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1 Introduction

It has become increasingly widely recognized that economic activities tend to agglomerate

within a limited space (see, among others, Combes et al. (2008) and the literature cited

there). One of the most successful attempts to explain why agglomeration occurs is a series

of works, bracketed together as new economic geography (NEG), originating with Krugman

(1991). A key element in the explanation is circular causation brought about by demand–

supply linkages. In typical models such as the standard core–periphery model (Krugman

(1991)), the analytically solvable model, also known as the “footloose entrepreneurs model”

(Forslid and Ottaviano (2003)), and the linear model (Ottaviano et al. (2002)), the linkages

work as follows. Demand for a final product is larger in a region with greater expenditure;

this enables that region to attract more production activities. This is called a “backward

linkage” (Fujita et al. (1999)) or a “market-access effect” (Baldwin et al. (2003)). At the

same time, the cost of living is lower in a region with more firms, or more varieties; therefore,

the owners of mobile factors and, consequently, production activities, are drawn toward that

region. This is a “forward linkage” or a “cost-of-living effect”. Each of the two linkages can

generate a snowball effect, or cumulative causation, resulting in agglomeration. The building

block in this explanation is the postulate that a shift of production activities accompanies

that of income. When production is agglomerated in a particular region, all of the owners

of mobile factors migrate into that region and put their factors into the production process

that takes place there. Thus, the income of such factor-owners moves to that region at the

same time.1

Such an explanation, however effective for geographical agglomeration on a large scale,

for instance in a global economy or a national economy, does not work well for agglomeration

on a smaller scale, for instance that within a city. Now let us consider the agglomeration

of commercial activities within a city, such as a retail concentration in a central business

district and a shopping center represented by a shopping mall at “edge cities”. It is usually

the case that such an agglomeration does not entail the spatial concentration of income. This

is because not many of the residents in a city engage in the commercial activities there, and

many of them work for other industries, which are often located outside the city. Therefore,

the location of commercial activities has at best a minor effect on the location of consumers

and thus that of income.

One demand–supply linkage that explains the agglomeration of commercial activities

within a city without relying on the co-movement of production and income involves taste

1A “footloose capital model” shows that if a factor (e.g., capital) is mobile but its owner is not, no

agglomeration will occur because both the linkages disappear (see Martin and Rogers (1995) and Baldwin

et al. (2003)).
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heterogeneity and imperfect information.2 More specifically, we consider the situation in

which consumers have different tastes with regard to the characteristics of a product but

are uncertain about the characteristics of the varieties sold in each commercial area. In this

case, they guess the characteristics of the best variety that they will find in each area from

the information on the number of commercial facilities located there: if more shops sell a

product in a particular commercial area, they expect to find a more favorable variety upon

going there. Therefore, they prefer visiting a commercial area with a higher concentration

of commercial facilities, ceteris paribus. Thus, a larger number of firms or a higher level

of production results in a higher level of expenditure, which attracts further production

activities. This produces a backward linkage or a market-access effect and causes the circular

causality.

The observation that taste heterogeneity together with imperfect information leads to

agglomeration is not novel. On the contrary, it is widely known among researchers through

three important pieces of research.3

First, Stahl (1982), analyzing consumers’ search behaviors and the locational choices of

sellers, derived a set of conditions for the location of all firms in one marketplace being

supported by an equilibrium. However, he abstracted away price competition by assuming

a given price of a differentiated product. Secondly, Wolinsky (1983) obtained another set

of conditions for the geographical concentration of shops selling varieties. Although his

framework is general enough to allow for price competition, he, like Stahl, did not derive

an entire equilibrium configuration of economic geography: all that was shown was that

agglomeration can be an equilibrium outcome.

Finally, Konishi (2005), whose interest was closest to ours, explained the concentration

of retail stores by constructing a model with a two-dimensional geographical space, in which

a given number of stores choose their locations from a set of potential shopping centers and

compete with each other over prices, and consumers decide which shopping center to visit.

The main difference between his work and ours is in the manipulation of taste heterogeneity,

which underpins the model. Konishi assumes that the utility that a consumer receives

from consumption of a given product is a random variable, which he interprets to mean

that “consumers do not know their exact preferences over commodities”. In this paper, in

contrast, the utility itself is a deterministic variable and formulated within the framework of

a spatial competition theory á la Hotelling (1929) and Salop (1979). The characteristics of

2Another is the demand–supply linkage for intermediate products, not for final products (see Krugman

and Venables (1995) and Venables (1996), among others). Although agglomeration is generated by a similar

intertwinement of the backward linkage (the market-access effect) and the forward linkage (the cost-of-living

effect), these linkages do not necessitate the location choice of factor-owners.
3For the other related works, see the literature cited in Konishi (2005).
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the products are the random variables: consumers do not know what kinds of products they

can find upon arriving at a shopping center. We believe that the latter approach is more

appropriate for studying the topic, on two grounds. First, we believe that being uncertain

about available characteristics is a much more common situation in our everyday life than

being uncertain about our own taste. Secondly, the spatial competition theory is one of

the most powerful tools for analyzing firms’ behaviors under consumers’ taste heterogeneity,

and there is a rich accumulation of research in that field. Our approach can take advantage

of this heritage to give an explicit foundation for consumers’ behaviors, whereas Konishi’s

approach puts taste heterogeneity in a black box.

The purpose of this paper is to characterize all the spatial distribution patterns of firms

that are realized when consumers are uncertain about the characteristics of available vari-

eties. Emphasis is put on the explicit treatment of taste heterogeneity based on the spatial

competition theory. For this purpose, we construct a model with two regions and a differ-

entiated product. On the one hand, there are consumers who cannot move across regions.

Without knowing the characteristics of the varieties sold in respective regions, but by form-

ing an expectation, they decide whether to go shopping or not, and, if the answer is yes,

which region to visit. It is necessary for them to pay transport costs to go to a shop in

a foreign region, whereas it does not cost anything to go to a counterpart in their home

region. On the other hand, there are firms (sellers or shops) who are free to choose their

location, or, more precisely, they freely enter and exit from the industry in each region,

depending on the amount of demand they are to receive. They compete with each other

over prices. We explore an emerging economic geography by formulating the consumers’

and firms’ behaviors in a three-stage game.

Our simple model yields two equilibrium patterns of economic geography: segregation

and full agglomeration. In segregation, all the consumers visit a shop in their home region.

Firms are dispersed over the two regions according to the distribution of consumers. This

pattern corresponds to “dispersion” or the symmetric pattern in the standard NEG models.

In full agglomeration, on the other hand, all the consumers in the economy visit a shop

in the same region, i.e., a core, where firms are concentrated. This pattern corresponds

to “agglomeration” in the NEG models. We derive the conditions for each pattern being

supported by an equilibrium and show that the conditions depend on several parameters,

in particular, transport costs. If the transport cost is lower than a critical value, i.e., a

break point, the segregation breaks; if it is lower than another critical value, i.e., a sustain

point, the agglomeration becomes sustainable. This closely resembles the main result of

NEG models. In other words, the main result of NEG models can alternatively be derived

from a demand–supply linkage in a partial equilibrium setting, i.e., a linkage which does not
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entail the co-movement of production and income.

The rest of the paper consists of four sections. The next section describes the model.

In section 3, we derive the conditions for an equilibrium by analyzing the firms’ decisions

on prices to charge, the consumers’ decisions on the region to visit, and the number of

firms. Section 4 shows that only segregation and full agglomeration can be supported as

equilibrium distribution patterns. We obtain the conditions for each of these being an

equilibrium pattern and discuss the overall effect of a change in transport costs. Section 5

gives the conclusions.

2 Model

In this section, after describing the basic setting, we explain the structure of the game.

2.1 Basic setting

The economy consists of two regions, 1 and 2. In each region, firms produce a horizontally

differentiated product, which is formulated as in Salop (1979). Varieties are “located” in a

one-dimensional characteristics space, which is a circle of length 1. Each firm produces one

variety, and each variety is produced by one firm. The number of firms is therefore equal to

the number of varieties in each region. Furthermore, the one-to-one correspondence between

a firm and a variety implies that each firm can be identified by the location of its variety in

the characteristics space. Thus, we say that a firm is “located” at a particular point on the

circle when it produces a variety at that point.

Our attention is limited to the case where the firms, and thus the varieties, are located

equidistantly on the circle in each region. They line up at distances 1/ni from each other in

region i, where ni ∈ N0, the set of non-negative integers, is the number of firms in region i

(i = 1, 2). Furthermore, without loss of generality, we measure the distances on the circle in

the clockwise direction. The location of the first firm is at a distance of x̄i from the origin

of the circle in region i (see Figure 1). Firms are numbered in the order of their locations

in the clockwise direction, and the varieties are referred to accordingly. Firm k is therefore

located at xk
i ≡ x̄i + (k − 1)/ni in region i for k ∈ Ni ≡ {1, 2, · · ·, ni}.

