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1 Introduction

It is often observed that transport costs differ depending on directions of shipments. Many

of us, for instance, know that a flight from the East coast to the West coast can cost

considerably more or considerably less than the counterpart in the reverse direction. To

give another example, the report of the freight rates on three major liner trade routes by

UNCTAD (2008) indicates their marked difference between pairwise directions of shipments

(see Table 1). In addition, Cariou and Wolff (2006) compute the freight rates of maritime

transport between Europe and the Far East adjusting the BAF (bunker adjustment factor),

and show that they exhibit a significant directional imbalance during the period of 2000-

2004: the rate for westbound cargo is always, and twice to third times for most periods,

higher than that for eastbound cargo. Finally, Jonkeren et al. (2008) report that the freight

rates for trips originating from Rotterdam are 32 percent higher than those arriving there

during the period of 2003-2007.

Table 1. Freight rates (market averages) per TEU on the three major liner trade routes.

($ per TEU.)

Transpacific Europe-Asia Transatlantic

Asia-USA USA-Asia Europe-Asia Asia -Europe US-Europe Europe-USA

2006

First quarter 1,836 815 793 1,454 995 1,829

Second quarter 1,753 828 804 1,408 1,010 1,829

Thrid quarter 1,715 839 806 1,494 1,041 1,854

Fourth quarter 1,671 777 792 1,545 1,066 1,762

2007

First quarter 1,643 737 755 1,549 1,032 1,692

Second quarter 1,675 765 744 1,658 1,067 1,653

Thrid quarter 1,707 780 777 1,952 1,115 1,725

Fourth quarter 1,707 794 905 2,054 1,147 1,766

2008

First quarter 1,725 861 968 2,021 1,193 1,700

Second quarter 1,837 999 1,061 1,899 1,326 1,652

Source: UNCTAD (2008).

One of the most important reasons for this directional imbalance is a difference in volumes

of trade in each direction. Jonkeren et al. (2008), using the data on inland waterways

in northwest Europe, find out that the freight rates of shipments in a particular direction

positively depend on the total amount of shipments in that direction. In a standard textbook,

this is explained as follows (see, for example, Boyer (1997)). Consider the situation in
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which the demand for transport services in one direction is larger than that in the opposite

direction. The shipment in the former direction is sometimes called a ‘front-haul’ and that in

the latter direction a ‘back-haul’. Thus, the demand curve for the front-haul lies above that

for the back-haul. An equilibrium is realized when the sum of the demand price (marginal

evaluation) of the front-haul and that of the back-haul at a particular number of round trips

equals the cost per round trip. In other words, the equilibrium is reached at the point where

the curve derived by adding the two demand curves vertically cuts the curve representing the

cost per round trip. The total cost of a round trip is then divided between the front-haul and

the back-haul according to their demand prices. By construction, therefore, the front-haul

becomes more expensive than the back-haul at the equilibrium. Now, note that it is the

cost per round trip but not the costs of each one-way trip that matters in this explanation.

This is because transport firms or ‘carriers’ produce transport services (shipments) in two

directions jointly. Main reason is that they usually face a physical constraint that transport

equipment such as cargo ships, freight cars and cargo trucks eventually return to a home

port, namely, a ‘return constraint’.

This intuitive explanation, though quite helpful to grasp the nature of the matter, has

limitations. For one thing, it lacks an analysis of underlying behaviors of individual carriers.

What decisions they make is not obvious, however, because their problem involves joint

production with a return constraint. What is more important, it implicitly assumes that

the demand for the transport services in a particular direction is independent of the price of

the services in the opposite direction. This is not true in the reality. A change in a price of

transport services in one direction affects the demand behaviors of consumers in a destination

through a change in delivered prices of goods, which in turn gives an impact on wage rates

not only in the destination but also in the region of embarkation. This further changes

regional incomes as well as price indices in both regions. To take into account these effects

altogether, we need to conduct a general equilibrium analysis, in which prices and quantities

of transport services in each direction are all determined simultaneously. In contrary, there

have been surprisingly few attempts to discuss the determination of transport prices within a

general equilibrium framework. One reason might be that they have long lacked a tractable

general equilibrium framework that can deal with the relationship between regional trade

and transport costs. Nevertheless, we are now provided with a variety of so-called ‘new

economic geography’ models, which has been developed by a number of researchers since

Krugman (1991). The first purpose of this paper is, thus, to explain from the behaviors of

individual carriers what levels transport prices are determined at and why and how they are

directionally imbalanced, based on a general equilibrium model of new economic geography.
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The study of the determination of transport prices, especially when the possibility of

their directional imbalance is taken into consideration, is a matter of great significance in

its own right. However, there is another important reason to study it. It is that transport

prices affect locations of economic activities, which is a fundamental message of new eco-

nomic geography. In particular, this suggests a possibility that the directional imbalance of

transport prices, especially such a long-term and steady imbalance as the one observable in

Table 1, gives an influence on economic geography. Suppose, for example, that the demand

for the transport services from a bigger region to a smaller one is larger than that in the

opposite direction. Then, the price of the services in the former direction is higher than

that in the latter direction, which implies that exports of the bigger region become more

expensive than those of the smaller region at the places of consumption, ceteris paribus. It

is not surprising that such a systematic difference affects allocation of economic activities

between two regions. The second purpose of this paper is, thus, to examine such effects of

a directional imbalance of transport prices upon economic geography.

For all its importance, the directional imbalance of transport costs has seldom attracted

attentions of researchers in the field of new economic geography (see Fujita et al. (1999);

Fujita and Thisse (2000); and Fujita and Thisse (2002)). A notable exception is a work by

Baldwin et al. (2003), who explicitly examine the imbalance. In their study, however, the

imbalance is given and no transport sector is considered. Moreover, not only the directional

imbalance but even the determination of a transport price has rarely been treated in the

literature: in most studies, the price is regarded as an exogenous parameter and a decision

making process of transport firms is abstracted away. There is one exception: Behrens et al.

(2006) examine the impacts of regulation of a transport sector upon welfare levels, paying

attention to incentives of transport firms, though in a very simple way.1

In order to explain the determination of transport prices and examine the impact of

their directional imbalance upon economic geography, we construct a two region model

with a transport sector. Carriers produce transport services in two directions jointly under

the return constraint mentioned earlier. Their decision making process is formulated as a

simple game à la Bertrand. As in the conventional models in the literature, furthermore,

we characterize two types of distribution patterns, a symmetric pattern, in which a mobile

factor is distributed equally in the two regions, and core-periphery patterns, in which it is

concentrated in one region; and examine how the possibility of a directional imbalance of

1Some works discuss an endogenous determination of transport costs but do not deal with a transport

sector explicitly. Mori and Nishikimi (2002), for instance, examine the effect of economy of density on

transport costs. Bougheas et al. (1999), and Mun and Nakagawa (2008) study impacts of infrastructure

investment. Finally, Takahashi (2006) examines a selection of a transport technology, which determines

transport costs.
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transport prices affects the conditions for each type of distribution pattern to be supported

by a stable equilibrium.

Main findings are summarized as follows. First, the equilibrium transport price of the

services in a particular direction is a nondecreasing step-shaped function of the relative size

of an embarkation region. More specifically, as the relative size of a region gradually increases

from a very low level, the price of the services from that region to the other first rises, then

becomes constant and then rises again. A corollary of this finding is that the transport price

in a ‘binding direction’, the direction with a larger amount of shipment, is higher than that

in the opposite direction, a ‘slack direction’. Second, when two regions are sufficiently alike

in size, the amounts of inter-regional shipments in respective directions are equal. When one

region is much bigger than the other, instead, volumes of trade are imbalanced. Third, the

directional imbalance of transport prices works to stabilize the symmetric pattern. Lastly

but not the least, as we allow for the directional imbalance, the core-periphery patterns

become less likely to be sustainable. The last two results demonstrate that the directional

imbalance acts as a centripetal force.

The paper is organized as follows. In the next section, a basic model is presented. Section

3 formulates a transport sector and derives a Nash equilibrium of a game played by carriers.

In the subsequent section, we explore the effects of a directional imbalance of transport costs

upon economic geography. Finally, Section 5 concludes.

2 Model

As a basic framework, we use a modified version of an analytically solvable model by Forslid

and Ottaviano (2003), which is presented as a ‘footloose entrepreneur model’ in Baldwin et

al. (2003).

