MGA Webinar 8 $^{\text {th }}$ June

Tokyo Univ. of Marine Science and Technology : Nobuaki Kubo

How can we set up RTK by ourselves?

- If you use commercial correction services or via satellites, you don't have to set up. All you need is just rover receiver and maybe software (receiver includes RTK engine).
- If you need to set up base stations by themselves, you can use RTKLIB or if you can prepare Ntrip caster, it is easy for you to conduct. Please contact us if you need any helps.

RTK Practice

- Post processing: Observation and Navigation data are required (RINEX).
- Real-Time: Communication link and differential data reception are required (RTCM/NTRIP).

2 receivers were set simultaneously

- Trimble NetR9 with Trimble antenna
- u-blox M8P with YOKOWO antenna
- For the equal comparison, same settings were applied.
- GPS/BEI + Instantaneous.

Similar test using u-blox

Options							X
Setting1	Setting2	Output	Stats	Positions	Eiles	Misc	
Positioning Mode Kinematic							
Frequencies / Filter Type				L1	\checkmark	Forwa	ard -
Elevation Mask (${ }^{\circ}$ / SNR Mask (dBHz)				z) 15	\checkmark		...
Rec Dynamics / Earth Tides Correction				ion OFF	-	OFF	-
Ionosphere Correction				Broa	dcast		\checkmark
Troposphere Correction				Saas	tamoinen		-
Satellite Ephemeris/Clock					dcast		\checkmark
\square SatPCV \square RecPCV \square PhWindup \square RejectEd \square RA							
Excluded Satellites (+PRN: Included)							
∇ GPS \square GLO \square Galileo \square QZSS \square SBAS \square BeiDou							
Load...			Save...		OK	Cancel	
Options							X
Setting1	Setting 2	Output	Stats	Positions Eiles $^{\text {P }}$ Misc			
Integer Ambiguity Res (GPS/GLO/BDS)				Insta * ON * ON *			
Min Ratio to Fix Ambiguity				3			
Min Confidence / Max FCB to Fix Amb				mb 0.99		0.25	
Min Lock / Elevation (${ }^{\circ}$) to Fix Amb				0		0	
Min Fix / Elevation (${ }^{\circ}$) to Hold Amb				10		0	
Outage to Reset Amb/Slip Thres (m)) 5		0.050	
Max Age of Diff (s) / Sync Solution				30.0		ON	\cdots
Reject Threshold of GDOP/Innov (m)				(m) 30.0		30.0	
Number of Filter Iteration				1			
\square Baseline Length Constraint (m)				0.00		0.000	
Load...			Save...	OK		Cancel	

u-blox M8P results

The performance of RTK : M8P is better than M8T (probably the PLL of M8P is more robust and precise than M8T...)

NetR9 results

RTKLIB (real-time : RTKNAVI)

- Connect u-blox M8P
- Execute RTKNAVI
- RTK was valid using NTRIP of base station (NetR9) via the same antenna under perfect condition (GQB).
- GQR was also valid but GLONASS ambiguity resolution is set OFF.

```
Please check them by yourself after you go back to home.
If you need an information how to set the reference station,
please refer to the website (GNSS TUTOR).
```


How to connect (my desktop)

RTKNAVI - Options

If you set GQR and it doesn't fix, please try it again by changing the setting of Integer Ambiguity Res "OFF".

Options						x
Setting 1	Setting2	Output	Statistics	Positions	Eiles	Misc
Rover						
Lat/Lon/Height (deg/m) * ...)						
90,000000000		0.000000000		-6335367.6285		
\square Antenna Type (*: Auto)			Dela-E/N/U (m)			
			\checkmark	0.0000	0.0000	0.0000
Base Station						
Lat/Lon/Height (deg/m) -			(..)			
35.666334610		139,792200800		59.7410		
\square Antenna Type (*: Auto)			Delta-EN/ $/$ (m)			
			-	0.0000	0.0000	0.0000
Station Position File						
\square 棘...						
Load			Save	OK		Cancel

u-blox M8P DGNSS (GB)

Limited Coverage of RTK

- Normally, the coverage of RTK is $10-20 \mathrm{~km}$. It strongly depends on the ionospheric activity.
- But, the recent commercial RTK engine can cover up to $50-100 \mathrm{~km}$.
- Also, you can use VRS/FKP correction service. The commercial company produces real-time correction data (Ntrip) using several base stations.
- QZSS will provide similar correction data through the $L 6$ signal (inside Japan). It is challenging because message bit-rate is 2Kbps.

PPP does not have limitation in area

- PPP provides precise orbit and clock of GNSS.
- It means that you have to remove ionospheric/tropospheric errors as much as possible. It takes 5-30 minutes and depends on the ionosphere model you have.
- QZSS is going to test PPP correction data through the L6 signal. In fact, we have tested it for serval years by JAXA (MADOCA).