Figure 1: Characteristics space

To produce a variety, each firm pays a constant marginal cost, which is normalized to 0,

and a fixed cost f . The profit of firm k in region i is therefore equal to

Πk
i = πk

i − f with πk
i ≡ pk

i dk
i , (1)
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where πk
i is its operating profit, pk

i is the price of its variety, and dk
i is the demand for it (or

the mass (number) of consumers who buy it).

Moreover, there are L̄ consumers in the economy. They do not move across regions. The

share of consumers in region i is denoted by λi, with λ1 + λ2 = 1 (i = 1, 2). We assume,

without loss of generality, that region 1 is no smaller than region 2: λ1 ≥ 1/2.

Each consumer prefers a certain characteristic.4 In parallel with the terminology used

in the theory of spatial competition, we say that in the characteristics space, a consumer is

“located” at the point of her most-preferred characteristic. To keep the analysis simple, we

concentrate on the case where the most-preferred characteristics are distributed uniformly

over the circle. Furthermore, the farther away the consumed variety is located from the

consumer’s most-preferred characteristic, the lower the level of utility she receives. More

specifically, the decrease in utility is a quadratic function of the distance between the con-

sumed variety and the consumer: the utility she gets by consuming variety k in region i is

given by

vk
i = r −

[
pk

i + c
(
z − xk

i

)2
]
, (2)

where z is the location of the consumer, pk
i is the price of the variety, and r is the reservation

price of the product: consumers are willing to pay up to this amount for its consumption.

Here, c > 0 is a constant, which we call a characteristics-cost coefficient, and we refer to

c
(
z − xk

i

)2 and pk
i + c

(
z − xk

i

)2 as the “characteristics cost” and “subjective price” of the

variety, respectively.5 The reason why we assume a quadratic characteristics cost, in contrast

to the original setting by Salop (1979), who assumes a linear cost, will be explained later.

Finally, in order to get a variety, consumers need to visit the firm, or the “shop”, that

produces the variety. To visit a shop in a foreign region, they must pay a transport cost,

t. To visit a shop in their home region, on the other hand, they do not have to pay any

transport costs. The overall utility of a consumer who lives in region j and buys variety k

in region i is thus represented by

V k
ij = vk

i − τij , (k ∈ Ni; i = 1, 2; j = 1, 2), (3)

where τij = 0 if i = j and τij = t when i 6= j.

4In our model, each consumer consumes at most one variety. In the NEG models, on the other hand,

consumers have a “love for variety”, so each of them consumes all the varieties, however small the amount of

each variety is. This difference is not fundamental. It is known that the aggregate demand of heterogeneous

consumers each of whom consumes only one variety coincides with its counterpart in the NEG models with

the love for variety (see Anderson et al. (1992) and Combes et al. (2008)).
5In the spatial competition literature, the subjective price is usually called a “delivered price”. However,

this paper deals with two spaces, namely a characteristics space and a geographical space. To avoid confusion

between them, we use the term subjective price whenever the characteristics space is concerned.
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2.2 Structure of the game

We consider the following three-stage game.

In the first stage, firms enter the industry if they will obtain a non-negative profit by

doing so, and exit from it if they have been incurring a loss. At the equilibrium, therefore,

each firm earns a non-negative profit, and if one additional firm enters the market, it will

suffer a loss. In other words, the pari of equilibrium number of firms, (n∗
1, n

∗
2), must satisfy

the following equations:6

Πi(n∗
1, n

∗
2) ≥ 0 if n∗

i > 0 (i = 1, 2) (4)

and

Π1(n∗
1 + 1, n∗

2) < 0 and Π2(n∗
1, n

∗
2 + 1) < 0. (5)

Here, the profit of a firm in region i, defined by (1), is expressed as a function of the numbers

of firms in the two regions. (Because it turns out that firms in the same region earn an equal

profit, the superscript k is dropped here.) Note that, for the second requirement, we consider

only the entry of a single firm: we do not take into account the possibility that more than

one firm sets up at the same time.7

In the second stage, firms and consumers move simultaneously.

On the one hand, firms decide the price of a variety so as to maximize their profit, given

the prices charged by their competitors. To keep the analysis tractable, we focus on the

symmetric Nash equilibrium, in which all the firms in the same region charge the same

price. It then suffices to examine the problem of a representative firm in each region when

all the other firms in that region charge an equal price. We can write the operating profit

of the representative firm in region i as πi (pi, p̄i), where pi and p̄i are the prices charged by

that firm and the competitors in that region, respectively. The equilibrium price, p∗i , is the

solution to max
pi

πi (pi, p
∗
i ).

On the other hand, consumers decide whether to go shopping or to stay at home, and

which region to visit if they decide to shop.8 In this decision-making process, consumers

know the number of varieties provided in each region, which is observable at the end of the

first stage, as well as the fact that they line up equidistantly. However, they do not know

the locations of the provided varieties. More precisely, for them, the absolute position of the

first firm, x̄i, is a random variable. Because the location of the available variety nearest to

6The assumption that firms do enter the industry if Πi(n1, n2) = 0 is not important. We would get

similar results if we assumed otherwise.
7This is consistent with the concept of the Nash equilibrium.
8In this paper, we assume that consumers can visit a shop at most once. This considerably simplifies the

analysis, eliminating the possibility that they engage in search. An important agenda for future research is

to relax this assumption so as to take into account consumers’ search behaviors.
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their own location also becomes a random variable, the consumers’ decision-making is based

on their expectation of it. In relation to this point, two simplifying assumptions are imposed.

First, we suppose that the location of the first firm is designated randomly: the probability

that it is at a given point on the circle is uniformly distributed. Secondly, consumers are

assumed to be risk neutral: they choose which region to visit by comparing the levels of

utility computed from the expected location of the nearest variety.

Let A = {0, 1, 2} be a set of consumers’ choices on a shopping trip: 1 and 2 represent

visiting a shop in regions 1 and 2, respectively, and 0 means refraining from going shopping.

We denote by Uaj the expected utility of a consumer in region j when she takes a ∈ A. Then

(3) implies that visiting a shop in region i yields

Uij = ui − τij where ui ≡ E

[
max
k∈Ni

[
vk

i

]]
(i = 1, 2; j = 1, 2). (6)

On the other hand, refraining from going shopping yields U0j = 0. The problem of consumers

in region j is then to find a ∈ A that maximizes Uaj . We denote the set of the solutions

by A∗
j : A∗

j ≡
{

a : a = arg max
a∈A

[
Uaj

]}
. Furthermore, let us denote the mass of region j

consumers who choose option a ∈ A as a share of the region j population by saj ∈ [0, 1]

(s0j + s1j + s2j = 1). We must then have
∑

a∈A∗
j

saj = 1 (j = 1, 2). The share of consumers

who take option a ∈ A in the entire economy is given by sa ≡ λ1sa1 + λ2sa2 (a ∈ A).

In the third and last stage, consumers realize x̄i upon arriving at region i, and decide

whether to buy a variety or not and, if any, which variety to buy. For the sake of simplicity,

we focus on the case where they buy at most 1 unit of the product. In this stage, furthermore,

the transport cost paid in the second stage is already sunk. Therefore, a consumer who is

located at z and visits region i
buys a variety at x∗

i (z) = arg max
xk

i |k∈Ni

[
vk

i

]
if max

xk
i |k∈Ni

[
vk

i

]
≥ 0

buys no variety otherwise.
(7)

To derive the demand that each firm receives in the third stage, let us consider the set of

the locations of consumers who buy from firm k in region i, Mk
i ≡ {z : x∗

i (z) = xk
i }. Since

the characteristics cost is quadratic, the set becomes a segment, which we call the “market

area” of firm k or variety k. Since everything is symmetric, we can express the size of the

market area of a firm as a function of its own price and of that of its competitors, i.e., as

mi (pi, p̄i). Finally, since the circle has a unit length, the demand for each firm is given by

di (pi, p̄i) = siL̄mi (pi, p̄i) . (8)

Note that no mention is made of the firms’ choices with regard to the variety to produce.

It would be possible to incorporate this into our model by expanding the price game in
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the second stage to a location–price game (here, “location” obviously refers to that in the

characteristics space). However, it has already been established that in a location–price

game with a circular characteristics space, there is an equilibrium with a given number

of firms being placed evenly spaced apart along the circle when the characteristics cost is

quadratic (see Economides (1988)). We therefore postulate this equilibrium configuration.

Furthermore, it is known that equal spacing is not necessarily supported by an equilibrium

if the characteristics cost is not quadratic. If it is linear, for instance, there is the possibility

of a firm deviating from the equal spacing configuration to obtain a higher profit. This is

why we assume quadratic characteristics costs in this paper.

3 Equilibrium conditions

As the solution concept, we use a subgame perfect Nash equilibrium. The equilibrium is

obtained by the standard method of backward induction. Because the third-stage subgame

has already been solved (see (7)), we begin with the second-stage subgame. First, the

firms’ decisions on the prices to charge are discussed. Secondly, we analyze the consumers’

decisions on the shopping trip. Lastly, we turn to the firms’ decisions on entry and exit in

the first stage.