2.1 Basic Framework

There are two regions, denoted by 1 and 2; two sectors, agriculture and manufacturing

sectors; and two factors, workers and entrepreneurs.

Workers, whose number is denoted by l, are distributed equally in two regions and cannot

migrate across regions. There are, on the other hand, n entrepreneurs, of which λ1n live

in region 1 and λ2n live in region 2 (λ1 ∈ [0, 1], λ2 ≡ 1 − λ1). Instead of λ1, a parameter

λ ∈ [0, 1] with λ ≡ λ1 will be used when it is more convenient. Entrepreneurs can freely

move across regions.

The agricultural sector is competitive and produces a homogeneous product through a

constant returns to scale technology. More specifically, aA workers are used to produce 1
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unit of agricultural goods. This implies that their price in region i is equal to aAwA
i , where

wA
i is a wage rate of workers in that region (i = 1, 2). The agricultural goods can be shipped

from one region to the other with no cost so that their prices and, consequently, wage rates

of workers are equalized in two regions. The wage rate is taken as a numeraire.

To the contrary, the manufacturing sector is monopolistically competitive and produces a

differentiated product through an increasing returns to scale technology. Each entrepreneur

owns a firm which produces a variety in the region of her residence. Thus, there are n

varieties in the economy, of which λin are produced in region i (i = 1, 2). Each firm

produces 1 unit of a variety using aM workers and skill of an entrepreneur. All the revenue

left after the payment for workers is taken by an entrepreneur. In other words, the profit of

a firm is equal to 0:

piqi − aMqi − wi = 0, (i = 1, 2) (1)

where pi and qi denote a price and an amount of a variety produced in region i, and wi a

wage rate received by an entrepreneur in that region.

The workers and entrepreneurs have the same preference represented by a utility func-

tion, U = (CM )µ (CA)1−µ. Here, CA is a consumption of agricultural goods and CM =

[
∫ n

0
x(k)ρ dk]1/ρ is an aggregate of a manufacturing consumption with x(k) denoting the

amount of the kth variety (ρ ∈ (0, 1)).

Entrepreneurs sell their varieties at the price that maximizes their own wages. Since

not only they are subject to the same technological condition but also all the varieties enter

the utility function in a symmetric manner, they charge the same price as long as they are

located in the same region. Thus, we denote the prices of a variety produced in each region

by p1 and p2.

Next, let us introduce transport costs. It takes no cost to ship a manufacturing product

within the same region. In order to ship it across regions, however, consumers need to

use transport services, which are provided by transport firms or ‘carriers’. Carriers take a

portion of manufacturing products by way of compensation for the transport services they

provide. The portion is proportional to the amount of shipment and depends on its direction.

Let τi ∈ (0, 1) be the amount taken by a carrier when it carries 1 unit of a manufacturing

product from region i to region j (i = 1, 2 and j 6= i). (Bear in mind that the subscript of

τ refers to the region of the origin of shipment.) That is to say, transport cost or a price of

transport services from region i to region j is equal to τipi.

Three comments are in order. First, in our setting, transport costs become proportional

to the prices of the products to be shipped, that is, they are ad valorem.2 Second, what

2The assumption of the ad valorem transport costs is common among all the economic geography models

based on a Dixit-Stiglitz framework. It is primarily for the sake of analytical convenience. In addition,
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distinguishes our model from conventional ones is that we are taking into account the pos-

sibility that transport costs may differ depending on directions of shipment, that is, τ1 is

not necessarily equal to τ2. Third and lastly, the delivered price in region j of a variety

produced in region i is equal to (1 + τi)pi. In what follows, ti ≡ 1 + τi may be used as an

alternative measure of transport costs rather than τi whenever it is useful (i = 1, 2). Note

that ti ∈ (1, 2) by definition.

Let Xii and Xij be the total demands for a variety produced in region i by region i

consumers and region j consumers, respectively. Applying a standard procedure to derive

consumers’ demand functions yields

Xii = µp−σ
i Pσ−1

i Yi, Xij = µt−σ
i p−σ

i Pσ−1
j Yj . (i = 1, 2; j 6= i) (2)

Here, σ ≡ 1/(1 − ρ) > 1 is an elasticity of substitution, Yi is an aggregate income and

Pi =
[
n
(
λip

1−σ
i + λjt

1−σ
j p1−σ

j

)] 1
1−σ

(i = 1, 2; j 6= i) (3)

is a price index of the manufacturing products consumed in region i. As will be shown later,

all the manufacturing products taken by carriers for transport services are used up as inputs

for their production. Therefore, the amount of each variety produced in region i, qi, must

be equal to the sum of demands by consumers in respective regions:

qi = Xii + tiXij . (i = 1, 2; j 6= i) (4)

An entrepreneur in each region maximizes her wage, wi, given by (1) (i = 1, 2), setting

prices at

p1 = p2 = p ≡ σ

σ − 1
aM . (5)

She therefore receives a wage equal to

wi =
1

σ − 1
aMqi. (i = 1, 2) (6)

Moreover, because no carriers earn a positive profit as will be shown in the next section, the

aggregate income consists of workers’ and entrepreneurs’ earnings:

Yi =
l

2
+ λinwi. (i = 1, 2) (7)

Finally, by choosing appropriate units, the analysis becomes simpler. First, for the

agricultural goods, we take a unit so that the labor input coefficient aA becomes equal to 1.
a number of empirical studies have found a positive relationship between shipping prices and values of

the goods shipped. A 1 % increase in the value per kilo, for instance, results in a 0.55% increase in the

transport cost (import charges) for the US imports (Blonigen and Wilson (2008)) and a 0.34% increase

in the transport cost in 16 Latin-American countries (Wilmsmeier et al. (2006)). The main reason for the

positive relationship is that high valued products tend to demand more extensive insurance coverage, stricter

security, and an additional care in the process of handling.
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Second, for the manufacturing goods, we do the same so that aM = (σ−1)/σ, which implies

that p = 1. This implies that the measure of transport costs, ti ≡ 1 + τi, actually gives a

delivered price of the manufacturing products that are produced in region i and consumed

in region j (i = 1, 2; j 6= i). Third, the number of workers, l, is normalized to 2. Lastly,

the number of entrepreneurs, n, is normalized to 1. This completes a description of a basic

framework.

2.2 Short-run equilibrium

A system of equations (2) to (7) determines a short-run equilibrium, for which entrepreneurs’

distribution, λ, is given. Substituting (2) to (6) into the two equations in (7) and solving

them simultaneously, we can obtain the equilibrium values of Y1 and Y2:

Yi = σΓ
[
σθ1θ2 + µθi (λiφi − λj)

]
, (i = 1, 2; j 6= i) (8)

where Γ ≡
[
(σθ1 −µλ1)(σθ2 −µλ2)−σ2λ1λ2θ1θ2

]−1 and θi ≡ P 1−σ
i . In addition, φi ≡ t1−σ

i

represents ‘freeness of trade’ (i = 1, 2). By definition, φi ∈ Φ ≡
(
21−σ, 1

)
. Equation (8), in

turn, gives the equilibrium values of demand variables, Xii’s and Xij ’s, by (2).

Furthermore, a volume of trade from region i to region j is equal to Zi ≡ λintiXij

(i = 1, 2, j 6= i). It is convenient to define their ratio:

Ẑ ≡ Z1

Z2
=

λ̂φ1

[
λ̂ (σ − µ) + φ2 (σ + µ)

]
φ2

[
σ − µ + λ̂φ1 (σ + µ)

] , (9)

where λ̂ ≡ λ1/λ2. (In this paper, circumflexes are used to indicate ratios of the variables

pertaining to two regions or two directions.) It is straightforward to see that

Ẑ
{ >=

<

}
1 if λ̂

{ >=
<

} (
φ2

φ1

) 1
2

=
(

t1
t2

)σ−1
2

. (10)

Thus, whether Z1 exceeds Z2 or not depends on transport costs in two directions and a

distribution of entrepreneurs. More specifically, if a region is relatively bigger and/or the

transport cost of an outbound trip is relatively lower compared to that of an inbound trip,

then the outbound trade is more likely to outweigh the inbound trade.

