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Accuracy of Areal Weighting Interpolation:

Effects of Geometrical Properties of Zonal Systems

Abstract

This paper analyzes the accuracy of count data transferred through the areal

weighting interpolation with respect to the geometrical properties of zonal systems used

for aggregating spatial data. A stochastic model is employed to measure the estimation

error caused in data transfer between incompatible zonal systems. The relationship

between estimation error and the geometrical properties of zones is approximately

represented in analytical forms. The major results are as follows: 1) the perimeter of the

target zone and the area and perimeter of the source zones are crucial to the accuracy of

the areal weighting interpolation; 2) estimation error increases in proportion to the square

root of the perimeter of the target zone; 3) concerning the lattice system, estimation error

is proportional to the square root of the perimeter and the biquadratic root of the area of

the cell, and inversely proportional to the biquadratic root of the number of cells; 4) the

hexagonal lattice yields the most accurate estimates among all lattices.



1

1. Introduction

The areal weighting interpolation is a data transfer procedure between incompatible

zonal systems. There are diverse zonal systems used for aggregating and reporting spatial

data, say, census tracts, administrative districts, school districts, and so forth. Since they

are often geographically incompatible, integration of spatial data requires data transfer

between zonal systems. This process is called areal interpolation, and the areal weighting

interpolation is one of the most popular interpolation methods in GIS (Markoff and

Shapiro, 1973; Lam, 1983; Flowerdew and Green, 1991).

Assuming a uniform distribution of spatial objects, the areal weighting interpolation

divides the count of spatial objects according to area in each zone, and sums up the

counts in another incompatible zone. Obviously, obtained value is erroneous to some

extent because the uniformity assumption does not hold in general (Goodchild et al.,

1993; Fisher and Langford, 1995). One method to improve the accuracy of estimates is to

use source data based on smaller geographical zones. For instance, census data

aggregated across census tracts are more desirable than those aggregated across higher

levels of administrative districts, say, towns or counties. On the other hand, detailed data

are generally expensive or hard to obtain, and they need much space for storage and high-

performance processors for manipulation. Consequently, GIS users have to choose

source data balancing the data handling cost and the expected accuracy of estimates.

Such data choice requires us to understand the relationship between the source data

and the accuracy of estimates. Sadahiro (1999) proposes a method for analyzing the

accuracy of count data estimated by the areal weighting interpolation, and investigates it

in relation to the geometrical properties of zones, that is, their shape and size. The

obtained results seem quite reasonable: source data consisting of small and convex zones

give accurate estimates. In that paper, however, the accuracy measure is represented in an

integral form, so that the computational cost reduces the accessibility to the analyzing

method and results. For instance, it is not clear what properties are crucial to estimation

accuracy. It is also difficult to answer simple questions such as "to what extent the

estimation accuracy improves if the number of the source zones increases by twice?"

The motivation for the study described in this paper is to acquire more practical

representations of the accuracy of the areal weighting interpolation. The accuracy measure

is approximately represented in analytical forms on the basis of the stochastic areal

weighting interpolation model developed by Sadahiro (1999). This allows us to

understand what geometrical properties of zones are crucial to estimation accuracy, and

how they affect the accuracy of the areal weighting interpolation.

2. Areal weighting interpolation model
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This paper follows an approach taken by Sadahiro (1999): a stochastic model of the

areal weighting interpolation. This section outlines the model and accuracy measure

proposed in that paper.

Let S0 be a region of area A0 whose shape can cover a plane by its lattice, say, a

triangle, a square, or a parallelogram. The region S0 consists of K zones S1, S2, ..., SK,

which represent spatial units used for data aggregation such as census tracts (Figure 1).

We call them source zones in this paper. The area and perimeter of Si  are denoted by Ai

and Li , respectively. This zonal system is referred to as the source zonal system Ω.

Figure 1 An example of the source zonal system Ω.