3.1 Price

To begin with, let us examine the firms’ pricing strategies determined in the second stage.

The setup of this part is the same as that in Salop (1979), except that he assumes a linear

characteristics cost, not a quadratic cost.

As has been mentioned, we focus on a symmetric equilibrium and examine the behavior

of a representative firm, say firm k in region i, who charges pi, and all the other firms in that

region charge the same price, p̄i. From (1) and (8), the firm’s operating profit is expressed

as

πi (pi, p̄i) = siL̄pimi(pi, p̄i). (9)

We begin the analysis with the case of ni ≥ 2.

To derive the size of the market area, let us define zi(pi, p̄i) as the location of a marginal

consumer who is located in the interval (xk, xk+1) and is indifferent with respect to buying

from firm k and buying from firm k + 1: zi(pi, p̄i) ≡ ni (p̄i − pi)
/
(2c) + (xk+1 + xk)

/
2.

For variety k, such a marginal consumer pays a subjective price equal to qi (pi, p̄i) ≡ pi +

c
[
zi (pi, p̄i) − xk

]2. Depending on the relative size of this subjective price compared to the
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reservation price, we can identify three types of market area,

mi (pi, p̄i) =



mM (pi) ≡ 2
(

r − pi

c

) 1
2

if qi (pi, p̄i) > r,

mB (p̄i) ≡ 2
[
zi

(
ρi(p̄i), p̄i

)
− xk

]
if qi (pi, p̄i) = r,

mC (pi, p̄i) ≡ 2
[
zi (pi, p̄i) − xk

]
if qi (pi, p̄i) < r,

(10)

as long as zi (pi, p̄i) ∈ (xk, xk+1). Here,

ρi(p̄i) ≡ r − c

[
1
ni

−
(

r − p̄i

c

) 1
2
]2

gives, as a function of the price charged by the competitors, firm k’s price for which the

associated subjective price equals the reservation price for the marginal consumer. In other

words, ρi (p̄i) is equal to the value of pi that solves qi (pi, p̄i) = r.

The first case in (10) describes the situation in which the market area of firm k does not

touch those of the neighboring firms (see the first panel in Figure 2). We refer to this type of

market area as a monopoly type, or an M type. It follows from (9) that the operating profit

of firm k is equal to πM
i (pi) ≡ 2siL̄pi

[
(r − pi)/c

] 1
2 . Furthermore, the last case describes

the situation in which the competition between firm k and its neighbors is so intense that

it will lose some of its market area when the competitors slightly lower their prices (see the

last panel in Figure 2). For this type, namely a competitive type, or a C type, the operating

profit of firm k becomes πC
i (pi, p̄i) ≡ siL̄pi

[
n2

i (p̄i − pi) + c
]/

(cni). Finally, the second case

is a borderline case between the above two cases: if firm k slightly enhances its price, its

market area becomes M type, whereas if it slightly reduces its price, its market area becomes

C type (see the second panel in Figure 2). When the market area of firm k is this borderline

type, or B type, its profit is given by πB
i (p̄i) ≡ siL̄ρi(p̄i)

[
n2

i

{
p̄i − ρi(p̄i)

}
+ c

]/
(cni).

Figure 2: Three types of market area at equilibrium

A necessary condition for firm k’s profit maximization is given by

−∂ lnmi(pi, p̄i)
∂ ln pi

= 1, (11)

where the left-hand side is the price elasticity of the size of the market area. Furthermore,

note that at any symmetric equilibrium, the market area of each firm must be one of the

above three types.

First, suppose that the equilibrium involves a market area of type M. Solving (11) for

mM (pi) yields pi = pM ≡ 2r/3. Since the market area is isolated, the optimal price does
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not depend on the price charged by the other firms. Therefore, all the firms charge pM at

the equilibrium. The size of each market area and the operating profit of each firm are given

by mM (pM ) = 2r
1
2
(
3c

)− 1
2 and πM

i (pM ) = 4siL̄r
3
2 c−

1
2 /3, respectively. At the equilibrium,

qi (pi, p̄i) > r is reduced to

r < rM
i ≡ 3c

4n2
i

. (12)

Secondly, suppose that a C-type market area is realized at the equilibrium. Computing

the fixed point pi = p̄i for the profit maximization prescribed by (11), we derive the equi-

librium price for type C: pC
i ≡ c/n2

i . The size of each market area and the operating profit

of each firm are given by 1/ni and πC
i

(
pC

i , pC
i

)
= csiL̄/n3

i , respectively. We can rewrite

qi (pi, p̄i) < r as

r > rC
i ≡ 5c

4n2
i

. (13)

Note that rM
i < rC

i .

Thirdly, and finally, suppose that a B-type market area is realized at the equilibrium.

At a symmetric equilibrium with pi = p̄i, the price is given by pB
i ≡ r − c/(4n2

i ). The

size of each market area and the operating profit of each firm are 1/ni and πB
i

(
pB

i

)
=

siL̄(4n2
i r − c)/(4n3

i ), respectively.

We can now establish the following result.

Lemma 1. Suppose that ni ≥ 2. There exists a unique symmetric Nash equilibrium such

that

i) every firm charges pM if r < rM
i ,

ii) every firm charges pC
i if r > rC

i , and

iii) every firm charges pB
i if rM

i ≤ r ≤ rC
i .

The proof is tedious and is relegated to the Appendix.

This is a good place to introduce one simplifying assumption. We confine our analysis

to the case where the reservation price is sufficiently high that r > rC
i for any ni ≥ 2: the

market area of each firm becomes C type at equilibrium whenever there are no fewer than

two firms in a region. A sufficient condition is given by the following inequality:

Assumption 1. (Competitive market) r > 5c/16.

Let us turn our attention from a regional economy with ni ≥ 2 to that with ni = 1.

Suppose that the only firm charges pM . If it is sufficiently high for only part of the circle to

be served by the firm, pM maximizes its profit. This occurs when the associated subjective
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price at the point farthest from the location of the firm exceeds the reservation price, that

is, when pM + c/4 > r or r < 3c/4 = rM
i

∣∣
ni=1

. If pM is low enough for the firm to deliver its

product to the entire market, it is not a profit-maximizing price; with a price higher than

this, the firm can still serve the entire market while raising its revenue. In this case, the

firm chooses a price such that the associated subjective price at the point farthest from its

location exactly reaches the reservation price. Such a price turns out to be pB
i

∣∣
ni=1

= r−c/4.

Assumption 1 guarantees that this is positive.

To sum up, the equilibrium market area of each firm is C type if ni ≥ 2, M type if ni = 1

and r < 3c/4, and, finally, B type if ni = 1 and r ≥ 3c/4.

Lemma 2. Given the number of firms in region i, the price, the size of the market area,

and the profit of a firm in that region at the equilibrium are obtained as follows:

p∗i =


pC

i

pM

pB
∣∣
ni=1

 , m∗
i =


1/ni

mM
(
pM

)
1/ni

 , π∗
i =


π∗C

i ≡ πC
i

(
pC

i , pC
i

)
π∗M

i ≡ πM
i

(
pM

)
π∗B

i ≡ πB
i

(
pB

i

)


if


ni ≥ 2

ni = 1 and r < 3c/4

ni = 1 and r ≥ 3c/4

 .

3.2 Shopping trip

In this subsection, we turn to the consumers’ decisions on the shopping trip in the second

stage. At this stage, the number of firms in each region is known and given to consumers.

From this piece of information, they can correctly infer the equilibrium prices that will be

realized at the end of the second stage. Therefore, the consumers’ decision-making in the

second stage involves the equilibrium outcome of the firms’ decision-making in that stage,

which is summarized in Lemma 2, despite the fact that they move simultaneously.

Consider a consumer in region j who visits a shop in region i (i = 1, 2; j = 1, 2). Because

the origin is chosen at random from the uniform distribution and the varieties are located at

distances 1/ni apart from each other along the circle, the cumulative distribution function

of d ≡ min
k∈Ni

z−xk
i for a given z becomes Fi(d) = 2nid. The expected utility of the consumer

is therefore given by

ui ≡
∫ m∗

i /2

d=0

r −
(
p∗i + cd2

)
dFi(d) = nim

∗
i

[
r − p∗i −

c
(
m∗

i

)2

12

]
(14)
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(see (2) and (6)).

The right-hand side of the last equality in (14) shows that the utility level depends on

four factors. The first is the reservation price. As it increases, the value of the product is

enhanced, which raises the utility level: a positive reservation-price effect. The second factor

is the price of the varieties. The higher it is, the lower the utility level is: a negative price

effect. The third factor is the amount of the characteristics cost that a consumer needs to

pay. This is captured by c
(
m∗

i

)2/12 in (14), which represents the average characteristics-cost

payment. As this payment increases, the utility level declines: a negative characteristics-

cost-payment effect. The last factor is the probability that a consumer can find a variety

worth buying upon arriving at one of the two regions. This is given by nim
∗
i because the

length of the circle is normalized to unity. A higher probability is associated with a higher

utility level, ceteris paribus: a positive range-of-varieties effect.