2.3 Long-run equilibrium

In a long run, entrepreneurs move freely across regions seeking a higher level of indirect

utility. Let vi(λ) be the indirect utility for an entrepreneur living in region i:

vi(λ) = K
wi

Pµ
i

= KσΓθ
µ

σ−1
i

[
σ(θj + θiφi) + µλj (φ1φ2 − 1)

]
, (i = 1, 2; j 6= i) (11)

where K ≡ µµ(1 − µ)1−µ > 0.
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This would be a good place to note that transport costs affect a relative level of indirect

utility, v̂ (λ) ≡ v1 (λ) /v2 (λ), through three channels.

d ln v̂(λ)
d ln ti

=
∂ ln ŵ

∂ ln ti

∣∣∣∣
bY const.

+
d ln Ŷ

d ln ti

∂ ln ŵ

∂ ln Ŷ
− µ

d ln P̂

d ln ti
, (i = 1, 2) (12)

where ŵ ≡ w1/w2, Ŷ ≡ Y1/Y2 and P̂ ≡ P1/P2.

First, as a result of a change in transport costs, consumers substitute between imports and

domestic products, which alters a relative wage rate. Suppose that ti rises. Then, region

i products become more expensive in region j (j 6= i), which induces consumers in that

region to shift part of their consumption from now relatively more expensive imports to

now relatively less expensive domestic products. This undermines the demand for region i

products by region j consumers and thus gives an adverse effect on wi, other things being

equal. This negative effect is referred to as an export price effect. At the same time, it

stimulates the demand for domestic products in region j and therefore raises w2. This

import price effect gives a negative impact on the relative wage rate. These two negative

effects are all together referred to as a terms of trade effect, which is represented by the first

term in the right hand side of (12).

Second, the second term describes an effect through regional incomes. The fall in wi and

the rise in wj due to the terms of trade effect bring about a decrease in Yi and an increase

in Yj , respectively. For wi, the decrease in Yi works adversely but the increase in Yj works

favorably. The overall direction of a change of wi depends on the sizes of the changes in

Yi and Yj and the sensitivities of wi to these changes. Unless region j is much ‘bigger’

than region i, that is, unless the former region has a quite large population and/or a big

advantage in transport costs (tj is much lower than ti), however, the effect of the decrease

in Yi dominates that of the increase in Yj .3 Then, wi declines. Otherwise, we have the

opposite: changes in regional incomes result in a rise in wi.

Third and finally, we have a channel through price indices, represented by the last term

of (12). As ti goes up, the delivered price of region i products and, therefore, a price index

increase in region j, which raises a relative price index. This gives an adverse impact on the

relative level of indirect utility.

Now, migration behaviors of entrepreneurs follow a simple equation, which is common

in the literature:

λ̇ = ζ [v1 (λ) − v2 (λ)] , (13)

where ζ > 0 denotes speed of adjustment.

A distribution of entrepreneurs is at a long-run equilibrium if it is a stationary point

of (13). That is to say, an interior distribution (λ ∈ (0, 1)) is supported by a long-run
3Note that this applies to the case where two regions are of equal size. It is because a wage rate responds

more to the income of a home region than to that of a foreign region, ceteris paribus.
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equilibrium if v1(λ) = v2(λ). The core-periphery pattern with λi = 1 is so if vi(1) ≥ vj(1)

(i = 1, 2; j 6= i).

In addition, equation (13) implies that an equilibrium distribution, denoted by λ∗, is

stable if 

dv̂ (λ∗)
dλ

≤ 0 holds when λ∗ ∈ (0, 1),

at least either
dv̂ (1)

dλ
≤ 0 or v̂ (1) > 1 holds when λ∗ = 1, and

at least either
dv̂ (0)

dλ
≤ 0 or v̂ (0) < 1 holds when λ∗ = 0.

3 Determination of transport prices

In this section, we examine determination of transport prices paying a special attention to

how they become divergent depending on directions of shipments.

To begin with, let us normalize the unit of transport services so that 1 unit of them is

necessary to ship 1 unit of a manufacturing product across regions. This implies that the

total demand for the transport services from region i to region j 6= i is equal to the volume

of trade in that direction, i.e., Zi. On the other hand, the total supply of the services is

given by
∑m

h=1 zh
i . Here, zh

i is the amount of services from region i to region j 6= i provided

by an h-th carrier; and m is the number of carriers, which is given. Therefore, the markets

of transport services clear if Z1 =
∑m

h=1 zh
1 and Z2 =

∑m
h=1 zh

2 .

Each carrier must incur two kinds of costs to produce transport services. One is the

costs that depend on the total amounts of shipment in a round trip. They include the costs

to stow and discharge a cargo and a rental cost of containers, for instance. For simplicity,

I assume that a fixed amount, c > 0, of manufacturing products are necessary to handle 1

unit of shipment. Thus, carrier h incurs this type of costs equal to c
(
zh
1 + zh

2

)
(remember

that p = 1). The other is the costs related to a ‘capacity’ of shipment. Suppose that carriers

face the return constraint mentioned earlier, which requires that transport equipment such

as cargo ships, freight cars and cargo trucks eventually return to a home port region. In this

case, part of costs depend on the scale of the equipment dispatched for a round trip, or, we

may call it, a capacity of shipment, which is determined by the size of a front-haul, namely,

max[zh
1 , zh

2 ]. Here again we limit our attention to the simplest case: carriers need to use

manufacturing products whose amount is proportional to max[zh
1 , zh

2 ]. Thus, this ‘capacity

cost’ is given by k max[zh
1 , zh

2 ] (k ≥ 0). In sum, the total costs to produce transport services

is equal to c
(
zh
1 + zh

2

)
+ k max[zh

1 , zh
2 ].4

4Alternatively, we might assume that carriers use labor instead of manufacturing products in the produc-

tion of transport services. Under this assumption, however, the manufacturing products taken by carriers by

way of compensation for transport costs are to be placed in a market and eventually consumed by someone.
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It is important to emphasize that when the amounts of shipments diverges between the

two directions, marginal (and average) costs of shipment differ depending on its direction.

To see this, suppose that zh
1 > zh

2 , without loss of generality. In order to increase a front-

haul, namely, a shipment from region 1 to region 2, it is necessary for carrier h to rent

an additional cargo ship, a freight car or a cargo truck. Such an expansion of transport

equipment or capacity induces the carrier to pay a marginal cost of k as well as c. However,

it does not have to incur such a cost as long as the addition is made to a back-haul, namely,

a shipment from region 2 to region 1. Therefore, the marginal cost of a front-haul is c + k

while that of a back-haul is c.

Moreover, it is assumed that when there is an imbalance, the marginal costs do not

exceed the price of manufacturing products, i.e., 1,. In other words, we assume that c < 1

and c + k < 1. Since k ≥ 0, only the latter inequality matters:

Assumption 1. c + k < 1.

This assumption, as will become clear, guarantees that transport prices are lower than the

price of manufacturing products, 1.

Now, recalling that each carrier receives τi when it carries 1 unit of manufacturing

products from region i to region j 6= i, we can write down an h-th carrier’s profit as

πh ≡ (τ1 − c) zh
1 + (τ2 − c) zh

2 − k max[zh
1 , zh

2 ]. (14)

Carriers choose the prices and the quantities of transport services that maximize the

profit given by (14), playing a two stage game, given total demands Z1 and Z2. In the first

stage, they simultaneously quote prices of transport services, τh
1 ’s and τh

2 ’s (h = 1, · · ·,m).

The carriers who quote the lowest price of τi are entitled to sell in the next stage any amount

of transport services up to Zi/mi where mi is the number of such carriers. Those who fail

to quote the lowest price cannot sell any services. Carriers are thus put in a competitive

environment in the sense that each of them faces an infinitely high elasticity of demand.5

In the second stage, they decide the amounts of services to produce, zh
1 and zh

2 .

