



### **GNSS Errors**

#### **Dinesh Manandhar**

Adjunct Associate Professor, RS/GIS, AIT

Project Associate Professor, Center for Spatial Information Science,

The University of Tokyo

Contact Information: <u>dinesh@csis.u-tokyo.ac.jp</u>

Homepage: <u>https://home.csis.u-tokyo.ac.jp/~dinesh/</u>





# **GNSS Errors**





### Background Information: Accuracy vs. Precision

- Accuracy
  - Capable of providing a correct measurement
  - Measurement is compared with true value
  - Affected by systematic error
- Precision
  - Capable of providing repeatable and reliable measurement
  - Statistical analysis of measurement provides the precision
  - Measure of random error
  - Systematic error has no effect





#### **GNSS** Measurement Errors

| Measure                    | Abbreviation | Definition                                                                                                                        |
|----------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Root Mean Square           | RMS          | The square root of the average of the squared errors                                                                              |
| Twice Distance RMS         | 2D RMS       | Twice the RMS of the horizontal errors                                                                                            |
| Circular Error Probable    | CEP          | A circle's radius, centered at the true antenna position,<br>containing 50% of the points in the horizontal scatter plot          |
| Horizontal 95%<br>Accuracy | R95          | A circle's radius, centered at the true antenna position, containing 95% of the points in the horizontal scatter plot             |
| Spherical Error Probable   | SEP          | A sphere's radius centered at the true antenna position,<br>containing 50% of the points in the three dimensional scatter<br>plot |

Source: GPS Accuracy: Lies, Damn Lies, and Statistics, GPS World, JAN 1998 https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/





### Commonly Used GNSS Performance Measurements

#### • TTFF

- True Time to First Fix
- Parameter: Cold Start, Warm Start, Hot Start
- Standard Accuracy
  - Accuracy attainable without any correction techniques
- DGPS Accuracy
  - Accuracy attainable by differential correction data
  - Code-phase correction
- RTK Accuracy
  - Accuracy attainable by differential correction data
  - Use both Code-Phase and Carrier Phase correction



## TTFF and Typical Example Values

#### • TTFF

• Cold Start : < 36 seconds

ter for Spatial Information Science

- Time required to output first position data since the receiver power is on
- No reference data like time or almanac are available
- Warm Start : < 6 seconds
  - Time required to output first position data since the receiver power is on with the latest satellite almanac data in the receiver's memory
  - Time and almanac related reference data are already known
- Hot Start : < 1 second
  - Receiver has already output position data
  - Time to reacquire an already tracked satellite due to temporary blockage by buildings or trees





### Performance Measurement of RTK Accuracy

- A fix error and a variable error with respect to base-length is given
  - Such as : x cm + y ppm
  - Example: 2cm + 1ppm
    - There is a fix error of 2cm plus 1ppm error due to base-length between the Base and Rover
    - 1ppm → 1 parts per million
    - > 1cm of error in 1 million centimeter distance between the Base and the Rover
    - > 1cm of error in 1000000 centimeter distance between the Base and the Rover
    - > 1cm of error in 10000 meter distance between the Base and the Rover
    - > 1cm of error in 10 kilometer distance between the Base and the Rover
    - > 1cm of error for every 10Km of distance between the Base and the Rover
    - > 4cm of error for 40Km of distance between the Base and the Rover
    - Thus the total error is : 2cm + 4cm due to 40Km of base length
  - The longer the base-length, the larger the error
    - Do not assume that this error is linear
    - And it may not be valid for longer base-lines
    - Normally the recommended base-length for RTK for a Geodetic Receiver is 40Km