The next result immediately follows from Lemma 2.

Lemma 3. The expected utility, exclusive of the transport cost, is obtained as follows:

i) If ni ≥ 2, then u∗
i = uC

i ≡ r − 13c
/(

12n2
i

)
(i = 1, 2).

ii) If ni = 1, then u∗
i =

 uM ≡ 4r
3
2 c−

1
2
/
9
√

3 if r < 3c/4

uB ≡ c/6 if r ≥ 3c/4
(i = 1, 2).

Here, note that uC
i > 0 by Assumption 1. Therefore, u∗

i is always positive.

Because u∗
i plays an important role in the following analysis, it is worthwhile examining

how various factors affect each of uC
i , uM , and uB .

First, let us consider uC
i . When the market area of each firm is C type, the probability

of a consumer finding a variety worth buying is always 1. There is therefore no range-of-

varieties effect.

We begin by explaining that uC
i increases with ni. As ni rises, competition among firms

becomes fiercer, which drives them to charge lower prices. This has a favorable impact on

uC
i through the price effect mentioned earlier. Furthermore, as a result of the rise in ni, the

market area of each firm shrinks. So, consumers now need to pay only a smaller amount of

the characteristics cost on average, which raises uC
i through the characteristics-cost-payment

effect. Because there is no reservation-price effect or range-of-varieties effect, we are left with

only these two positive effects. Such pro-competitive effects are not observed in NEG models

with a Dixit–Stiglitz type preference, and only the first effect, namely the price effect, exists

in NEG models with a quasi-linear utility. In addition, because uC
i is concave in ni, the

pro-competitive effects are weaker when there are more firms.

Furthermore, uC
i increases with r and decreases with c. The reason for the former is the

positive reservation-price effect. For a change in c, two forces are at work. First, a higher c

12



shields firms more from competition; this gives them a greater monopoly power. This tempts

them to charge a higher price. Secondly, the rise in c boosts the expected characteristics-cost

payment since the size of each market area is fixed. Both of these have an adverse impact

on the utility level through the price effect and the characteristics-cost-payment effect.

Secondly, uM increases with r and decreases with c. On the one hand, as r increases, the

price rises and the market area expands. The utility level rises because of the reservation-

price effect and the range-of-varieties effect, but falls because of the price effect and the

characteristics-cost-payment effect. Because it turns out that the first two effects dominate

the last two, the utility level rises. On the other hand, an increase in c directly raises the

average characteristics-cost payment but indirectly reduces it by narrowing each market

area. Because the direct effect more than offsets the indirect one, the characteristics-cost-

payment effect is negative. At the same time, as a result of the shrinkage of the market

area, the probability of a consumer finding a variety worth buying decreases, i.e., a negative

range-of-varieties effect. In the absence of a reservation-price effect and a price effect, the

overall effect of a rise in c is negative.

Thirdly, and lastly, uB increases with c but does not depend on r. Note that when the

market area is B type, its size is constant. There is therefore no range-of-varieties effect.

A rise in c has two effects. First, because it scales down the competitors’ market areas, a

firm now needs to charge a lower price to keep its market area B type. Secondly, it directly

raises the characteristics-cost payment. Thus, the utility level increases through the price

effect and decreases through the characteristics-cost-payment effect. It turns out that the

former dominates the latter. A rise in r, on the other hand, boosts the price by the same

amount. The price effect therefore just offsets the reservation-price effect and thus uB does

not change.

We are now ready to examine the consumers’ decision-making.

First of all, suppose that there are some firms in each region. Since Ujj = u∗
j > 0 implies

max
[
U1j , U2j

]
> 0, no consumer chooses the option to stay at home, 0 /∈ A∗

j , that is, s0j = 0

for j = 1, 2. Consequently, if U1j > U2j , all the consumers in region j visit a shop in region

1 (A∗
j = {1}), and s1j = 1 and s2j = 0. Similarly, if U2j > U1j , all the consumers in region

j visit a shop in region 2 (A∗
j = {2}), and s1j = 0 and s2j = 1. Finally, if U1j = U2j , some

consumers visit a shop in region 1 and the others visit a shop in region 2 (A∗
j = {1, 2}), and

s1j + s2j = 1.

Next, suppose that firms are concentrated in region i. Then, if Uij ≥ 0 for j 6= i, both

the consumers in region 1 and those in region 2 visit a shop in region i (A∗
1 = A∗

2 = {i}),

and si1 = si2 = 1 and s01 = sj1 = s02 = sj2 = 0 for j 6= i. Otherwise, only the consumers

in region i visit a shop in that region (A∗
i = {i} and A∗

j = {0}), and sii = s0j = 1 and

13



sij = sj1 = sj2 = s0i = 0.

With some manipulation, we can establish the following result.

Lemma 4. i) Suppose that there are some firms in both regions. Then, the equilibrium

demand shares must satisfy

(
s1, s2

)
=



(λ1, λ2) if t > u∗
1 − u∗

2 and t > u∗
2 − u∗

1

(1, 0) if t < u∗
1 − u∗

2

(0, 1) if t < u∗
2 − u∗

1

(λ1 + µ2, λ2 − µ2) if t = u∗
1 − u∗

2

(λ1 − µ1, λ2 + µ1) if t = u∗
2 − u∗

1

for µj ∈ [0, λj ] (j = 1, 2).

ii) Suppose that firms are concentrated in region i. Then, the equilibrium demand shares

must satisfy (
s1, s2

)
=

 (1, 0) if t ≤ u∗
i

(λi, 0) if t > u∗
i .

Here, µj is the ratio of consumers in region j who visit a shop in the foreign region.

Three observations follow. First, the five cases in i) are mutually exclusive and exhaus-

tive, as well as the two cases in ii). Secondly, at the equilibrium, there is no possibility of

a “cross trip”: the consumers in region 1 and those in region 2 never visit a shop in their

respective foreign regions at the same time.9 Finally, if ni rises and the rise involves a change

in the pattern of
(
s1, s2

)
, then si increases or remains constant. For example, as n1 rises,

the pattern may switch from (λ1, λ2) to
(
λ1 + µ2, λ2 − µ2

)
or to (1, 0); in either case, s1

increases or remains constant. However, it never switches from (λ1, λ2) to
(
λ1−µ1, λ2 +µ1

)
or to (0, 1): s1 never decreases. Consequently, si is a non-decreasing function of ni.

3.3 Number of firms

In this subsection, we examine the number of firms in each region, which is determined

through free entry at the first stage, given the demand shares obtained in Lemma 4. Let us

denote the level of profit corresponding to the operating profit derived above as a function

of si and ni: Π̃T (si, ni) ≡ π∗T
i − f for T ∈ {C,M,B} (i = 1, 2).10

9To see this, note that U11 > U12 and U22 > U21 because t > 0. If U21 ≥ U11, therefore, we have

U22 > U12. Consequently, U21 ≥ U11 and U12 ≥ U22 cannot hold at the same time.
10π∗M

i − f does not actually depend on ni. For the sake of convenience, however, we express it as a

function of not only si, but also of ni, as eΠM (si, ni).
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To begin with, we ask how many firms the regional economy can accommodate when the

market area of each firm is C type. To answer the question, let us solve Π̃C (si, ni) = 0 for

ni to obtain ni = n̄s
1
3
i . Here, n̄ ≡

(
cL̄/f

) 1
3 denotes the potential of the economy, which gives

the number of firms that earn zero profit when all the consumers in the economy visit a shop

in the same region (si = 1), with the integer constraint being disregarded. The potential

increases with total population, the characteristics-cost coefficient, and the inverse of the

fixed cost, all of which measure the profitability of a market (recall that the characteristics-

cost coefficient is positively related to the spatial monopoly power of a firm). Now, let us

define nC(si) as the maximum integer that is no greater than n̄s
1
3
i :

nC(si) ∈
(
n̄s

1
3
i − 1, n̄s

1
3
i

]
∩ N0. (15)

Since Π̃C (si, ni) decreases with ni, it represents the maximum number of firms region i’s

market can accommodate for a given share of demand.11 In other words, Π̃C
(
si, n

C(si)
)
≥ 0

and Π̃C (si, ni) < 0 for any ni ∈
(
nC(si),∞

)
∩ N0.

Using this result, we can fully characterize the equilibrium number of firms. For this

purpose, let us define ŝC and ŝT as solutions to Π̃C
(
ŝC , 2

)
= 0 and Π̃T

(
ŝT , 1

)
= 0, respec-

tively, for T ∈ {M,B}. These are the demand shares that make the profit of a firm or firms

in a region equal to 0. For ŝC , we consider the situation in which there are two firms in that

region, and for ŝM and ŝB , we consider the situation in which there is only one firm there.

