often 
contains numerous crossing arrows so that it becomes too complicated to interpret. 
Visualization of moving transformation, on the other hand, is relatively free from this 
problem because the arrows are drawn only between adjacent regions. In addition, the 
moving transformation has a wider variation of map representations such as streamlines, 
divergence, and critical points because the moving transformation can be regarded as a 
vector field. This paper recommends the moving transformation as a basis for 
visualizing the spatial difference because of its wide applicability and flexibility. 
 Visualization by the vector field and streamlines may remind of a method for 
displaying the migration pattern proposed by Tobler (1987, 1995). These papers, 
however, treat the actual movement of people while this paper considers a hypothetical 
movement of a variable as a means of evaluating the difference between variables. We 
should note that the vector field and streamlines that visualize the moving 
transformation do not indicate the actual movement of a variable in the real world. 
 
2.4 Comparison of continuous variables 
 This subsection extends the method proposed above to the comparison of 
variables defined over a continuous two-dimensional space. Instead of discrete variables 
U and V, we consider two continuous variables f(z) and g(z) defined as functions of 
location z in region R. 

The difference measures proposed in Subsection 2.1 are defined based on the 
summation of values calculated in individual regions. Consequently, their extension to 
continuous dimension is accomplished by replacing the summations with integrals. The 
difference measures DO(U, V) and DM(U, V) become 

( ) ( )( ) ( ) ( ), dO R
D f g f g

∈
= −∫zz z z z z  

  (28) 
and 

( ) ( )( ) ( ) ( ), d dM R R
D f g f g

∈ ∈
= −∫ ∫z z

z z z z z z
,
 

  (29) 
respectively. 

Extension of the measure DR(U, V) is as follows. Let r(s, f(z)) be a binary 
function defined by 



 
 

( )( ) ( )1 if
,

0 otherwise
f s

s fr
 =

= 


z
z

.
 

  (30) 
Using the function, we evaluate the area where f(z) and g(z) and are smaller than t, that 
is, 

( )( ) ( )( )
( )0,

, d d
R s f

a f s f sρ
∈ ∈  

= ∫ ∫y z
z y y  

  (31) 
and 

( )( ) ( )( )
( )0,

, d d
R s g

a g s g sρ
∈ ∈  

= ∫ ∫y z
z y y

,
 

  (32) 
respectively. We then define another binary function that indicates the rearrangement of 
U at z1 to z2: 

( ) ( )( ) ( )( )1 2
1 2

1 if
,

0 otherwise

a f a g
h

 == 


z z
z z

.
 

  (33) 
Equation (33) corresponds to equation (2) in Subsection 2.1. Using this function, we 
define DR(f(z), g(z)) as 

( ) ( )( ) ( ) ( ) ( )
1 2

1 2 2 1, , d dR R R
D f g f gη

∈ ∈
= −∫ ∫z z

z z z z z z z z
.
 

  (34) 
We can similarly define the other measures of difference. The distance measure 

based on the rearranging transformation is given by 
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−
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z z z z z z
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z z z z z z
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  (35) 
where A is the area of R. The distance measure based on the moving transformation 
cannot be represented in an analytical form since it is calculated from the solution of an 



 
 

optimization problem. It is thus represented as a discrete approximation: 

( ) ( )( )
( ) ( )

4
,

d
i

i

A i j ij
i j

M
i j R

i j

n x
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λ ∈ ∈

∈
∈ ∈

−
=

− −

∑ ∑
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N NA

z
N NA

z z
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z z z z z .
 

  (36) 
 
2.5 Comparison of categorical variables 
 The above method is also applicable to the comparison of categorical variables. 
Suppose two categorical variables U={u1, u2, ..., un} and V={v1, v2, ..., vn} defined in n 
regions R={R1, R2, ..., Rn}. Each variable takes one of W categories represented by W 
integers W={1, 2, ..., W}. 
 Let j(i, j) be a measure of distance between different categories i and j. The 
simplest definition of j(i, j) is 

( ) 1 if
,

0 otherwise
i j

i j

u v
u vj

≠
= 
 . 

  (37) 
A distance matrix Γ is defined by 

( ) ( )
( ) ( )

( ) ( )

0 1,2 1,
2,1 0 2,

,1 , 2 0

W
W

W W

ϕϕ
ϕϕ

ϕϕ

 
 
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 
 
  

Γ


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

. 

  (38) 
Using the matrix, we define the overall difference between U and V as 

( ) ( ), ,O i i
i

D U V u vϕ
∈

=∑
N .

 

  (39) 
The rearrangement transformation is defined as the transformation that 

relocates U values so that they U and V coincide as well as possible. Let xij be a binary 
function indicating the rearrangement of U: 

1 if is relocated to
0 otherwise

i j
ij

u R
x 

= 
 . 