In the region S0, N  points (say, households) are independently distributed

according to the uniform distribution. The location of point j is denoted by yj  This paper

limits the case to the uniform distribution in order to focus on the effects of the

geometrical properties of zones on estimation accuracy. We then assume that S0 is

surrounded by its copies, and the copies have the same zonal system and point

distribution as those of S0 (Figure 2). This assumption is called periodic continuation

which often used in spatial statistics (Ripley 1981, Stoyan and Stoyan 1994).

Figure 2 Periodic continuation assumption.

Let us then consider a target zone T that represents a region in which the number of

points needs to be estimated. The area and perimeter of T are denoted by AT and LT,

respectively. We assume that T is fairly larger than the source zones, or to be exact, that T

is large enough that the incircle of T is larger than the circumcircle of Si 's. This

assumption seems reasonable in areal interpolation, because if T is not larger than Si ' s

then it will lead to considerably imprecise interpolation.

The target zone T is dropped in such a way that it intersects S0. If T does not

completely lie in S0, we replace the portion of T outside S0 by its corresponding figure as

shown in Figure 3. All possible positions of T appear randomly. The location of T is

represented by an indicator function:

1
1

0T

if T
x

x
( ) =

∈

 otherwise

. (1)

Figure 3 Transformation of T.

In the above stochastic model, the number of points in T and its estimator given by
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the areal weighting interpolation are written as

M T j
j

= ( )∑1 y (2)

and
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respectively, where

1
1

0i
iif S

x
x

( ) =
∈


 otherwise

. (4)

Estimation accuracy is measured by the mean square error (MSE) defined by

MSE M MΩ[ ] = −( )





E ˆ 2
. (5)

Substituting equations (2) and (3) into equation (5), we obtain

MSE
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π

; x t x t
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d d (6)

(for details, see Sadahiro 1999), where m(T; l) is the measure of the set of all figures

congruent to T containing two points separated by a distance l.

3. Estimation error and geometrical properties of zones

Since equation (6) contains an integral term, calculation of MSE[Ω] requires

numerical integration. Because of its computational cost, the accessibility to the measure

is fairly reduced and thus it is not clear from equation (6) what geometrical properties of

zones are crucial to estimation accuracy. We hence derive analytical representations of the

measure using some approximations.

Instead of MSE[Ω], this paper adopts the root mean square error (RMSE) as the

accuracy measure which is given by

RMSE M M

N
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i ii
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xt

. (7)

To replace the integral term in equation (7), we employ an approximation
m T l A L lT T;( ) ≈ −2 2π (8)

(Stoyan and Stoyan, 1994; Sadahiro, 1998). Substitution of equation (8) into equation

(7) yields

RMSE
L

A
A DT

i i
i

Ω[ ] ≈ ∑λ
π 0

, (9)

where λ is the density of points (=N/A0) and Dj is the mean distance between two points
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that are randomly distributed in Sj. The distance Dj  is given in an analytical form if Sj  has

a simple shape. For instance, if Sj  is a circle of radius r,

D ri = 128
45π

. (10)

For a rectangle of sides a, b, we have

D
a b

a b a a b b a b

a b
a b b

a
ab

a b a

b

i = +( ) − − +( ) +{
+ + + + + + 
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4
2 2

4
2 2

log log
(11)

(Ghosh, 1951). If Sj  has more complicated shape, an approximate expression obtained

through an empirical study is useful:
D Li i≈ 0 13. (12)

 (Koshizuka, 1978). Substituting equation (12) into equation (9) we obtain

RMSE
L

A
A LT

i i
i

Ω[ ] ≈ ∑0 13

0

. λ
π

. (13)

This equation indicates that the accuracy of the areal weighting interpolation depends on

the perimeter of the target zone and the area and perimeter of the source zones. In other

words, the effects of the geometrical properties of zones can be described by these

parameters.

Having obtained analytical representations of the estimation error, we now discuss

in detail how the geometrical properties of the source and target zones affect estimation

accuracy.

3.1 Geometrical properties of the target zone

Let us first consider the effects of the target zone T. From equation (9) we notice

that estimation error RMSE[Ω] increases in proportion to the square root of the perimeter

of the target zone T. This implies that elongated forms of T yield less precise estimates

than convex forms. Suppose, for instance, a rectangular target zone of v/h ratio γ (γ≥1).