It turns out that ŝC ≡ 8/n̄3, ŝM ≡ (3c)
3
2 r−

3
2 /

(
4n̄3

)
, and ŝB ≡ 4c/

[
(4r − c)n̄3

]
.

Now, suppose that the demand share is so high that si ≥ ŝC . Since Π̃C (si, ni) increases

with si, this implies that Π̃C (si, 2) ≥ 0. Therefore, at least two firms can, and indeed do,

because of free entry (see (5)), operate in region i. Their market area is therefore C type,

which implies that the number of firms is equal to nC(si) ≥ 2. Next, suppose that the

demand share is not sufficiently high, that is, si < ŝC . Because the inequality implies that

Π̃C (si, 2) < 0, no more than one firm can operate in region i: either one firm operates or

no firms operate. If, on the one hand, r < 3c/4, the market area of the one firm must be

M type. However, Π̃M (si, 1) ≥ 0 if and only if si ≥ ŝM . In this case, therefore, one firm

operates if si ≥ ŝM and no firms operate otherwise. On the other hand, if r ≥ 3c/4, the

market area of the one firm must be B type. By similar reasoning, we conclude that one firm

operates if si ≥ ŝB and no firms operate otherwise. (Note that ŝB > 0 as long as r ≥ 3c/4.)

The following lemma summarizes these findings.

11∂ eΠC (si, ni)
‹

∂ni < 0 follows from the fact that the entry of a firm makes the market more competitive.

This corresponds to the “price-cutting effect” described by Konishi (2005). However, as ni rises, si may

change. Since si is a non-decreasing function of ni, as mentioned above, eΠC (si, ni) increases or remains

unchanged as a result of the change in si, which is what Konishi calls the “market-size effect”.
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Lemma 5. The equilibrium numbers of firms must satisfy

ni =


nC

(
si

)
≥ 2 if si ≥ ŝC

1 if si ∈
[
ŝT , ŝC

)
0 if si < ŝT ,

where T = M if r < 3c/4 and T = B otherwise (i = 1, 2).

We focus on a non-trivial case where the fixed cost per capita is sufficiently small for at

least two firms to operate in a region whenever no fewer than λ2L̄ consumers visit a shop

in that region, that is, nC(λ2) ≥ 2. Because Π̃C(si, ni) increases with si and decreases with

ni, it is equivalent to Π̃C(λ2, 2) ≥ 0. A necessary and sufficient condition is that λ2 ≥ ŝC ,

which we assume.

Assumption 2. (Profitable market) λ2 ≥ ŝC .

Note that this assumption implies that n̄ > 16
1
3 > 2 since λ2 ≤ 1/2.

One comment is worth adding. The above assumption guarantees that more than one

firm operates in a region at the equilibrium if at least λ2L̄ consumers visit a shop in that

region. Off the equilibrium, however, it may be the case that only one firm operates, even

if λ2L̄ consumers or more visit a shop in the region. We can show that this firm can indeed

earn a positive profit.12 In other words,

Π̃T (si, 1) > 0 for any si ≥ λ2, (16)

where T = M if r < 3c/4 and T = B otherwise (i = 1, 2).

4 Equilibrium distribution patterns

To recapitulate, we have so far obtained two relationships. Lemma 4 gives the equilibrium

demand share in each region as a function of the equilibrium numbers of firms since u∗
i

depends on ni. To articulate this dependence, we hereafter denote u∗
i and uC

i as functions

of ni, i.e., as u(ni) ≡ u∗
i and uC(ni), respectively. Lemma 5 gives the equilibrium number

12On the one hand, suppose that the firm’s market area is M type. Because Assumption 1 implies that

32(r/3c)
3
2 > 1, 32si(r/3c)

3
2 > λ2 for any si ≥ λ2. This and Assumption 2 give 32si(r/3c)

3
2 > bsC , which

is equivalent to eΠM (si, 1) > 0. On the other hand, suppose that the market area is B type. Because

this appears only if r ≥ 3c/4, we have r > 3c/8, which is equivalent to 2(4r − c)/c > 1. Consequently,

2si(4r − c)/c > λ2 for any si ≥ λ2. Hence, we conclude from Assumption 2 that 2si(4r − c)/c > bsC , which

is equivalent to eΠB(si, 1) > 0.
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of firms in each region as a function of the equilibrium demand share in that region. To

complete the analysis, we need to “solve” these relationships simultaneously.

Note that Lemma 5 indicates that ni = 0 whenever si = 0 because ŝM > 0 and ŝB > 0.

Therefore, neither (s1, s2) = (1, 0) nor (s1, s2) = (0, 1) is supported by an equilibrium if

there are some firms in both regions. Combining the two lemmas, consequently, we can

readily verify the following result.

Lemma 6. At the equilibrium,
((

si, sj

)
,
(
ni, nj

))
must be given by one of the following

patterns (i = 1, 2; j = 1, 2; j 6= i).

i) segregation,
(
(λi, λj),

(
nC(λi), nC(λj)

))
, only if

t > u
(
nC(λ1)

)
− u

(
nC(λ2)

)
; 13 (17)

ii) full agglomeration at region i,
(
(1, 0),

(
nC(1), 0

))
, only if

t ≤ u
(
nC(1)

)
; (18)

iii) partial agglomeration at region i,
(
(λi, 0),

(
nC(λi), 0

))
, only if

t > u
(
nC(λi)

)
; (19)

iv) incomplete agglomeration at region i, (si, sj) =
(
λi +µj , λj −µj

)
, ni = nC

(
λi +µj

)
, and

nj =

 nC
(
λi − µj

)
if µj ∈

(
0, λj − ŝC

]
1 if µj ∈

(
λj − ŝC , λj − ŝT

]
for µj ∈

(
0, λj − ŝT

]
, only if

t = u
(
nC (λi + µj)

)
− u

(
n∗

j

)
. (20)

Here, T = M if r < 3c/4 and T = B otherwise.

In what follows, we elucidate the necessary conditions and sufficient conditions for each

of the four patterns being supported by an equilibrium; this is done by examining the free

entry conditions, (4) and (5), in addition to whichever one of (17)–(20) is relevant.

13The necessary condition for segregation is that both (17) and t > u
`

nC(λ2)
´

−u
`

nC(λ1)
´

are satisfied.

However, (17) implies the latter inequality since u(ni) increases with ni when ni ≥ 2 and nC(·) is increasing

monotonically.
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4.1 Segregation

First, let us examine segregation.

For free entry conditions, it is obvious that (4) is always satisfied as a result of Assumption

2: Π̃C
(
λi, n

C(λi)
)
≥ 0 for i = 1, 2. Thus, what we need to examine is (5). Suppose that one

additional firm enters the industry in region i to earn a profit equal to Π̃C
(
si, n

C(λi) + 1
)
.

On the one hand, if si remains at λi, Π̃C(si, n
C

(
λi) + 1

)
< 0 by the definition of nC(λi),

and, therefore, (5) is satisfied. On the other hand, if si changes, it increases because si is

a non-decreasing function of ni (recall the explanation after Lemma 4). The entrant might

then succeed in obtaining a positive profit. A sufficient condition for (5) is, therefore, that

the entry of an additional firm does not alter si. This is the case if both t > u
(
nC(λi) +

1
)
− u

(
nC(λj)

)
and t > u

(
nC(λi)

)
− u

(
nC(λj) + 1

)
hold for both i = 1 and i = 2 (j 6= i).

The sufficient condition for this is

t > u
(
nC(λ1) + 1

)
− u

(
nC(λ2)

)
. (21)

Since (17) is satisfied whenever (21) holds, (21) is a sufficient condition for the segregation

being supported by an equilibrium. This means the following: consumers in the smaller

region patronize a shop in their home region not only when their foreign region boasts only

as many firms as free entry admits, but even when one additional firm enters the latter

region.

Roughly speaking, the necessary condition, (17), and the sufficient condition, (21), indi-

cate that if t is sufficiently high, the segregation is supported by an equilibrium; otherwise, it

“breaks”.14 More precisely, we can obtain two critical levels, or “ break points”, of transport

costs, which can be used to judge whether the segregation breaks or not.

Proposition 1. (Break points for segregation)

There are critical values tBR and t̄BR with tBR < t̄BR such that the segregation breaks if

t ≤ tBR, but it does not break if t > t̄BR. The values are given by the following equations:15

tBR ≡ uC
(
n̄λ

1
3
1 − 1

)
− uC

(
n̄λ

1
3
2

)
=

13c

12

 1

n̄2λ
2
3
2

− 1(
n̄λ

1
3
1 − 1

)2


t̄BR ≡ uC

(
n̄λ

1
3
1 + 1

)
− uC

(
n̄λ

1
3
2 − 1

)
=

13c

12

 1(
n̄λ

1
3
2 − 1

)2 − 1(
n̄λ

1
3
1 + 1

)2

 .

(22)

14The segregation in our model and the dispersion in the NEG models have the common feature that

there are some firms in both regions. This is why we use the term “break” here, which is widely used in the

NEG literature to express the situation in which dispersion fails to be supported by a stable equilibrium.