  (40) 
The rearrangement transformation is then obtained as a solution of an assignment 
problem: 



 
 

 
Problem RT (Rearrangement Transformation): 

( )
, ,

minimize ,

subject to 0, ,

1

ij
ij i jx i j i j

ij

ij ij
i j

x u v

x i j

x x

j
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= =

∑∑

∑ ∑

N N N

N N

N
 

Problem RT is a linear assignment problem, where every value of U is assigned to one 
of V without overlap (Burkard & Dragoti-Cela, 1999; Burkard et al., 2009). Since its 
computational complexity is O(n), it is solvable in a linear time. The rearrangement 
transformation reduces the difference between U and V to 

( ) ( ), ,R ij i i
i

D U V x u vj
∈

=∑
N .

 

  (41) 
 The moving transformation is not defined for categorical variables because a 
partial transfer of a variable is not meaningful. The addition/deletion transformation 
defined for numerical variables corresponds to the replacement transformation that 
changes ui into vi in every region. The replacement transformation completely removes 
the difference between U and V. 
 Using the above difference measures, we can evaluate the spatial and 
non-spatial difference separately in categorical variables. The location and attribute 
differences are defined as 

( ) ( ) ( ), , ,L O Rd U V D U V D U V= −  

  (42) 
and 

( ) ( ), ,A Rd U V D U V= , 

  (43) 
respectively. The former indicates the spatial difference while the latter is the 
non-spatial difference. 
 The distance measure is calculated based on the rearrangement transformation. 
It is defined as 

( ),
ij i j

i j
R

i j
i j

n x
U Vλ ∈ ∈

∈ ∈

−
=

−

∑∑
∑∑

N N

N N

z z

z z
. 



 
 

  (44) 
 
3. Applications 

To test the validity of the methods proposed in the previous section, this section 
applies it to the analysis of three datasets of different sizes. The computation was done 
on a machine with an Intel Core i7-2620M 2.70GHz processor and 8 GB memory 
running under Windows 7 Professional. We used a mathematical programming software 
NUOPT ver.14 (Mathematical Systems Inc.) for solving Problem MT. 

 
3.1 A small dataset 
 We first apply the method to the comparison of variables shown in Figure 1. A 
primary objective is to understand the properties and behavior of the difference and 
distance measures. 

We start with examining difference measures. We can completely transform U 
into V11 or V12 by only the rearrangement transformation. Consequently, dL(U, V)=1 and 
dC(U, V)=dV(U, V)=0 as seen in Table 1. The rearrangement transformation, on the other 
hand, does not work at all for transforming U into V13, V14, V23, or V24 as indicated by 
dL(U, V)=0 in Table 1. The moving transformation is more broadly effective than the 
rearrangement transformation. The contrast is very clear in the cases of V13 and V14, 
where the rearrangement transformation completely fails while the moving 
transformation totally removes the difference between the variables. We can confirm 
this by dL(U, V)=0 and dC(U, V)=1 in these cases. The moving transformation is not at 
all effective only in the transformation of U into V23 or V24, where dC(U, V)=0. Though 
dC(U, V)=0 holds also for V31 and V32, this does not imply that the moving 
transformation is ineffective in these cases. It is because the moving transformation 
cannot further reduce the difference between variables after the rearrangement 
transformation is applied. In other words, the rearrangement and moving 
transformations are equally effective for transforming U into V31 and V32. The 
addition/deletion transformation completely removes the difference between variables 
in any case. It works even if both the rearrangement and moving transformation are 
ineffective such as the cases of V23 and V24. 
 

Table 1 Difference and distance measures calculated for variables shown in Figure 1.  
 



 
 

 
 
 We then turn to the distance measures. Though both V11 and V12 can be 
obtained from U by only the rearrangement transformation, they are different in the 
spatial arrangement of values. The peak of U is closer to that of V12 than that of V11. 
Transformation from U into V11 requires the relocation of longer distance, and 
consequently, λR(U, V11)>λR(U, V12) as seen in Table 1. It also applies to the moving 
transformation that is reflected by λM(U, V11) >λM(U, V12). 
 When the moving transformation is completely ineffective, Problem MT does 
not yield a valid solution. The distance measure λM(U, V) inevitably becomes zero as 
seen in λM(U, V23) and λM(U, V24). On the other hand, λR(U, V) does not necessarily 
become zero when the rearrangement transformation fails. The rearrangement 
transformation relocates U values so that their ranks coincide those of V in every cell, 
even if it does not reduce the differences between variables at all. This results in dL(U, 
V)=0 and λR(U, V)>0 as seen in the cases of V23 and V24. 
 