This modification involves two problems. First, because the structure of a model changes, we can no longer

consider a conventional model as a special case of our model. As a result, the comparison of results becomes

difficult. Second, technically speaking, it means that ti is to be removed from (4). It turns out that this

change, though it seems minor, makes the analysis much more complicated and prevents us from deriving

clear-cut results.
5It is often maintained that linear shipping, which is one of the two distinct markets of ocean transport

for non-oil cargo, has been characterized by collusive agreements, or shipping conference (see Sjostrom

(2004) and the studies cited there). However, their effectiveness is still an open question (see Hummels

(2007)). Other industries such as tramp shipping, trucking and charter plane industries are allegedly more

competitive. In this paper, we concentrate on a benchmark case of a competitive market.
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We focus on the Nash equilibrium of this transport game that meets the following three

requirements. First, each carrier earns a nonnegative profit. Second, the markets of trans-

port services clear. Third and lastly, behaviors of carriers are symmetric, that is, all of them

quote the same prices and produce the same amounts. In what follows, the term ‘equilib-

rium’ will refer to the Nash equilibrium satisfying all these requirements. To characterize

the equilibrium, it is convenient to distinguish two cases: the case with Ẑ 6= 1 and that with

Ẑ = 1.

First, suppose that Ẑ 6= 1. Let us designate the direction in which total demand for trans-

port services is larger as a ‘binding direction’ and the opposite direction as a ‘slack direction’.

Furthermore, we denote the embarkation region of the shipment in a binding direction by b

and that in a slack direction by s. Thus, Zb > Zs (b = 1, 2; s 6= b). The market clearing and

the symmetric behaviors of carriers demand that each of them produce Z1/m and Z2/m of

respective services. Each carrier then earns a profit equal to
∑

l=1,2 (τl − c)Zl/m− kZb/m.

The first point to make is that as long as Ẑ 6= 1, price markups of transport services in each

direction must be 0 at the equilibrium: τb − c − k = 0 and τs − c = 0. If the price markups

were positive, a carrier could get a higher profit by charging a slightly lower price than its

competitors. For instance, if τb − c − k > 0, a carrier could lower its quote a little from

τb and increase the production from Zb/m to Zb, which gives a higher profit. If the price

markups were negative, on the other hand, it could enhance its profit by slightly reducing

its supply. If τb−c−k < 0, for example, a carrier could contract the production of transport

services in a binding direction so that its amount gets smaller than Zb/m (but still larger

than Zs/m).

This implies that the equilibrium price equals c + k in a binding direction while c in a

slack direction. Several comments are in order. First, because Zb/m > Zs/m by definition,

the shipment in a binding direction is a front-haul and that in a slack direction is a back-haul

for each carrier. Therefore, we can say that each carrier sets the prices equal to the marginal

(and average) costs of shipment in each direction. This indicates that our transport game

is a variant of the Bertrand price setting game. Second, each carrier earns 0 profit at the

equilibrium, which is a typical result of the Bertrand price setting game. Third and lastly,

the next result immediately follows:

Proposition 1. The transport price in a binding direction is no lower than that in a slack

direction.

This result is consistent with an empirical finding by Jonkeren et al. (2008).

Now, suppose that b = 1, that is, the direction from region 1 to region 2 is binding.

Because Ẑ > 1 and (τ1, τ2) = (c + k, c) in this case, (10) implies that λ̂ > λ̂U ≡
[
(c + k +

11



1)
/
(c+1)

]σ−1
2 . Similarly, b = 2 (Ẑ < 1) occurs if and only if λ̂ < λ̂L ≡

[
(c+1)

/
(c+k+1)

]σ−1
2 .

Consequently, we conclude that if there is an equilibrium with Ẑ 6= 1, then the equilibrium

pair of transport prices is given by

(τ∗
1 , τ∗

2 ) ≡

 (c + k, c) if λ̂ > λ̂U

(c, c + k) if λ̂ < λ̂L.
(15)

Furthermore, we can easily show that (τ∗
1 , τ∗

2 ) is indeed supported by a Nash equilibrium

of the transport game.

Lemma 1. The strategy profile in which all the carriers quote the same pair of prices,

(τ∗
1 , τ∗

2 ), is a Nash equilibrium in the transport game.

The proof is tedious and relegated to the Appendix.

Next, consider the remaining case with Ẑ = 1. First of all, (10) requires that a pair of

transport prices satisfy (
τ1 + 1
τ2 + 1

)σ−1
2

= λ̂. (16)

Second, notice that the profit of each carrier at the equilibrium is now equal to (τ1 + τ2 −

2c−k)Z1/m. The nonnegative profit requires that τ1+τ2−2c−k ≥ 0. If τ1+τ2−2c−k > 0,

however, a carrier would make an attempt to undercut either or both prices to get a higher

profit. Therefore, we must have

τ1 + τ2 − 2c − k = 0. (17)

This implies that the profit of each carrier becomes 0 at the equilibrium.

Solving (16) and (17) for τ1 and τ2, we conclude that if there is an equilibrium with

Ẑ = 1, then the equilibrium pair of transport prices is given by

(τo
1 , τo

2 ) ≡

(
λ̂

2
σ−1 (2c + k + 1) − 1

1 + λ̂
2

σ−1
,

2c + k + 1 − λ̂
2

σ−1

1 + λ̂
2

σ−1

)
. (18)

It is readily verified that τo
1 is increasing in λ̂ (and therefore, in λ) while τo

2 is decreasing in

λ̂ (and therefore, in λ). Transport prices coincide with each other at the symmetric pattern

(λ̂ = 1) and diverge more and more as the distribution goes farther away from it.

We need a set of conditions for this pair of transport prices to be supported by a Nash

equilibrium. Suppose that a price of transport services in a certain direction is lower than

c. Then, each carrier has an incentive to cut the service in that direction and earn a higher

profit. Therefore, a Nash equilibrium requires that τo
1 − c ≥ 0 and τo

2 − c ≥ 0. Formally,

this is shown as follows.

12



Lemma 2. The strategy profile in which all the carriers quote the same pair of prices,

(τo
1 , τo

2 ), is a Nash equilibrium in the transport game, if and only if τo
1 −c ≥ 0 and τo

2 −c ≥ 0.

The proof of this lemma, which is relegated to the Appendix, is similar to that of Lemma

1 with some minor changes. By (18), the two conditions τo
1 − c ≥ 0 and τo

2 − c ≥ 0 can be

rewritten as follows:

λ̂L ≤ λ̂ ≤ λ̂U . (19)

Because these two cases with Z 6= 1 and Z = 1 are exhaustive, we have established the

following result.

Proposition 2. The equilibrium transport prices are given by (τ∗
1 , τ∗

2 ) in (15) when (19)

does not hold, and (τo
1 , τo

2 ) in (18) when (19) holds. At the equilibrium, all the carriers earn

0 profit.

The first panel of Fig. 1 shows transport prices as functions of λ for σ = 3, c = 0.2 and

k = 0.3. The solid line represents τ1 and the dotted line τ2. Because τo
1 increases and τo

2

decreases with λ, the transport prices exhibit step-like shapes. As σ rises, furthermore, an

increasing part of τ1 becomes flatter and the range of λ associated with it widens.

— Insert Fig. 1 around here. —

Three remarks are worth adding. First, the 0 profit result implies that the manufacturing

products taken by carriers by way of compensation for the transport services are just used

up as inputs for their production. This enables us to analyze the transport sector and

the manufacturing sector separately, which greatly simplifies the analysis. Second, as has

been postulated, the derived transport prices do not exceed the price of manufacturing

products, namely, 1. When they are given by (τ∗
1 , τ∗

2 ), it is self-evident. When they are

given by (τo
1 , τo

2 ), on the other hand, it may need some explanation. Note that τo
1 reaches

its maximum at λ̂ = λ̂U because it increases with λ̂. However, we can verify by a tedious

computation that τo
1 < 1 at that point as long as Assumption 1 holds. Hence, τo

1 < 1 for

any λ̂ ∈ [λ̂L, λ̂U ]. A parallel reasoning proves that τo
2 < 1 for any λ̂ ∈ [λ̂L, λ̂U ]. Third and

finally, the equilibrium prices are always positive.

To close this section, notice that (9) implies that ∂Ẑ/∂λ̂ > 0 (for constant φ1 and φ2).

Therefore, whenever (τ1, τ2) is given by (τ∗
1 , τ∗

2 ), Ẑ increases with λ. This establishes the

following result.

Proposition 3. When λ̂ < λ̂L, the volume of trade from region 1 to region 2 is smaller

than that in the opposite direction. When λ̂ > λ̂U , to the contrary, it is larger. In both

13



cases, it increases with a size of region 1. Finally, when λ̂L ≤ λ̂ ≤ λ̂U , the volumes of trade

are equal for two directions and they are independent of sizes of two regions.