15Because of Assumption 2, n̄λ
1
3
1 − 1 > 0 and n̄λ

1
3
2 − 1 > 0.
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The proof is tedious and is relegated to the Appendix.

It is important to note that the reason for the segregation breaking is that the consumers

in the smaller region are tempted to visit a shop in their foreign region if the transport cost is

too low. This is a clue to understanding how various factors affect the break point transport

costs.

First, an inspection of (22) reveals that both tBR and t̄BR increase with λ1 for λ1 ∈[
1/2, 1 − ŝC

]
; that is, the segregation becomes more likely to break as the population dis-

tribution becomes more biased. The reason is simple. As λ1 rises, the distribution of firms

also becomes more biased toward the larger region; this, through the pro-competitive effect,

makes the option for the consumers in the smaller region to visit a shop in their foreign

region relatively more attractive compared to the option of visiting a shop in their home

region.

The result can be illustrated by a figure. In Figure 3, the two solid lines depict the utility

levels associated with tBR as functions of λ1: the u1 curve represents uC
(
n̄λ

1
3
1 − 1

)
, and

the u2 curve represents uC
(
n̄λ

1
3
2

)
. Note that the former expression is the lower limit of the

utility level that a consumer receives by visiting a shop in region 1, and the latter is the

upper limit of the utility level that she receives by visiting a shop in region 2. Because the

utility level increases with the number of varieties provided, the u1 curve slopes upward and

the u2 curve slopes downward. Furthermore, tBR is equal to the vertical distance between

the two curves, i.e., u1 − u2. Therefore, tBR increases with λ1. We can similarly explain

t̄BR as the vertical distance between the two dotted lines that represent the utility levels

associated with it.

Figure 3: Break point

Secondly, the effects of n̄ on tBR and t̄BR are, in general, ambiguous. However, they

are unambiguously negative in the special case where n̄ is sufficiently large. There are two

reasons why we pay attention to that case. First, in the context of our discussion of the

location of commercial activities within a city, n̄ corresponds to the number of stores at, say,

a central commercial district in a city when retail stores are concentrated there. That number

is usually quite large. Secondly, a large n̄ alleviates the cumbersome effects of the integer

constraint: by focusing on an economy with a large n̄, and, therefore, large nC(si), one can

obtain more or less “smooth” or “well-behaved” results. Now, we can show that when n̄ is

sufficiently large and λ1 > λ2, the break point transport costs are inversely related to n̄.16

16Note that ∂tBR/∂n̄ = KΓ/∆ and ∂t̄BR/∂n̄ = K̄Γ̄/∆̄, where K and K̄ are positive constants, Γ ≡

n̄3λ
1
3
1 − λ

− 2
3

2

„

n̄λ
1
3
1 − 1

«3

, Γ̄ ≡ λ
1
3
1

„

n̄λ
1
3
2 − 1

«3

− λ
1
3
2

„

n̄λ
1
3
1 + 1

«3

, ∆ ≡ n̄3

„

n̄λ
1
3
1 − 1

«3

≥ 0, and ∆̄ ≡
„

n̄λ
1
3
1 + 1

«3 „

n̄λ
1
3
2 − 1

«3

≥ 0. Suppose that λ1 > λ2. Then, as n̄ tends to positive infinity, Γ and Γ̄
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This is explained as follows. As n̄ grows, the numbers of firms in the respective regions

at segregation tend to increase, which raises the utility levels through the pro-competitive

effect. Recall that this effect is stronger when there are fewer firms. The utility level is,

therefore, improved more in region 2 than in region 1 unless λ1 = λ2. Consequently, a

smaller transport cost suffices to discourage consumers in region 2 from visiting a shop in

region 1. Thus, the break points decrease. In Figure 3, the change is represented by a

relatively small upward shift of the u1 curve and a relatively large upward shift of the u2

curve; this shortens the vertical distance between the two curves, u1 − u2, and therefore

reduces tBR.

Finally, the impact of a change in c is also ambiguous. The direct effect is one that

would be observed if n̄ remained unchanged. As is shown in (22), this is positive. To

understand the reason, remember that a rise in c makes consumers worse off through the

price effect and the characteristics-cost-payment effect. However, it has a more devastating

impact on consumers who visit a shop in the smaller region than it does on those who visit

a counterpart in the larger region.17 In other words, the larger region becomes relatively

more attractive for consumers. To counteract this effect, the break points increase. We also

have an indirect effect that is transmitted through a change in n̄. As c rises, n̄ increases.

We have seen that this has a negative impact on the break point transport costs as long as

n̄ is sufficiently large. In this case, therefore, the direction of the indirect effect is opposite

to that of the direct effect; consequently, the direction of the overall change depends on the

relative magnitudes of the two effects.

These results are summarized in the following proposition.

Proposition 2. (Factors affecting the break points)

The break points rise, and the segregation becomes more likely to break, as

i) the population distribution gets more biased, and/or

ii) the potential of the economy declines (given that it is sufficiently high and the population

distribution is not symmetric).

4.2 Full agglomeration

We next examine full agglomeration, in which firms are concentrated in one region, i.e., a

“core”, and all the consumers in the economy visit a shop in that region. Let region i be

the core. Region j 6= i is referred to as a “periphery”. The pattern is supported by an

approach negative infinity. Consequently, ∂tBR/∂n̄ < 0 and ∂t̄BR/∂n̄ < 0 for sufficiently large n̄.
17Note that d2uC(ni)/dc dni = 13/(6n3

i ) > 0.
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equilibrium, or is “sustainable” only if (18) is satisfied. If this condition did not hold, the

consumers in the periphery would stop going shopping.

For free entry conditions, (4) is satisfied because si = 1 > ŝC by Assumption 2. Next,

let us examine (5). Since si = 1 for (ni, nj) =
(
nC(1) + 1, 0

)
and Π̃C

(
1, nC(1) + 1

)
< 0 by

the definition of nC(·), the first inequality of (5) is satisfied. The second inequality, on the

other hand, demands that no single firm be willing to launch a business in the periphery.

To begin with, suppose that

t < u
(
nC(1)

)
− u(1). (23)

Then, even if one firm starts a business in the periphery, the consumers in that region, as

well as those in the core, continue to visit a shop in the core. Therefore, (23) is a sufficient

condition for no single firm to be willing to operate in the periphery. On the other hand, a

necessary condition is that

t ≤ u
(
nC(1)

)
− u(1). (24)

Suppose that this is not the case. If a firm began a business in the periphery, consumers

in that region would prefer visiting it to visiting a counterpart in the core. The shop in

the periphery would therefore attract at least λ2L̄ consumers and obtain a positive profit

because of (16). Hence, (24) is a necessary condition.

Now, note that (23) implies (18) because u(1) > 0. Therefore, (23) is a sufficient con-

dition for full agglomeration being sustainable. However, (24) is a necessary condition for

this. These conditions indicate that if t is sufficiently low, full agglomeration is sustainable;

otherwise, it is not. The following proposition gives two critical levels of transport costs, i.e.,

“sustain points”, which are yardsticks in judging the sustainability of full agglomeration.

Proposition 3. (Sustain points for full agglomeration)

There are critical values tSS and t̄SS with tSS < t̄SS such that full agglomeration is sustain-

able if t ≤ tSS, but it is not sustainable if t ≥ t̄SS. The values are given by the following

equations:

tSS ≡ u (n̄ − 1) − u(1) = tSS
T ≡ r − ΨT − Φ,

t̄SS ≡ u (n̄) − u(1) = t̄SS
T ≡ r − ΨT − Φ̄,

(25)

where T = M if r < 3c/4 and T = B otherwise; ΨM ≡ 4r
3
2 c−

1
2
/
9
√

3; ΨB ≡ c/6; Φ ≡

13c
/[

12(n̄ − 1)2
]
; and Φ̄ ≡ 13c

/(
12n̄2

)
.

The proof is tedious and is relegated to the Appendix.

Figure 4 depicts u (n̄ − 1), u (n̄), and u(1) as functions of r.18 tSS is measured by the

vertical distance between the u (n̄ − 1) curve and the u(1) curve, whereas t̄SS is measured
18It is readily verified that both the u (n̄ − 1) curve and the u (n̄) curve cut u(1) at r < 3c/4 since n̄ > 16

1
3

from Assumption 2.
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by that between the u (n̄) curve and the u(1) curve. Full agglomeration is sustainable if t is

smaller than the former distance, and only if it is smaller than the latter distance.

Figure 4: Sustain points

Equation (25) enables us to examine how various factors affect the sustain points. The

key observation is that the sustain points give the maximum transport cost that induces

consumers in the periphery to visit a shop in the core when one firm happens to launch a

business in the periphery.

First, tSS and t̄SS , or the two vertical distances mentioned above, increase with r. This

is explained as follows. Suppose that r rises. The utility level of a consumer who visits a

shop in the core increases only through the reservation-price effect; it therefore increases by

the same amount as r. Consequently, the slopes of the u(n̄−1) curve and the u(n̄) curve are

equal to 45◦. Now, suppose that a firm opens a shop in the periphery. The utility level of

a consumer who visits that shop may or may not increase. Two cases can be distinguished.

