Introduction to MADOCA

Hideshi Kakimoto

GPAS Global Positioning Augmentation Service Corporation

MADOCA : A processing tool developed by JAXA to estimate precise satellite orbit and clock

Reference of GNSS Receiver: http://www.magellan.jp

• GPAS is providing a service to distribute augmentation messages processed by MADOCA

The augmentation messages are distributed by QZSS and the Internet

Benefits of MADOCA

- \checkmark No location restrictions to be used
 - i.e. RTK requires a continuous GNSS station (CORS) within 30 km Note: CORS within 30 km is required to save the initial convergence time of MADOCA (see p.6).

✓ No communication devices except GNSS receiver are required by receiving QZSS service

Note: To use GPAS's internet service or Local Augmentation (see p.6), a device to access to the internet is required

Augmentation Principles

The accuracy of satellite positioning can be improved up to 10 centimeters by applying MADOCA augmentation composed of satellite-side corrections (State Space Representation).

Fig. 1 Error Sources on Satellite Positioning

Fig. 2 Image of GNSS Augmentation by MADOCA

Notice: Positioning accuracy is affected not only by MADOCA performance, but also by receiver performance or by the performance of user's positioning algorithm.

[PPP: Precise Point Positioning]

Positioning with 10cm accuracy is available using MADOCA augmentation message and GNSS receiver that supports dual frequencies (L1/L2). This method is so called "PPP".

[PPP-AR: PPP with Ambiguity Resolution]

Positioning accuracy can be further improved by ambiguity resolution using phase bias (FCB) correction in augmentation message.

5. Local Augmentation

Initial convergence time and TTFF can be saved by estimating ionosphere/ troposphere errors using continuous GNSS observation station (Local Station).

© 2020 Global Positioning Augmentation Service Corporation

6. Demonstration

© 2020 Global Positioning Augmentation Service Corporation

GPAS

GNSS augmentation messages generated by MADOCA are being distributed from QZSS^{*1} as an experiment service on L6E channel. *1) Distributed from QZS-2, 3, 4 (excluding QZS-1)

Reference of GNSS Receiver: http://www.magellan.jp Satellite Image: http://qzss.go.jp

© 2020 Global Positioning Augmentation Service Corporation

8. GNSS Augmentation Service by GPAS

Global Positioning Augmentation Service (GPAS) is commercially distributing GNSS augmentation messages through the Internet.

— Service Menu ————		
Basic Service	Augmentation Product Real-time SSR stream (no FCB) SSR file download (no FCB)	Interface NTRIP SFTP
Basic + FCB Service FCB : Fractional Cycle Bias	Augmentation Product Real-time SSR stream (incl. FCB) SSR file download (incl. FCB)	Interface NTRIP SFTP
Ephemeris Service	Augmentation Product Ultra-Rapid / Rapid / Final	Interface please inquire

Please visit GPAS's website to apply for user registration : http://www.gpas.co.jp

<Sample Configuration for Utilization>

GNSS Receiver / Antenna compatible with MADOCA

Reference: http://www.magellan.jp

The augmentation messages conform to RTCM SSR standard format stage-1 and stage-2 proposed in 2013-2014. Supported satellites are GPS, GLONASS, and QZS-1*¹.

*1) QZS-2,3,4 and Galileo will be supported by October 2022.

Product	Estimation	Message	RTCM Message Type #			
	Interval (sec)	Interval (sec)	GPS	GLONASS	QZSS	
<qzss augmentation="" centimeter="" experiment="" for="" level="" service="" service:=""></qzss>						
Orbit Correction	30	30	1057	1063	1246	
High-Rate Clock Correction	1	2	1062	1068	1251	
User Range Accuracy (URA)	1	30	1061	1067	1250	
Code Bias	10800	30	1059	1065	1248	
<internet by="" commercial="" gpas="" service="" service:=""></internet>						
Orbit Correction	30	1	1057	1063	1246	
Clock Correction	1	1	1058	1064	1247	
High-Rate Clock Correction	1	1	1062	1068	1251	
User Range Accuracy (URA)	1	1	1061	1067	1250	
Code Bias	10800	1	1059	1065	1248	
Phase Bias (FCB)	900	1	11		13	

For details, please see our website:

https://www.gpas.co.jp/service_madoca.php

	MADOCA-PPP/PPP-AR	RTK
Horizontal Positioning Accuracy	10 centimeters	Centimeter-level
Convergence Time	<without augmentation="" local=""> About 10-30 minutes <with augmentation="" localized=""> Few minutes</with></without>	Less than 1 minute
Service Coverage*1	<without augmentation="" local=""> Worldwide <with augmentation="" local=""> Limited</with></without>	Limited
Coordinate System ^{*2}	Absolute (ITRF)	Relative (Depends on Reference Station)

*1) Local augmentation and RTK require reference GNSS station(s) within 30 km, which limits coverage.
 MADOCA (w/o L.A.) is available worldwide regardless of location of reference station.

*2) PPP/PPP-AR calculates absolute coordinates of user, and RTK calculates relative coordinates from a reference station. This difference will be advantage or disadvantage depending on application.

For example, relative coordinates are useful for local surveys. On the other hand, absolute coordinates can clarify the crustal movement or amplitude caused by an earthquake. 11. MADOCA Utilization Activities with QZSS Experimental Signal Service GPAS

Purpose

Widely use of high-precision positioning service from QZSS (MADOCA) in Asia-Oceania region

Scheme of the Activity

Act. 1 : Establishing monitoring stations and continuous evaluation

- ✓ Establish monitoring stations in Asia-Oceania region, and continuously evaluate the positioning accuracy as a reference MADOCA performance.
- Act. 2 : Promotion and Enhancement
 - ✓ Enhancement of low-cost MADOCA receiver system
 - ✓ Promote GNSS and QZSS/MADOCA technology through webinars, trainings, lectures, and pilot projects

Framework

12. Status of Continuous Monitoring

Monitoring Stations	 Monitoring Station (7) Planning (1) 				
	Country/Region City		Institution		
	Japan	Tokyo	Tokyo University of Marine Science and Technology		
Bangkok Tokyo	Philippines	Manila	University of the Philippines		
	Thailand	Bangkok	Chulalongkorn University		
	Malaysia	Kuala Lumpur	Malaysia-Japanese International Institute of Technology		
	Indonesia	Jakarta	University of Indonesia		
	Australia	Perth	Curtin University		
	Singapore	Singapore	Nanyang Technological University		
Perth	Vietnam	Ho Chi Minh	Ho Chi Minh City International University		

Monitoring Availability in FY2021/H1 Available Unavailable Outage of MADOCA

City	Availability	April	May	June	July	August	September
Tokyo	80.3%						
Manila	83.1%						
Bangkok	71.0%						
Kuala Lumpur	77.0%						
Jakarta	59.0%						
Perth	85.2%						
Singapore	15.3%						

13. Positioning Accuracies on Each Monitoring Station

© 2020 Global Positioning Augmentation Service Corporation

Hideshi Kakimoto Global Positioning Augmentation Service Corporation

Email kakimoto@gpas.co.jp Phone +81-3-6278-7881 Website http://www.gpas.co.jp/en