Diagram (b) of Fig. 1 shows Ẑ as a function of λ (again σ = 3, c = 0.2 and k = 0.3). It

indicates that Ẑ is continuous but that its derivative is not.

4 Impacts of the directional imbalance of transport prices

upon economic geography

In this section, we study how the directional imbalance of transport prices affects economic

geography. Two types of distribution patterns, core-periphery patterns and a symmetric

pattern are discussed in order. Then, the effects of changes in parameters, in particular, the

two parameters related to the costs to produce transport services, upon economic geography

are briefly discussed.

4.1 Core-periphery pattern

To begin with, we consider a core-periphery pattern in which entrepreneurs are concentrated

in region 1, that is, λ = 1. Thus, region 1 is a ‘core’ region while region 2 is a ‘periphery’

region. The other core-periphery patten with λ = 0 can be similarly analyzed.

First of all, since λ̂, which becomes infinitely large at λ = 1, exceeds λ̂U , (τ1, τ2) is given

by (τ∗
1 , τ∗

2 ) = (c + k, c).

Proposition 4. When entrepreneurs are concentrated in region 1, transport prices are given

by (τ1, τ2) = (c + k, c).

As has been mentioned earlier, the core-periphery pattern with λ = 1 is supported by

a long-run equilibrium if v̂(1) ≥ 1; and if so, it is stable when at least either dv̂(1)/dλ ≤ 0

or v̂1(1) > 1 holds. Recall that the condition dv̂(1)/dλ ≤ 0 matters only when v1 and v2

happen to become equal to each other at λ = 1. Because there is no reason to believe that

such a measure-0 occurrence has a particular importance in the real world, one would rather

dismiss it as a singular case. Thus, we focus on the other condition, v̂(1) > 1, namely,

Υ ≡ φ
µ

σ−1
1

[
φ2(σ + µ)

2
+

σ − µ

2φ1

]
− σ < 0, (20)

which is a sufficient condition for the core-periphery pattern to be supported by a stable

long-run equilibrium, or a condition for it to be sustainable according to a terminology in

literature.
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The first point to make is that (20) is always satisfied if

σ < 1 + µ.6 (21)

When (21) holds, therefore, the core-periphery pattern becomes sustainable whatever trans-

port prices are. (21) is known as a black hole condition in the literature. When σ is suffi-

ciently high, to the contrary, Υ becomes positive. Indeed, we can verify that Υ approaches

(1 + φ1φ2)/2φ1 − 1 > 0 as σ goes to the positive infinity.7

Next, to explore the sustainability further, let us draw the locus of Υ = 0 in a φ1 − φ2

plane. Because it corresponds to a sustain point of freeness of trade in a conventional model

with no directional imbalance of transport prices, we call it a sustain curve. Fig. 2 depicts

such curves for four different values of σ, namely, σ = 1.5, σ = 1.9, σ = 3 and σ = 4, with

µ being fixed at 0.8. Now, (20) indicates that Υ increases with φ2. At the area below each

curve, therefore, Υ is negative, that is, the core-periphery pattern is sustainable. At the

area above it, in contrast, the pattern is unsustainable.

— Insert Fig. 2 around here. —

The slope of a sustain curve is equal to

dφ2

dφ1

∣∣∣∣
Υ=0

=
∆

φ2
1(σ − 1)(σ + µ)

,

where ∆ ≡ (σ − µ)(σ − µ − 1) − φ1φ2µ(σ + µ). When the black hole condition, (21), is

satisfied, ∆ apparently becomes negative; and therefore, the sustain curve has a downward

slope at any (φ1, φ2) ∈ Φ2 (remember that Φ ≡ (21−σ, 1)). In Fig. 2, the curve for σ = 1.5

represents this case. When the black hole condition is not satisfied, to the contrary, it is not

straightforward to determine the sign of ∆. From the figure, however, one would conjecture

that the sustain curve is upward sloping for any relevant pair of (φ1, φ2), that is, for any

(φ1, φ2) ∈ Φ2. The following lemma, whose proof is relegated to the Appendix, confirms

that the conjecture is true.

Lemma 3. When the black hole condition is not satisfied, the sustain curve is upward slop-

ing for any (φ1, φ2) ∈ Φ2.

We are now ready to discuss the relationship between a directional imbalance of transport

prices and the sustainability of the core-periphery pattern. Notice that the size of the

imbalance is measured by parameter k since (τ1, τ2) = (c + k, c).

6Note that Υ = σ(Υ′Υ′′−1) where Υ′ ≡ φ
−(σ−µ−1)

σ−1
1 and Υ′′ ≡ [φ1φ2(σ+µ)+σ−µ]/(2σ). For one thing,

Υ′ < 1 if (21) holds, because φ1 < 1. Moreover, Υ′′ < 1 since φ1φ2(σ + µ) + σ − µ < (σ + µ) + σ − µ = 2σ

for φ1 < 1 and φ2 < 1. Hence, Υ < 0.
7Because φ2 ≥ φ1 and φ1 > 2−1/φ1, we have φ2 > 2−1/φ1, which is equivalent to (1+φ1φ2)/2φ1−1 > 0.
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When σ is sufficiently low that the black hole condition is satisfied, on the one hand, a

change in k has no impact on the sustainability. This is because the core-periphery pattern

is sustainable no matter what the levels of transport prices are.

When σ is so high that the black hole condition does not hold, on the other hand,

parameter k does affect the sustainability. Since it does so only through φ1, we have

dΥ
dk

∣∣∣∣
Υ=0

=
dφ1

dk

∂Υ
∂φ1

=
tσ−µ−2
1

2σ
∆,

with all variables being evaluated at Υ = 0. Now, because Lemma 3 implies that ∆ > 0 on

the sustain curve, dΥ/dk|Υ=0 is positive: Υ decreases as k falls. Consequently, a fall in k

makes the core-periphery pattern more likely to be sustainable. Thus, we have established

the following proposition.

Proposition 5. i) When σ is sufficiently low that the black hole condition is satisfied, the

core-periphery pattern is sustainable irrespective of the size of directional imbalance.

ii) When σ is so high that the black hole condition does not hold, less divergent transport

prices are associated with higher sustainability of the core-periphery pattern.

To understand ii) of the proposition intuitively, let us return to the identity (12) that

decomposes the impact of a change in t1 on v̂(1), given that t2 is fixed, into the terms of trade

effect, regional income effect and price index effect. Suppose that k falls. Then, t1 declines

but t2 remains unchanged, which scales down the directional imbalance of transport prices.

For one thing, as a result of the decline in t1, consumers in region 2 would try to substitute

imports for domestic products, if they had been consuming domestic products. This import

price effect reduces the wage rate of a potential entrepreneur in region 2, which raises the

relative wage rate, ŵ. On the other hand, there is no export price effect. This is because no

consumers in region 2 actually make the substitution: in fact, no manufacturing production

is conducted in that region. Consequently, the terms of trade effect solely consists of the

import price effect, and is negative. What is more, as long as the core-periphery pattern is

concerned, relative regional income is independent of transport prices: there is no regional

income effect. Finally, as t1 declines, varieties become less expensive in region 2. Because t1

does not affect the price index in region 1, P̂ rises, and thus a positive price index effect.8

It turns out that the import price effect dominates the relative price index effect for any

(φ1, φ2) ∈ Φ2. As a result, the relative indirect utility increases and the core-periphery

pattern becomes more likely to be sustainable as k falls.

Another way to see the relationship between the directional imbalance of transport prices

and the sustainability is examining directly the effects of changes in parameters on the
8The terms of trade effect and the price index effect are given by −(σ − 1)(1 − b)/ [1 − b + φ1φ2(1 + b)]

and µ, respectively.
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sustainability. Fig. 3 describes the loci of Υ = 0 in a k − c plane for four different values

of σ with µ again being fixed at 0.8. It is easily verified that Υ = 0 when k = c = 0 or

φ1 = φ2 = 0. Therefore, each locus passes through the origin. If the black hole condition

holds, furthermore, we can prove that a locus has a negative slope.9 This case is represented

by the locus for σ = 1.5. Here, Υ becomes negative when (k, c) lies above the locus and

positive when it lies below it. For any admissible pair of (k, c), therefore, Υ < 0 and the

core-periphery pattern is sustainable. If the black hole condition is not met, instead, the

sign of the slope of a curve depends on parameters. For relatively low σ, it has a downward

slope for any k ∈ [0, 1). In the figure, the locus for σ = 1.9 describes this case. The sign of Υ

at a particular point in the plane can be determined in the same manner as in the previous

case. As σ rises, the locus rotates counterclockwise around the origin. For a high level of

σ, the locus has a shape of a reverse image of character “C”. That is to say, it is downward

sloping for high values of c and upward sloping for low values of it (see the locus for σ = 4

in Fig. 3). In this case, Υ is negative “inside” the character “C”, and positive “outside” it.