RTKLIB Practice (2)

Car data and field test

- Car data is post-processed using RTKLIB
- Homework
- RTK field test using u-blox M8P (8 groups)

Car data

- 2017/7/19 8:24:20-8:57:20 (GPST)
- Total 9900 epochs in 5 Hz
- Near university campus (normal urban)
- u-blox M8T and Trimble NetR9 for both Rover and reference station
- You can compare these two receivers
- Single-frequency or dual-frequency ?
- What is the best setting ?

Settings of u-blox M8P

PLOT

If you set minimum $\mathrm{C} / \mathrm{N}_{0}$,

If you remove QZS ,

If you use NetR9,

If you use dual-frequency,

Comparing two POS files (RTKPLOT)

Previous test result

Just drug and drop of "posIvx.pos" into RTKPLOT
What happens if you click "1-2" ?

RTKPLOT 1-2

Homework

- Please try to find the best setting of RTKLIB using the u-blox data (both ref and rover).
- "Best" means highest number of fixes within 30 cm based on POSLVX file.

Simultaneous data is required

You need to prepare the raw-data at base station to include your period at rover.

PPP (Precise Point Positioning)

- Feature
- with Single Receiver (No Reference Station)
- Efficient Analysis for Many Receivers
- Precise Ephemeris
- Conventionally Post-Processing
- Applications
- GPS Seismometer
- GPS Meteorology
- POD (Precise Orbit Determination) of LEO Satellite
- Precise Time Transfer

Static PPP vs Kinematic PPP

Kinematic PPP
Station: IGS CONZ (Chile)

Static PPP
Station: GEONET 0837

PPP using RTKLIB

- I will use 24 h raw-data/15s interval of NetR9 same as precious test.
- If you need centimeter level, you should use dual-frequency receiver.
- You can download other files required in PPP as follows.

items	website
Precise ephemeris	$\mathrm{ftp}: / / \mathrm{cddis}$. nasa.gov/gps/products/mgex/1984/
Precise clock	$\mathrm{ftp}: / / \mathrm{cddis} . n a s a . g o v / \mathrm{gps} /$ products/mgex/1984/
Satellite antenna information	$\mathrm{ftp}: / / \mathrm{igs} .0 r g /$ pub/station/general/
erp file	$\mathrm{ftp}: / / \mathrm{cddis}$. nasa.gov/gps/products/mgex/1984/

PPP static setting

PPP static results

$(0,0,0)$ are the RTK fixed solutions based on F3/GEONET in GSI.

First 1 hour results

Past important questions

Multi-GNSS RTK

In total, 3+2+1=6 ambiguities have to be resolved. But, we actually need 9 satellites! It also can be applied in RTKLIB

Required satellite number for reliable RTK

- We have to discuss the number of ambiguities because LAMBDA method strongly depends on the number of ambiguities. With more satellites, the reliability of AR increases.

Receiver	environment	Required
Dual-frequency	Open sky	5
Single-frequency	Urban	10
	Open sky	10
	Urban	20

There is a contradiction because the number of usable satellites in urban areas is sure to decrease compared with open sky areas...

Why is the availability of denseurban areas so bad?

Single positioning in the center of Tokyo GPS+QZS+BEIDOU in 2016

What is the difference between two results ?
Same raw data (ublox M8T) is used !!!

What is the best mode in RTK ? Or what do these modes mean ?

Options								
Setting1	Setting 2	Output	Statistics	Positions	Files	Misc		
Integer Ambiguity Res (GPS/GLO/BDS)				OFF		ON		-
Min Ratio to Fix Ambiguity								
Min Confidence / Max FCB to Fix Amb				Instantaneo		0.25		
Min Lock / Elevation (${ }^{\circ}$) to Fix Amb				PPP-AR		0		
Min Fix / Elevation (${ }^{\circ}$) to Hold Amb				10		0		
Outage to Reset Amb/Slip Thres (m)				5		0.050		
Max Age of Diff (s) / Sync Solution				30.0		ON		
Reject Threshold of GDOP/Innov (m)				30.0		30.0		
Max \# of AR Iter/\# of Filter Iter				1		1		
\square Baseline Length Constraint (m)				0.000		0.000		
Load...		Save...		QK		Cancel		

Please remember that RTKLIB is not designed for the purpose of navigation under dense-urban areas although it can be used even in the raw-data obtained in urban areas.

Answer is actually difficult...

- Mr. Takasu developed those modes based on his own ideas. It means that there is no reference paper.
- I can say that "LAMBDA + Ratio test" are always used in RTK (kinematic).
- Each mode has each characteristics.

Kinematic modes	explanation
Instantaneous	Only single epoch observation data is used to resolve ambiguities
Continuous	Kalman Filter is used.
FIX and HOLD	Once the reliable correct ambiguities are resolved, those ambiguities information are retained.

Suitable test environment

$\left.$| Kinematic | Suitable test environment |
| :--- | :--- |
| modes | Instantaneous | | The accuracy of float solutions is like DGNSS. In the case of open sky |
| :--- |
| condition, instantaneous mode should be OK. You can see the real |
| performance of your receiver because if the accuracy of code-phase is |
| not so good, you can't obtain the better RTK results. | \right\rvert\,

You need a reference system to evaluate RTK test results

RTK performance differs with the time

Any questions ?

nkubo@kaiyodai.ac.jp

Actual Steps of RTK

- After this summer school, please check the followings regarding the process of RTK to deepen your understanding!