Then equation (9) becomes

RMSE
A

A
A DT

i i
i

Ω[ ] ≈ +( ) ∑2
1

0

λ
π

γ
γ

. (14)

Figure 4 shows the relationship between RMSE[Ω] and the v/h ratio of the rectangular

target zone.

Figure 4  The relationship between RMSE[Ω] and the v/h ratio of the rectangular target

zone. The area of the target zone is fixed. The value of RMSE[Ω] is standardized so that

RMSE[Ω]=1.0 for the square target zone.
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Fixing the shape of the target zone, we obtain
RMSE ATΩ[ ] ∝ 4 . (15)

This implies that RMSE[Ω] is proportional to the biquadratic root of the area of the target

zone (Figure 5). Comparing Figures 4 and 5, we find that the size of the target zone is

still more influential than its shape on estimation accuracy.

Figure 5  The relationship between RMSE[Ω] and the area of the target zone. The shape

of the target zone is fixed. The value of RMSE[Ω] is standardized so that RMSE[Ω]=1.0

for AT=1.0.

3.2 Geometrical properties of the source zones

We then turn to the effects of the source zones. As we mentioned earlier, they are

fully described by equation (13). However, it is somewhat difficult to understand

intuitively from the equation how the geometrical properties of the source zones affect

RMSE[Ω]. We hence consider the lattice as the zonal system, though the lattice system is

not so popular in geography. Consideration on the lattice would make the effects of the

source zones more clear and easy to understand.

Let S be the fundamental cell of the lattice. The area and perimeter of S are denoted

by AS and LS, respectively. Equations (13) then becomes

RMSE L LT SΩ[ ] ≈ 0 13. λ
π

. (16)

Equation (16) indicates that the source and target zones are approximately symmetric with

respect to the effects on RMSE[Ω]. Therefore, the relationships shown in Figures 4 and

5 equally hold for the source zones: estimation error is proportional to the square root of

the perimeter of the cell; if the shape of the cell is fixed, the error increases in proportion

to the biquadratic root of its area, that is,
RMSE ASΩ[ ] ∝ 4 . (17)

The cell size is even more influential than its shape, which suggests that we only have to

pay attention to the size of zones when we choose source data. These results are

consistent with those obtained in Cockings et al. (1997) and Sadahiro (1999).

Equation (16) also shows that the lattice system of high convexity yields better

estimates. Consequently, we can say that the hexagonal lattice is the most desirable

among all lattices, which is also compatible with the result obtained in Sadahiro (1999).

We finally examine how the number of cells K affects the accuracy of areal

interpolation. Fixing the shape of the cell, we have

RMSE
K

Ω[ ] ∝ 1
4

. (18)
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This implies that estimation error decreases in proportion to the biquadratic root of the

number of cells (Figure 6).

Figure 6  The relationship between RMSE[Ω] and the number of cells in the lattice

system. The shape of the fundamental cell of the lattice is fixed. The value of RMSE[Ω]

is standardized so that RMSE[Ω]=1.0 for K=1.

4. Conclusions

In this paper we have analyzed the accuracy of count data estimated by the areal

weighting interpolation. Using approximate expressions, we obtained analytical

representations of estimation accuracy shown as equations (9), (13), and (16). Since

computation of equations (13) and (16) requires only the area and perimeter of the source

and target zones, RMSE[Ω] can easily be obtained in commercial GIS. From these

equations we obtained the following results:

1) The perimeter of the target zone and the area and perimeter of the source

zones are crucial to the accuracy of the areal weighting interpolation

(equation (13)).

2) Estimation error increases in proportion to the square root of the perimeter

of the target zone (equation (9)).

3) Concerning the lattice system, estimation error is proportional to the

square root of the perimeter (equation(16)) and the biquadratic root of the

area (equation(17)) of the cell. Moreover, it is in inverse proportion to the

biquadratic root of the number of cells (equation (18)).

4) The hexagonal lattice yields the most accurate estimates among all lattices

through the areal weighting interpolation (equation (16)).
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