— Insert Fig. 3 around here. —

From the figure, several observations can be obtained. In the first place, it is apparent

that for a given value of c, a fall in k makes the core-periphery pattern more likely to be

sustainable, which reflects the result obtained earlier (see ii) of Proposition 5). In the second

place, let us examine the effect of a fall in c when k is given. To begin with, we consider

a special case with k = 0, where our model is reduced to a conventional model with no

directional imbalance of transport prices. In this case, there is a critical point, a ‘sustain

point’, of c: the core-periphery pattern is sustainable if c is lower than it, whereas it is

unsustainable if c is higher than it. It is because lower c implies lower transport costs, which

enable entrepreneurs in the core to deliver their products to the workers in the periphery

at less expense. Now, let us turn our attention to the case with k > 0, the case with the

directional imbalance. For sufficiently high c, the core-periphery pattern is unsustainable.

As c falls, it eventually reaches a critical point corresponding to the sustain point mentioned

above; and thereafter, the pattern becomes sustainable. What is happening here is virtually

the same as in the case of no directional imbalance. As c falls further, however, it hits another

critical point. For c lower than it, the core-periphery pattern again becomes unsustainable.

In sum, as k gradually falls, the pattern becomes sustainable, unsustainable, and then

again sustainable. Such a non-monotonic behavior is not observed in a conventional model.

Indeed, the second critical point approaches 0 as k goes to 0; and therefore, the lower

9Note that dc/dk
˛

˛

Υ=0
= ∆(c + 1)

.h

φ1φ2(σ − 1)(σ + µ)(c + k + 1)−∆(c + 1)
i

. Because ∆ < 0 when the

black hole condition holds, the derivative is negative.
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‘unsustainability range’ of c disappears at k = 0. The reason for this novel result is that as

c falls, a relative size of the directional imbalance of transport prices expands although its

absolute size, which is equal to k, remains unchanged. Consequently, when c becomes too

low, the negative effect of imbalance on the sustainability grows to the extent that it more

than offsets the positive effect of low transport costs brought about by low c. Finally, we

have observed that as σ rises, the locus rotates counterclockwise. This implies that the area

for which Υ is negative shrinks. In this sense, the core-periphery pattern becomes less likely

to be sustainable as σ rises. This result is the same as the one derived in a conventional

model with no directional imbalance of transport prices.

4.2 Symmetric pattern

Next, we consider a symmetric pattern (λ = 1/2 or λ̂ = 1).

Because λ̂L < 1 < λ̂U , transport prices are given by (τo
1 , τo

2 ) = (c + k/2, c + k/2) at

that pattern. Furthermore, the inequality implies that a distribution sufficiently close to the

symmetric pattern also satisfies (19). More formally, there exists ε > 0 such that condition

λ̂L < λ̂ < λ̂U is satisfied for any λ̂ ∈ (1 − ε, 1 + ε). These findings are summarized as

follows.

Proposition 6. When entrepreneurs are distributed equally or nearly equally in two regions,

transport prices are given by (τ1, τ2) = (c + k/2, c + k/2).

What is more, the symmetric pattern is supported by a long-run equilibrium because

v̂(1/2) = 1. In addition, the equilibrium is stable if dv̂(1/2)/dλ ≤ 0, which is equivalent to

d ln v̂(1/2)/d ln λ̂ ≤ 0. Notice that λ̂ affects v̂ both directly and indirectly through a change

in transport prices:

d ln v̂(1/2)

d ln λ̂
=

∂ ln v̂(1/2)

∂ ln λ̂

∣∣∣∣
(t1,t2) const.

+
d ln to1

d ln λ̂

∂ ln v̂(1/2)
∂ ln t1

+
d ln to2

d ln λ̂

∂ ln v̂(1/2)
∂ ln t2

=
∂ ln v̂(1/2)

∂ ln λ̂

∣∣∣∣
(t1,t2) const.

+ 2
d ln to1

d ln λ̂

∂ ln v̂(1/2)
∂ ln t1

,

(22)

where toi ≡ τo
i +1 (i = 1, 2). Here, the last equality follows from the fact that d ln to1/d ln λ̂ =

−d ln to2/d ln λ̂ and ∂ ln v̂(1/2)
/
∂ ln t1 = −∂ ln v̂(1/2)

/
∂ ln t2. If to1 were to be equal to to2 for

any λ̂, then d ln to1/d ln λ̂ would become equal to d ln to2/d ln λ̂; and the second term in the

second line of (22) would disappear. This means that the term represents the effect due to

a directional imbalance of transport prices.

Since t1 = t2 and φ1 = φ2 at the symmetric equilibrium, their equilibrium values are

denoted simply by t and φ, respectively, in the rest of this section. With evaluating all the
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derivatives at λ̂ = 1, we obtain from (11) and (18)

∂ ln v̂(1/2)

∂ ln λ̂

∣∣∣∣
(t1,t2) const.

= Ψ ≡ (1 − φ)Ψ′

(σ − 1)(1 + φ)
[
σ − µ + φ(σ + µ)

] and

2
d ln to1

d ln λ̂

∂ ln v̂(1/2)
∂ ln t1

= Ω ≡ 2t−σΩ′

(1 + φ)
[
σ − µ + φ(σ + µ)

] ,

where Ψ′ ≡ φ(σ+µ)(σ+µ−1)−(σ−µ)(σ−µ−1) and Ω′ ≡ µ
[
σ−µ+φ(σ+µ)

]
−2σ(σ−1).

Here, Ψ represents the direct effect that arises provided that transport prices remain

constant. It is what one can find in a conventional model with exogenous and non-divergent

transport prices (see Baldwin et al. (2003), among others). Because Ψ′ is increasing in φ,

there is a critical value, φB ≡ (σ − µ)(σ − 1 − µ)
/
(σ + µ)(σ − 1 + µ) such that Ψ

>=
<

0 if

φ
>=
<

φB . This is a break point in a conventional model: if freeness of trade is higher than

φB , the symmetric equilibrium ‘breaks’ and becomes unstable. Notice that when the black

hole condition given by (21) is satisfied, φB becomes negative; and therefore, Ψ > 0 for any

φ ∈ Φ: the symmetric pattern becomes always unstable in this case.

In our model, however, there is an additional term, Ω, which represents the indirect effect

through a change in transport prices, or more specifically, the effect due to a directional

imbalance of transport prices. Notice that Ω′ increases with φ and becomes negative at

φ = 1 as long as the black hole condition does not hold. Hence, in that case, for any

admissible value of transport price, φ ∈ Φ, we have Ω′ < 0 and therefore Ω < 0. The

negativity of Ω means that the symmetric equilibrium becomes more likely to be stable if

we allow for the endogeneity and the imbalance of transport prices. Formally, we have the

following proposition:

Proposition 7. As long as the black hole condition is not satisfied, the range of φ for which

the symmetric equilibrium becomes stable is wider when transport prices are endogenously

determined and allowed to be imbalanced with respect to directions than when they are not.

To understand why Ω < 0, recall that the effect of a change in transport prices on the

relative level of indirect utility is decomposed into three parts (see (12)). Suppose that λ̂

increases a little from 1 so that region 1 becomes slightly bigger than region 2. Then, the

transport price in the binding direction, i.e., the direction from region 1 to region 2, rises

while that in the slack condition falls. Indeed, a 1 % increase in λ̂ results in a (σ − 1)−1 %

increase in to1 and a (σ − 1)−1 % decrease in to2. Let us focus on the increase in to1. First,

the relative wage rate decreases by the terms of trade effect, which contains the export price

effect and the import price effect. Second, the regional income effect works in the same

direction as the terms of trade effect, because we are now dealing with the case where the

two regions are sufficiently alike in size. Third and lastly, the relative price index declines. It
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turns out that the sum of the terms of trade effect and the regional income effect dominates

the price index effect; and consequently, the relative level of indirect utility declines.10 This

works as a centripetal force and the symmetric equilibrium becomes more likely to be stable.