On the one hand, when the market area of the only firm is M type, the utility level increases

since uM increases with r. In addition, it can be shown that the amount of the increase is

smaller than that of r. Therefore, in the range of r associated with the M type (r < 3c/4),

the u(1) curve slopes upward but is flatter than the 45◦ line. On the other hand, when

the market area of the only firm is B type, the utility level remains unchanged since uB is

independent of r. Therefore, the u(1) curve is horizontal in the range of r associated with

the B type (r ≥ 3c/4). These arguments establish that the vertical distance between the

u(n̄ − 1) curve and the u(1) curve, and that between the u(n̄) curve and the u(1) curve,

increase with r.

Secondly, tSS and t̄SS increase with n̄. As n̄ grows, more firms come to operate in the

core. This raises the utility level of a consumer who visits a shop in that region through the

pro-competitive effect. Thus, the u(n̄ − 1) curve and the u(n̄) curve shift upward. In the

periphery, in contrast, nothing is affected by the change in n̄ because only one firm operates

in that region. Consequently, the u(1) curve does not move. Hence, the vertical distances

increase with n̄.

Thirdly, and finally, both tSS
B and t̄SS

B decrease with c, but its effects on tSS
M and t̄SS

M are

ambiguous.19 We can explain this with the help of Figure 5. On the one hand, as c rises,

the u(n̄ − 1) curve and the u(n̄) curve shift downward. In the figure, the u(n̄ − 1) curves

before and after the change are depicted by the solid line and the dotted line, respectively

19Tedious computation yields dtSS
M /dc = (ΨM − 2Φ)

‹

(2c), dtSS
B /dc = −(ΨB + Φ)

‹

c < 0, dt̄SS
M /dc =

(ΨM − 2Φ̄)
‹

(2c), and dt̄SS
B /dc = −(ΨB + Φ̄)

‹

c < 0 (note that n̄ depends on c).
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(the u(n̄) curves are not shown). On the other hand, the quadratic part of the u(1) curve

rotates clockwise since uM decreases with c, whereas the horizontal part shifts upward since

uB increases with c. In the figure, the u(1) curves before and after the change are also

depicted by the solid line and the dotted line, respectively. Hence, for r > 3c/4, the rise

in c necessarily shortens the vertical distances: it lowers the sustain points. For r ≤ 3c/4,

on the other hand, it may shorten or strengthen the vertical distances because the u(n̄− 1)

curve and the u(1) curve (and u(n̄) curve and the u(1) curve) move in the same direction:

the direction of the change in the sustain points is ambiguous.

Figure 5: Effect of a change in c on the sustain points

We have established the following proposition.

Proposition 4. (Factors affecting the sustain points)

The sustain points rise, and full agglomeration becomes more likely to be sustainable, as

i) the reservation price goes up,

ii) the potential of the economy grows, and/or

iii) the characteristics-cost coefficient declines when r ≥ 3c/4.

4.3 Partial agglomeration

We also examine partial agglomeration, where firms are concentrated in region i, i.e., the

core, but attract only consumers living in that region (i = 1, 2), that is, the consumers in

the other region, the periphery, refrain from going shopping. It is straightforward to see, by

reasoning similar to that used in the previous subsections, that the necessary condition for no

single firm having an incentive to set up in the periphery is given by t ≤ u
(
nC(λi)

)
− u(1).

However, this contradicts (19) since u(1) > 0. Hence, there is no possibility of partial

agglomeration being supported by an equilibrium.

Proposition 5. (Partial agglomeration)

Partial agglomeration is not an equilibrium pattern.

4.4 Incomplete agglomeration

Finally, let us consider incomplete agglomeration. All the consumers in region i, i.e., the

core, go to a shop in their home region, and some of the consumers in the periphery visit a
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shop in their home region but the rest go to the counterpart in the core (i = 1, 2). We do

not pay any further attention to this pattern for two reasons.

First, it is “unstable”.20 As the number of firms in one region diverges slightly from the

equilibrium number by accident, the equality in (20) breaks: consumers in the periphery

are now not indifferent between visiting a shop in the core and visiting a counterpart in

the periphery. The economic geography therefore turns to either full agglomeration or

segregation. There is no force that is able to restore it to incomplete agglomeration.

More importantly, equilibrium with incomplete agglomeration does not exist, except for

a singular case. Here, one needs to recall that the equilibrium number of firms must be an

integer. Now, suppose that (n0
1, n

0
2) satisfies (20). Then, both n0

1 and n0
2 are integers only

in a singular case: at least either of them is almost always a non-integer, in which case the

equilibrium does not exist. In addition, suppose that n0
1 is not an integer, without loss of

generality. Even if n1 is an integer that is quite close to n0
1, incomplete agglomeration cannot

brestorere realized. This is because, however close the integer is to n0
1, the consumers in the

periphery are not indifferent between visiting a shop in the core and visiting a counterpart

in the periphery, which results in either full agglomeration or segregation.

4.5 Effects of parameter changes on economic geography

We are now ready to study how economic geography depends on various parameters. The

most important parameter is transport cost. In Figure 6, the three thick lines represent the

equilibrium patterns, i.e., segregation (s1 = λ1), full agglomeration at region 1 (s1 = 1),

and full agglomeration at region 2 (s1 = 0). These show that segregation does not break

for t > t̄BR, and that full agglomeration is sustainable for t ≤ tSS . The figure shows a

remarkable resemblance to that in conventional NEG models. When the transport cost is

too high, only segregation, corresponding to dispersion in the NEG models, is supported by

an equilibrium. When the transport cost is medium, both segregation and full agglomeration

become equilibrium patterns. Finally, when it is sufficiently low, only full agglomeration is

supported by an equilibrium. Thus, we can reiterate a common narrative in the NEG

literature: as the transport cost declines over a long period of time, the economic geography

shifts from segregation (dispersion) to (full) agglomeration.

Figure 6: Transport costs and economic geography

20In order to discuss the stability in a rigorous manner, it would be necessary to formulate the behaviors

of firms and consumers off the equilibrium as a dynamical system. However, expanding the model in such

a direction does not add much insight, although it involves considerable elaboration. Therefore, we believe

that it is better to treat this matter informally.
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One might wonder if the sustain points are greater than the break points, as the figure

describes. We can show that this is indeed the case, as long as n̄ is sufficiently large.

Proposition 6. (Relationship between break points and sustain points)

If n̄ is sufficiently large, t̄BR < tSS.

The proof is tedious and is relegated to the Appendix.

This result guarantees that as long as n̄ is sufficiently large, there is an overlap in the

range of t where both segregation and full agglomeration are supported by an equilibrium. In

this range, there are three multiple equilibria, and which of them is selected is indeterminate.

This may be determined by a historical accident, in which case hysteresis is present, or by

the expectations of firms and consumers. As is well known in the NEG literature, the

existence of this overlap has many important implications, especially on economic policies

(see Baldwin et al. (2003), for example).

The pitchfork diagram also shows by a thin dotted line the locus of t̄BR when λ1, mea-

sured by the vertical axis, changes. The line, which we refer to as a BR line, slopes upward

since t̄BR increases with λ1. Thus, segregation is more likely to break when the population

distribution is more biased, which we have already seen in i) of Proposition 2.

It is also straightforward to examine the effects on the economic geography of changes in

other parameters. First, as r rises, the sustain points increase (see i of Proposition 4), but

it makes no impact on the break points. Therefore, full agglomeration becomes more likely

to be sustainable and nothing changes for segregation. Secondly, as c declines, the sustain

points increase as long as c is sufficiently low (see iii of Proposition 4). Because the break

points remain unchanged, in this case, the change only makes full agglomeration more likely

to be sustainable. Thirdly, and lastly, the effect of a change in n̄, when n̄ is sufficiently large,

is a little more complicated. As it rises, the break points decrease and the sustain points

increase. Therefore, the rise makes segregation less likely to break and full agglomeration

more likely to be sustainable. Thus, both patterns become more likely to be an equilibrium

pattern. Consequently, the range of the overlap expands and more indeterminacy is involved

in the economic geography.

5 Concluding remarks

This paper has studied the economic geography realized when consumers are heterogeneous

in their tastes and are uncertain about the characteristics of the available varieties in re-

spective commercial areas. We have verified that such a combination of taste heterogeneity
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and imperfect information can be a source of spatial agglomeration. Thus, it can substitute

for the role played by the co-movement of production and income in NEG models. Fur-

thermore, it has been shown that only two distribution patterns, i.e., segregation and full

agglomeration, can be supported by an equilibrium. We have identified critical values in the

transport cost: if the transport cost is higher than the (upper) break point, the segregation

does not break; if it is lower than the (lower) sustain point, full agglomeration is sustained.