3.2 A larger dataset 

We then apply the method to the comparison of a larger dataset shown in 
Figure 4. Our objective is to examine the validity of the visualization method of moving 
transformation. To focus on the spatial difference, we set the variables to have the same 
total volume. Variables U, V1, V3, V5, and V6 are unimodal, that is, they all has only a 
single peak. Variable V4 has two peaks, which is often called bimodal. Variable V2 has a 
doughnut-shaped distribution. 

V21V11 V23V22 V31 V32V24V12 V13 V14

62 9086 68 8540698 10 8DO(U, V)

12 9012 30 374000 10 8DR(U, V)

0 900 30 374000 0 0DM(U, V)

0 00 0 0000 0 0DAD(U, V)

0.806 0.0000.860 0.559 0.5650.0001.0001.000 0.000 0.000dL(U, V)

0.194 0.0000.140 0.000 0.0000.0000.0000.000 1.000 1.000dC(U, V)

0.000 1.0000.000 0.441 0.4351.0000.0000.000 0.000 0.000dV(U, V)

1.125 0.6171.296 0.909 1.1750.7740.1531.477 0.000 0.000λR(U, V)

1.903 0.0002.698 1.529 1.6000.0001.0002.653 1.200 1.000λM(U, V)

0.590 0.0001.160 0.442 0.8340.0000.0301.300 0.060 0.040γM(U, V)

V33 V34

51 36

9 36

9 26

0 0

0.824 0.000

0.000 0.278

0.176 0.722

0.927 0.356

1.373 0.389

0.335 0.062



 
 

 
 

Figure 4. A larger dataset. The values of variables are indicated by gray shades. 
 

Figure 5 visualizes the moving transformation by the vector plot. The direction 
and length of arrows indicate the direction and volume of moving transformation, 
respectively. 

Both U and V1 are unimodal whose peak is located at the center of the region. 
Since the slope is gentler in the latter, transformation of U into V1 can be regarded as a 
slight collapse of a unimodal distribution. This is clearly visualized in Figure 5, where 
all the arrows are pointing outward from the center. 

The moving transformation of U into V2 looks quite similar in Figure 5, though 
the distribution of V2 is quite different from that of V1. This implies that the 
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transformation into V2 lies on an extension of that into V1. It is reflected in longer 
arrows and the larger value of the distance measure λM. 

Transformation into V3 is the centralization of U from the surrounding to the 
center. Transformation into V4 is a morphological change from a unimodal to a bimodal 
distribution. Arrows clearly visualize these transformations. The distance measure is 
larger in the latter case because the change is more substantial. Transformations into V5 
and V6 are both the shift of a peak. Since the peak moves further in V6, arrows are longer 
and the distance measure is larger. 
 The moving transformation helps us to grasp intuitively the spatial difference 
between variables. Besides the vector plot, streamlines are also effective as seen later in 
the following subsection. 
 



 
 

 

Figure 5. Visualization of moving transformation that changes U into V in Figure 4. The 
direction and length of arrows indicate the direction and volume of moving 

transformation, respectively. 
 
3.3 A real dataset 
 We finally apply the proposed method to the analysis of a real dataset to test its 
practical feasibility. We analyzed the change of population distribution from 1970 to 
2005 in Chiba Prefecture, Japan. Figure 6 shows the population distribution in 2005 and 
the railway network in Chiba. The data is obtained as a 1km resolution raster dataset 
that consists of 80*150 cells. Since Chiba is adjacent in the east of Tokyo Metropolis, 
its population density is higher in the northwestern area that is densely inhabited by 
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people working in Tokyo.  

 
Figure 6. Population distribution in Chiba prefecture, Japan in 2005. Chiba is adjacent 

to Tokyo, Saitama, and Ibaraki prefectures. White lines indicate railway lines. 
 

Figure 7 shows the change of population distribution from 1970 to 2005. To 
compare the spatial structure of the distributions between different years, we 
standardized them so that their summation is all equal. Population density is higher in 
the northwestern area all through the period. Population constantly decreases in the 
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south area, while its change is not so clear in other areas. 

 

 
Figure 7. The change of population distribution in Chiba from 1970 to 2005. The figures 
are comparable with each other since they show the relative distribution of population in 

each year. 
 

We analyzed the change of population distribution by comparing the 
distributions in every five-year period. The result is shown in Figure 8 and Table 2. The 
former visualizes the moving transformation while the latter summarizes the difference 
and distance measures. Since the moving transformation is very similar in the 70-75, 
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75-80, 80-85, and 85-90 periods, we present only that of ‘70-75’ (Figure 8). 
 