The effect of the decrease in to2 is similarly explained.

The question which is not yet answered is how the ‘break point’ behaves in our model

with the additional term of Ω. Since Ψ + Ω is nonlinear, it is difficult to analytically obtain

further consequences: we need to rely on numerical simulations. Now, fixing µ at 0.8, we can

draw the value of Ψ + Ω as a function of φ. Diagram (a) of Fig. 4 describes such curves for

four different levels of σ. Now, suppose that σ gradually falls. For sufficiently high σ (σ = 3

and σ = 4, for example), Ψ + Ω is negative and the symmetric equilibrium is stable for any

φ ∈ Φ. As σ rises, the curve rotates counterclockwise or shifts upward. When σ reaches a

critical value (σ = 2.221), its top touches the horizontal axis. Subsequently, the curve cuts

the horizontal axis twice. Then, for σ = 1 + µ (= 1.8), the curve cuts the horizontal axis

at φ = 0 and φ = 1. Thereafter, the black hole condition becomes satisfied. The curve lies

above the axis for an entire range of φ ∈ Φ.

— Insert Fig. 4 around here. —

One could understand the fact that the ‘Ψ + Ω curve’ is bell-shaped with the help of

Diagrams (b) and (c), which describe Ψ and Ω, respectively, as functions of φ for given levels

of σ. As long as φ is not too high, Ω is negative; and therefore, the Ψ + Ω curve lies below

the ‘Ψ curve’. At the same time, Diagram (c) shows that an absolute value of Ω increases

with φ unless φ is too high. Consequently, the Ψ + Ω curve lies farther away from the Ψ

curve for higher values of φ.

Moreover, it is a novel outcome that φ has a non-monotonic impact on Ψ+Ω when σ is of

medium level. Suppose that σ is greater than 1+µ but sufficiently close to it, as represented

by σ = 1.9. For such σ, Ψ + Ω becomes negative at low values and high values of φ and

positive at intermediate values of it (see Diagram (a) of Fig. 4). Therefore, the symmetric

equilibrium becomes stable when φ is either low or high and becomes unstable when it

is in-between. A conventional model does not exhibit such a non-monotonic property: it

prescribes that the symmetric equilibrium become stable when φ is lower than a break

point and become unstable when φ exceeds it. To give an intuitive explanation for this non-

monotonicity, we again consider a situation where region 1 happens to become slightly bigger

than region 2, or, λ̂ infinitesimally increases from 1. As to the result that the symmetric

equilibrium is stable for sufficiently low freeness of trade, nothing new enters the picture:

10The terms of trade effect, the regional income effect, and the price index effect are given by −φ(σ −

1)
‹

(1 + φ), −2µφ(σ − 1)(1 − φ)
‹

(1 + φ)2
ˆ

σ − µ + φ(σ + µ)
˜

, and µφ/(1 + φ), respectively.
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relocating to the smaller region is profitable for entrepreneurs, because by doing so, they

can acquire the domestic demand in the smaller region, whose amount is considerably large

due to a high delivered price of imports. To the contrary, the result that the equilibrium is

stable for sufficiently high freeness of trade is a novel feature of our model. If there were no

directional imbalance of transport prices, entrepreneurs would have an incentive to relocate

to the larger region (Ψ is positive); but only a weak incentive (Ψ is small) for sufficiently

high freeness of trade. (Indeed, when manufacturing products are traded freely (φ = 1), this

incentive disappears (Ψ = 0).) Now, the increase in λ̂ brings about a directional imbalance

by raising a transport price in a binding direction and reducing that in a slack direction.

As has been explained, this weakens the incentive of entrepreneurs to relocate to the larger

region through the terms of trade effect, regional income effect and the price index effect.

For high freeness of trade, the intrinsic incentive to relocate to the larger region is so weak

that it is overturned by the effect of the directional imbalance. That is, they actually have an

incentive to relocate to the smaller region. Therefore, the symmetric equilibrium becomes

stable when freeness of trade is very high.

Finally, we can draw the locus of the break point as a function of σ. In Fig. 5, which is

drawn for µ = 0.8 as before, the solid line represents the break point in a conventional model

with no endogenous determination of transport prices nor the possibility of their directional

imbalance, that is, the locus of Ψ = 0. The symmetric equilibrium is stable when a pair of

parameters lies below the line, that is to say, when freeness of trade is lower than the break

point value. Instead, it is unstable for a pair above the line, namely, a pair with freeness of

trade exceeding the break point value. Furthermore, the line is upward sloping: the higher σ

is, the more likely the symmetric equilibrium is to be stable. On the other hand, the dotted

line represents the break point in our model with the endogenous determination of transport

prices and the possibility of their directional imbalance, namely, the locus of Ψ + Ω = 0.

The symmetric equilibrium is stable for a pair of parameters at the right of the line, and

unstable for that at the left of it. Notice that both lines cut the horizontal axis at σ = 1+µ,

the critical value of σ for the black hole condition. Furthermore, the maximum value of σ

on the dotted line (σ = 2.221) is the value for which the top of the Ψ + Ω curve touches the

horizontal axis in Diagram (a) of Fig. 4.

— Insert Fig. 5 around here. —

4.3 Overall impacts of changes in parameters

One of the greatest achievements of new economic geography is that it has revealed the

impacts of changes in transport costs upon economic geography. As is asserted in the
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literature, transport costs have been declining significantly over the centuries. Researchers

in the field have proved through a rigorous analysis that this is expected to strengthen a

centripetal force and reduce a centrifugal force, and, as a result, tend to make economic

activities concentrate in a fewer regions, which has indeed happened in the real world. In

this paper, however, transport costs are not exogenous but determined through each carrier’s

decision makings. What is exogenous is the cost parameters, k and c. In this section, thus,

we compete the analysis by examining in a spirit of the literature of new economic geography

what happens to economic geography if those parameters gradually decline over time.

In the first place, let us consider a decline in k for given c. For sufficiently high σ,

the core-periphery patterns are unsustainable while the symmetric equilibrium is stable for

any k ∈ [0, 1). Instead, for sufficiently low σ that the black hole condition is satisfied, the

core-periphery patterns are sustainable while the symmetric equilibrium is unstable for any

k ∈ [0, 1). Thus, an interesting case occurs for intermediate levels of σ. Fig. 6 shows

so-called ‘pitchfork diagrams’ for two values of σ when µ and c are fixed at 0.8 and 0.2,

respectively. The horizontal axis measures k while the vertical axis λ.

— Insert Fig. 6 around here. —

For σ = 3 (Diagram (a)), the core-periphery patterns are sustainable only for low values

of k (k < 0.553). This is because a decline in k results in a fall in the transport price

in a binding direction, which enhances the relative indirect utility in the core through a

positive and dominating terms of trade effect and a negative but dominated price index

effect. A ‘sustainability range’ of k, namely, the range of k for which the core-periphery

patterns become sustainable, furthermore, appears at a lowermost part of k for σ lower than

a critical value (5.048), and expands as σ falls. On the other hand, the symmetric equilibrium

is stable for any k ∈ [0, 1). Therefore, when k is high, it is expected that economic activities

are dispersed between two regions. As k declines, the dispersed pattern probably continues

but there emerges a possibility that economic geography switches to the agglomeration by

accident.

For σ = 1.9 (Diagram (b)), the core-periphery patterns are sustainable for any k ∈ [0, 1).

The symmetric equilibrium is, on the other hand, stable only for low values of k (k ≤ 0.466).

We have explained this by comparing levels of Ψ and Ω as follows (see Fig. 4). When k

is low, freeness of trade is high at the symmetric equilibrium. For high freeness of trade,

entrepreneurs would have a small incentive to relocate to the larger region if there were no

directional imbalance of transport prices. The directional imbalance, however, reduces the

incentive. It turns out that the latter effect of the imbalance more than offset the former

so that they actually have an incentive to relocate to the smaller region. In addition, a
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‘stability range’ of k, that is, the range of k for which the symmetric equilibrium becomes

stable, contracts as σ decreases and disappears for σ lower than a critical value (1.837).