Thus, the results exhibit a remarkable resemblance to those of standard NEG models; this

indicates that the NEG models provide merely one of several, or possibly many, explanations

for agglomeration phenomena.
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[1] Anderson, Simon P.; André de Palma; and Jacques-François Thisse (1992), Discrete
Choice Theory of Product Differentiation, The MIT Press, Cambridge, MA.

[2] Baldwin, Richard; Rikard Forslid; Philippe Martin; Gianmarco Ottaviano; and Frederic
Robert-Nicoud (2003), Economic Geography and Public Policy, Princeton University
Press, Princeton, NJ.

[3] Combes, Pierre-Philippe; Thierry Mayer; and Jacques-François Thisse (2008), Economic
Geography, Princeton University Press, Princeton, NJ.

[4] Economides, Nicholas (1988), “Symmetric equilibrium existence and optimality in dif-
ferentiated product markets,” Journal of Economic Theory, 47, 178-94.

[5] Forslid, Rikard and Gianmarco Ottaviano (2003), “An analytically solvable core-
periphery model,” Journal of Economic Geography, 3, 229-40.

[6] Fujita, Masahisa; Paul Krugman; and Anthony J. Venables (1999), The Spatial Economy:
Cities, Regions, and International Trade, The MIT Press, Cambridge, MA.

[7] Hotelling, Harold (1929), “Stability in competition,” The Economic Journal, 39, 41-57.

[8] Konishi, Hideo (2005), “Concentration of competing retail stores,” Journal of Urban
Economics, 58, 488-512.

[9] Krugman, Paul (1991), “Increasing returns and economic geography,” Journal of Polit-
ical Economy, 99, 483-99.

[10] Krugman, Paul and Anthony J. Venables (1995), “Globalization and the inequality of
nations,” Quarterly Journal of Economics, 110, 857-80.

[11] Martin, Philippe and Carol A. Rogers (1995), “Industrial location and public infras-
tructure,” Journal of International Economics, 39, 335-51.

[12] Ottaviano, Gianmarco; Takatoshi Tabuchi; and Jacques-François Thisse (2002), “Ag-
glomeration and trade revisited,” International Economic Review, 43, 409-36.

[13] Salop, Steven C. (1979), “Monopolistic competition with outside goods,” The Bell
Journal of Economics, 10, 141-56.

[14] Stahl, Konrad (1982), “Differentiated products, consumer search, and locational
oligopoly,” The Journal of Industrial Economics, 31, 97-113.

27



[15] Venables, Anthony J. (1996), “Equilibrium locations of vertically linked industries,”
International Economic Review, 37, 341-59.

[16] Wolinsky, Asher (1983), “Retail trade concentration due to consumers’ imperfect infor-
mation,” The Bell Journal of Economics, 14, 275-82.

28



Appendix

Proof of Lemma 1.

First, we show that it is an equilibrium that every firm charges pM if r < rM
i . Note

that r < rM
i guarantees that the market area of each firm is indeed M type when every

firm charges pM . Furthermore, suppose that a firm charges p′ but all the other firms charge
pM . The market area of the deviating firm can be no greater than mM (p′), whatever p′

is. Therefore, its profit does not exceed πM
i (p′). However, since pM maximizes πM

i (·),
πM

i (p′) ≤ πM
i

(
pM

)
. Hence, there is no incentive for such a deviation.

Next, we show that it is an equilibrium that every firm charges pC
i if r > rC

i . Note
that r > rC

i guarantees that the market area of each firm is indeed C type when every
firm charges pC . Furthermore, suppose that all the firms except firm k charge pC

i . By
construction, firm k also charges pC

i , given that its market area becomes C type. Thus,
what we need to show is that the firm cannot obtain a greater profit by charging p′ that
does not make its market area C type. First, suppose that firm k charges such a low price
that the subjective price of its variety becomes lower than pC

i at the location of firm k + 1.
Because p′ + c/n2

i > pC
i for any p′ > 0, no such undercutting is feasible. Secondly, suppose

that firm k charges such a high price that its market area becomes M type. If pC
i +c/n2

i ≥ r,
no such over-cutting is profitable because firm k has to charge p′ ≥ r. Then, suppose that
pC

i + c/n2
i < r. Three observations follow: i) The market area of firm k becomes M type

if and only if p′ > ρi(pC
i ). However, pC

i + c/n2
i < r implies that ρi(pC

i ) > pM , as long as
r > rC

i . Because function πM
i (·) is concave and pM gives its maximum, p′ > ρi(pC

i ) > pM

implies that πM
i (p′) ≤ πM

i

(
ρi(pC

i )
)
. ii) πM

i

(
ρi(pC

i )
)

= πC
i

(
ρi(pC

i ), pC
i

)
by construction. iii)

πC
i

(
ρi(pC

i ), pC
i

)
≤ πC

i (pC
i , pC

i ) since pC
i maximizes πC

i (·, pC
i ). These three observations imply

that πM
i (p′) ≤ πC

i (pC
i , pC

i ). Hence, no such over-cutting is profitable. Thirdly, and lastly,
suppose that firm k charges a price equal to ρi(pC

i ), so that its market area becomes B type.
Because πB

i

(
ρi(pC

i )
)

= πC
i

(
ρi(pC

i ), pC
i

)
≤ πC

i (pC
i , pC

i ), such over-cutting is not profitable
either.

Furthermore, we show that it is an equilibrium that every firm charges pB
i if and only if

rM
i ≤ r ≤ rC

i . Suppose that all the firms except firm k charge pB
i . Note that dπM

i (p)/dp
∣∣
p=pB

i

<=
>

0

if r
>=
<

rM
i . If r ≥ rM

i , the firm does not benefit from a slight increase in its price, which will

change its market area to the M type. If r < rM
i , in contrast, the firm benefits from such

over-cutting. Similarly, we can see that dπC
i (p, pB

i )/dp
∣∣
p=pB

i

>=
<

0 if r
<=
>

rC
i . Therefore, if

r ≤ rC
i , the firm does not become better off as a result of a price reduction that makes

its market area C type. Otherwise, it does become better off. Hence, rM
i ≤ r ≤ rC

i is a
necessary and sufficient condition for pB

i constituting an equilibrium.
Now, suppose that r < rM

i . We have seen that pM is an equilibrium price but pB
i is

not. Furthermore, since r < rM
i implies that r < rC

i , pC
i is not an equilibrium price either.

Consequently, pM is a unique equilibrium price. Similarly, pC is a unique equilibrium price
if r > rC

i . Lastly, if rM
i ≤ r ≤ rC

i , neither the M type nor the C type is realized (recall the
discussion regarding (12) or (13)), and, therefore, pB

i is a unique equilibrium.

Proof of Proposition 1.
First, suppose that t ≤ tBR. Because nC(λ1) > n̄λ

1
3
1 − 1 and nC(λ2) ≤ n̄λ

1
3
2 (see (15)),
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uC
(
nC(λ1)

)
−uC

(
nC(λ2)

)
≥ tBR. Therefore, t ≤ uC

(
nC(λ1)

)
−uC

(
nC(λ2)

)
= u

(
nC(λ1)

)
−

u
(
nC(λ2)

)
since nC(λ1) ≥ 2 and nC(λ2) ≥ 2 by Assumption 2. Consequently, the necessary

condition, (17), does not hold. Hence, the pattern breaks. Secondly, let us suppose that
t > t̄BR. Because nC(λ1) ≤ n̄λ

1
3
1 and nC(λ2) > n̄λ

1
3
2 − 1, uC

(
nC(λ1) + 1

)
− uC

(
nC(λ2)

)
≤

t̄BR. Therefore, t > uC
(
nC(λ1) + 1

)
− uC

(
nC(λ2)

)
= u

(
nC(λ1) + 1

)
− u

(
nC(λ2)

)
and,

consequently, the sufficient condition, (21), holds. Hence, the pattern does not break.

Proof of Proposition 3.
First, suppose that t ≤ tSS . Because nC(1) > n̄ − 1, u

(
nC(1)

)
− u(1) > tSS . Therefore,

t < u
(
nC(1)

)
− u(1) and, consequently, the sufficient condition, (23), holds. Hence, full

agglomeration is sustainable. Secondly, let us suppose that t ≥ t̄SS . Because nC(1) ≤ n̄,
u
(
nC(1)

)
− u(1) ≤ t̄SS . Therefore, t ≥ u

(
nC(1)

)
− u(1) and, consequently, the necessary

condition, (24), does not hold. Hence, full agglomeration is not sustainable.

Proof of Proposition 6.

If r < 3c/4, lim
n̄→∞

tSS − t̄BR = lim
n̄→∞

tSS
M − t̄BR = r

3
2

[
1
r

1
2
− 4

9(3c)
1
2

]
> 0, because r < 3c/4

implies that r < 273c/16. Instead, if r ≥ 3c/4, lim
n̄→∞

tSS − t̄BR = lim
n̄→∞

tSS
B − t̄BR = r−c/6 >

0. By continuity, therefore, t̄BR < tSS for sufficiently large n̄.
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