1. Generating "double difference"
2. Finding "integer ambiguities"
3. Baseline processing

1. DD (Double Difference)

$$
\begin{aligned}
\Phi_{u b}^{i j} & \equiv \lambda\left(\left(\phi_{u}^{i}-\phi_{b}^{i}\right)-\left(\phi_{u}^{j}-\phi_{b}^{j}\right)\right) \\
& =\rho_{u b}^{i j}+c\left(d t_{u b}^{i j}-d T_{u b}^{i j}\right)-I_{u b}^{i j}+T_{u b}^{i j}+\lambda N_{u b}^{i j}+d_{u b}^{i j}+\varepsilon_{\Phi} \\
& =\rho_{u b}^{i j}-I_{u b}^{i j}+T_{u b}^{i j}+\lambda N_{u b}^{i j}+d_{u b}^{i j}+\varepsilon_{\Phi}
\end{aligned}
$$

$$
d t_{u b}^{i j}=d t_{u}^{i j}-d t_{b}^{i j}=0, d T_{u b}^{i j}=d T_{u b}^{i}-d T_{u b}^{j} \approx 0
$$

$$
B_{u b}^{i j}=\left(\phi_{u, 0}-\phi_{0}^{i}+N_{u}^{i}\right)-\left(\phi_{b, 0}-\phi_{0}^{i}+N_{b}^{i}\right)-\left(\phi_{u, 0}-\phi_{0}^{j}+N_{u}^{j}\right)+\left(\phi_{b, 0}-\phi_{0}^{j}+N_{b}^{j}\right)=N_{u b}^{i j}
$$

[(short Baseline and same

 antenna type)$$
I_{u b}^{i j}=I_{u b}^{i}-I_{u b}^{j} \approx 0, T_{u b}^{i j}=T_{u b}^{i}-T_{u b}^{j} \approx 0, d_{u b}^{i j}=d_{u b}^{i}-d_{u b}^{j} \approx 0
$$

Why do we say the baseline limitation of RTK ? (10-100 km or more) It strongly depends on each RTK engine!

Receiver u
Receiver b

2. Integer Ambiguity Resolution

$$
\begin{aligned}
& P_{r o v-r e f}^{s v 1_{2} s v 2}=r_{r o v_{-} r e f}^{s v 1_{2} s v 2}+\varepsilon_{p, r o v-r e f}^{s v 1_{-} s v 2} \\
& \phi_{r o v_{-} r e f}^{s v 1_{-} s v 2}=r_{r o v_{-} r e f}^{s v 1_{2}}+N_{\text {rov_ref }}^{s v 1_{-} s v 2}+\varepsilon_{\phi, r o v_{-} r e f}^{s v 1_{-} s v 2}
\end{aligned}
$$

- Once you can resolve integer \mathbf{N} in carrier phase double difference, you get accurate position about 1 cm .
- It can be imagine that the pseudo-range (code) accuracy is quite important.
- Code-phase is noisy (1 m-) but absolute distance
- Carrier-phase is accurate but includes integer ambiguity

3. Test results on the rooftop

- double difference of 10 m baseline-

1. Reference satellite GPS PRN 16 and target satellite is GPS PRN 8
2. Which is code-phase double difference?
3. If you subtract from right to left, what happen ?

$$
\begin{aligned}
& P_{r o v_{-} r e f}^{s v 1 v_{2}}=r_{r o v_{-} r e f}^{s v 1_{-} s v 2}+\varepsilon_{p, r o v_{-} r e f}^{s v 1_{-} s v 2} \\
& \phi_{r o v_{-} r e f}^{s v 1_{2} s v 2}=r_{r o v_{-} r e f}^{s v 1_{-} s v 2}+N_{r o v_{-} r e f}^{s v 1_{-} s v 2}+\varepsilon_{\phi, r o v_{-} r e f}^{s v 1-s v 2}
\end{aligned}
$$

4. (Carrier DD) - (Code DD)

Probably, we guess the integer ambiguity between PRN16 and PRN8 is about - 40 ?
In fact, the average of this right results was - 41.3

5. What is the correct ambiguity ?

- "Integer least square method" tells us " -42 " in a single epoch!
- If you know the 3 or more ambiguities, you can estimate the user position with the level of carrier phase because only 3 unknowns remains.
- Then, (dx, dy, dz) can be estimated and finally,
- (X_user, Y_user, Z_user) $=(X, Y, Z)+(d x, d y, d z)$

6. Test results ($d x, d y, d z$)

7. Convert to horizontal positions

I am repeating myself, RTK tells you only $d x, d y, d z$.
You have to decide the precise reference positions !
I am repeating myself, RTK tells you only $d x, d y$, $d z$.
You have to decide the precise reference positions !

Enlarged view of the very small plot shown in the bottom-right corner.