Finally, one would conceive a following scenario for this configuration of sustainability and

stability. When k is high, manufacturing activities are concentrated in one region. As

k becomes sufficiently low, however, the possibility of dispersion arises in addition to the

agglomeration.

Furthermore, notice that in each diagram of Fig. 6, two dotted arcs are drawn. They

represent equilibrium distributions which are interior but not symmetric. The upper arc

represents the distribution supported by an equilibrium with (τ1, τ2) = (c + k, c). We can

verify that it actually lies above the line depicting λ̂U , which is not shown in the diagrams

(see (15)). Similarly, the lower arc, which lies below the line depicting λ̂L, represents the

distribution supported by an equilibrium with (τ1, τ2) = (c, c+k) (see (15)). It follows from

numerical computation that these equilibria with an asymmetric interior distribution are

unstable. Thus, we can disregard them.11

Lastly, let us take a look at a change in c, fixing the levels of µ and k at 0.8 and 0.3,

respectively. First, when σ is sufficiently high or sufficiently low, the result is similar to

the one obtained for a change in k. Thus, let us focus on intermediate levels of σ. For

one thing, Diagram (a) of Fig. 7 depicts a pitchfork diagram for σ = 3. The symmetric

equilibrium is stable for any k ∈ [0, 1). The sustainability range of c is, on the one hand,

an interval, (0.019, 0.797), which we can also observe in Fig. 3. As has been explained, the

core-periphery patterns are not sustainable for too low c, because the relative size of the

directional imbalance of transport prices, which works against the sustainability, becomes

too large. The sustainability range emerges for σ lower than a critical value (3.332) and

expands toward both sides as σ declines. What is more, when σ = 1.9 (see Diagram (b)),

the core-periphery patterns are sustainable for any k ∈ [0, 1). The symmetric equilibrium

is stable for low values of c (c ≤ 0.283) and unstable for high values of it. The stability

range of c contracts as σ decreases and disappears for σ smaller than a critical value (1.825).

Finally, two dotted arcs in each diagram again represent unstable equilibrium distributions,

associated with the transport prices given by (τ1, τ2) = (c + k, c) and (τ1, τ2) = (c, c + k),

respectively.

— Insert Fig. 7 around here. —

11As long as σ 6= 1+µ, in addition, there is no asymmetric interior distribution supported by an equilibrium

with (τ1, τ2) = (τo
1 , τo

2 ). This is explained as follows. Because φ2 = φ1
bλ2 for these prices, we have bv(λ) =

bλ
− σ−µ−1

σ−1 . Unless σ = 1 + µ, therefore, bv(·) is an increasing or a decreasing function of λ. Consequently,

bv(λ) = 1 has a unique solution, λ = 1/2, as long as σ 6= 1 + µ.
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5 Concluding Remarks

In this paper, we have explained from the behaviors of individual transport firms how

and why transport prices become imbalanced with respect to directions of shipments, and

examined how it affects economic geography in a general equilibrium framework of new

economic geography. It is found that the equilibrium transport price of the shipments

in a particular direction is a nondecreasing step-shaped function of a relative size of the

embarkation region, which implies that the transport price in a binding direction is higher

than that in the slack direction. Furthermore, it is shown that volumes of trade are equal

between two directions when regions are sufficiently alike in size, whereas they are different

when one region is much bigger than the other. In addition, the directional imbalance

of transport prices makes the symmetric pattern more likely to be stable and the core-

periphery patterns less likely to be sustainable. To put it in other words, the imbalance acts

as a centripetal force.
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Appendix

Proof of Lemma 1.
In this proof, we examine whether carrier h can obtain a positive profit by deviating from
the Nash strategy, given that every other carrier sticks to it. Suppose that zh

i ≥ zh
j (i, j =

1, 2; i 6= j). Then, the profit of the deviator is written as∑
l=1,2

(
τh
l − c

)
zh
l − kzh

i = −
[(

τ∗
j − c

) (
zh
i − zh

j

)
+

∑
l=1,2

(
τ∗
l − τh

l

)
zh
l

]
,

where the equality follows from the fact that τ∗
1 + τ∗

2 − 2c − k = 0. Because τ∗
j − c ≥ 0 (see

(15)),
(
τ∗
j − c

) (
zh
i − zh

j

)
≥ 0. Furthermore, if the deviator charges a price higher than τ∗

l ,
it will get zh

l = 0 and, therefore,
(
τ∗
l − τh

l

)
zh
l = 0. On the other hand, if it undercuts τ∗

l , it
may receive a positive demand and

(
τ∗
l − τh

l

)
zh
l ≥ 0. Therefore,

∑
l=1,2

(
τ∗
l − τh

l

)
zh
l ≥ 0.

Hence, the deviating carrier can never earn a positive profit.

Proof of Lemma 2.
The profit of a deviator, carrier h, is now represented by∑

l=1,2

(
τh
l − c

)
zh
l − kzh

i = −
[(

τo
j − c

) (
zh
i − zh

j

)
+

∑
l=1,2

(
τo
l − τh

l

)
zh
l

]

with zh
i ≥ zh

j (i = 1, 2; j 6= i), where the equality follows from (17). By the same reason
explained in the proof of Lemma 1,

∑
l=1,2

(
τo
l − τh

l

)
zh
l ≥ 0. First, let us prove the sufficient

condition. If τo
1 − c ≥ 0 and τo

2 − c ≥ 0, then τo
j − c ≥ 0. Therefore,

(
τo
j − c

) (
zh
i − zh

j

)
≥ 0.

Hence, the deviating carrier cannot earn a positive profit. Second, in order to prove the
necessary condition, suppose that τo

2−c < 0. Then, carrier h can choose zh
1 and zh

2 arbitrarily
so that zh

1 > zh
2 while keeping the prices at

(
τh
1 , τh

2

)
= (τo

1 , τo
2 ). By doing so, it earns a

positive profit because (τo
2 − c)

(
zh
1 − zh

2

)
+

∑
l=1,2 (τo

l − τo
l ) zh

l < 0. This is a contradiction.
Hence, it must be the case that τo

2 − c ≥ 0 at the equilibrium. We can similarly prove that
the condition τo

1 − c ≥ 0 is also necessary.

Proof of Lemma 3.
Because Υ = 0 at (φ1, φ2) = (1, 1), the sustain curve passes through (1, 1). Note that at that
point, ∆ = (σ−µ)(σ−µ−1)−µ(σ+µ)

>=
<

0 if σ
>=
<

σ0 ≡ (1+3µ+
√

1 + 2µ + 9µ2)/2. Three

cases are distinguished. First, if σ > σ0, then ∆ > 0 for any (φ1, φ2) ∈ Φ2 because φ1 < 1
and φ2 < 1. (The sustain curve for σ = 4 in Fig. 2 represents this case since σ0 = 3.146
for µ = 0.8.) Second, suppose that σ < σ0. Then, at (1, 1), the sustain curve is downward
sloping. Note that d2φ2/dφ2

1 < 0 when evaluated at ∆ = 0. That is, the sustain curve is
concave at its stationary points. This, together with the continuity of dφ2/dφ1

∣∣
Υ=0

, implies
that it has at most one stationary point. Consequently, there are two possibilities. One is
the possibility that the curve is downward sloping at any φ1 ∈ Φ. (The curve for σ = 1.9
in Fig. 2 represents this case.) In this case, it passes through φ2 > 1, that is, φ2 /∈ Φ, for
any φ1 ∈ Φ. Hence, we do not have to consider this case. The other is the possibility that
the curve is upward sloping for any φ1 ∈

(
21−σ, φ1

)
and downward sloping for φ1 ∈

(
φ1, 1

)
where φ1 ∈ Φ gives a stationary point. (The curve for σ = 3 in Fig. 2 represents this case.)
By construction, the curve takes φ2 > 1 at interval φ1 ∈ [φ1, 1). Therefore, if the curve
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passes through (φ1, φ2) ∈ Φ2, we must have φ1 < φ1. Hence, the curve is upward sloping
at such a point. Third and finally, suppose that σ = σ0. In this case, the sustain curve
becomes stationary at (1, 1). Because it is concave at that point, the curve is upward sloping
for any φ1 ∈ Φ.
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Fig. 1.  Effect of entrepreneurs’ distribution on equilibrium variables
                                when σ = 3, μ = 0.8, c = 0.2 and k = 0.3.
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