 
 

Figure 8. Vector plots and streamlines representing the change in population distribution 
in five-year periods. 

(a) 70-75

(b) 90-95

(c) 95-00

(d) 00-05



 
 

 
Table 2 Difference and distance measures of five-year periods.  

 

 
 

The Tokyo suburban area rapidly expanded from the 1960s to 1980s. During 
this period, population increased primarily in two areas in Chiba. One is the 
northwestern area that is adjacent to Tokyo Metropolis. Arrows are facing west in this 
area as seen in Figure 8a. The other is the northern end where a railway line is running 
directly connected to Tokyo. In this area arrows are facing to the railway line running 
along the northern boundary of Chiba. 

The expansion of Tokyo began to slow down from 1991 when an economic 
bubble collapsed. In parallel with this, new towns have been built in the north-central 
area of Chiba, especially from 1990 to 1995. Population increased in this area more 
rapidly than in the other areas, and consequently, arrows in this area were turned around 
to the south as seen in Figure 8b. 

The new towns, however, could not attract people as expected. Moreover, the 
collapse of economic bubble caused a drastic drop in land prices in Tokyo. As a result, 
people returned to the central area of Tokyo and its close suburbs. Figure 8c visualizes 
the transitional phase where the vector field looks complicated in the center of Chiba. 
Figure 8d, on the other hand, clearly indicates that people returned to Tokyo from 2000 
to 2005. 

90-9570-75 00-0595-0075-80 80-85 85-90

0.097 0.0890.0700.2970.298 0.186 0.129DO(U, V)

0.031 0.0180.0140.0980.082 0.055 0.044DR(U, V)

0.000 0.0000.0000.0000.000 0.000 0.000DM(U, V)

0.000 0.0000.0000.0000.000 0.000 0.000DAD(U, V)

0.679 0.7990.7970.6720.723 0.705 0.659dL(U, V)

0.321 0.2010.2030.3280.277 0.295 0.341dC(U, V)

0.000 0.0000.0000.0000.000 0.000 0.000dV(U, V)

0.268 0.3000.2470.3290.441 0.293 0.301λR(U, V)

0.247 0.2430.2300.3940.438 0.352 0.247λM(U, V)

0.599 0.5160.4020.7221.258 0.648 0.581γM(U, V)



 
 

Let us then look at Table 2 in comparison with Figure 8. Population distribution 
drastically changed in the 70-75 period as indicated by long arrows in Figure 8a. This is 
reflected as large values of the difference and distance measures during this period in 
Table 2. Conversely, the measures show the smallest values in the 95-00 period when 
the change in population distribution is not significant as seen in Figure 8c. 
 
5. Conclusion 
 This paper proposed a new method of comparing numerical variables defined 
in a region. The method introduced three types of transformations called the 
rearrangement, moving, and addition/deletion transformations. The transformations 
convert one variable so that it fits the other as well as possible. The result provides a 
basis for evaluating the differences between variables in terms of spatial and non-spatial 
dimensions separately. The distance measures permit us to investigate the spatial 
difference between variables in more detail. To test the validity of the method, the paper 
applied it to an analysis of three spatial datasets of different sizes. The result indicated 
that the method is effective for evaluating and visualizing the difference between 
variables. 
 We finally discuss some limitations and extensions of the paper for future 
research. 

First, we should extend the method to compare variables defined on different 
spaces. For comparing continuous variables, numerous methods have been proposed in 
image analysis and mathematical morphology (Serra, 1984, 1988; Goutsias & Heijmans, 
2000; Shih, 2009l; Soille, 2010). Concerning discrete variables, statistical tests are 
available such as the t-test and the Wilcoxon-Mann-Whitney test. However, these 
methods do not explicitly consider the spatial and non-spatial differences separately. 
Extension to this direction should be further examined. 

Second, this paper considers three aspects of the difference between variables: 
location, configuration, and volume. The difference, however, can also be evaluated 
from other perspectives. Spatial analysis, for instance, often focuses on the topological 
structure of the distribution of numerical variables (Warntz, 1966; Warntz & Waters, 
1975; Okabe & Masuda, 1984). Difference in arrangement of local maxima and minima 
has also drawn the attention of geographers. The difference between variables should be 
discussed from a wider variety of perspectives. 

Third, comparison of more than two variables is also an important topic. 
Though we can analyze multiple variables simultaneously by applying our method to 
every pair of variables, it is time consuming and the integration of the obtained results is 



 
 

not straightforward. Wartenberg (1985) develops a measure of multivariate spatial 
correlation by borrowing the scheme of principal factor components analysis. We 
should extend our method along with this line. 
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